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Abstract: Mangrove ecosystems are crucial for biodiversity and coastal protection but face threats
from climate change and human activities. This review assesses the productivity of the Matang
Mangrove Forest Reserve (MMFR) in Malaysia, which is recognised as one of the best-managed
mangrove forests, while also addressing challenges such as deforestation and climate change-induced
factors. This review explores the concept of productivity in mangrove forests, highlighting their role
in carbon sequestration and discussing litterfall measurements as fundamental metrics for assessing
primary productivity. An analysis of historical changes in MMFR’s biomass and productivity revealed
fluctuations influenced by logging, reforestation, and climatic conditions. Trends in MMFR produc-
tivity indicate a concerning decline attributed to anthropogenic activities such as aquaculture and
industrial projects. A regression analysis conducted on Rhizophora apiculata data with age as the pre-
dictor and AGB as the response variable indicated a positive trend (slope = 3.61, R-squared = 0.686),
suggesting a quantitative increase in AGB with age. Further analysis revealed a significant negative
trend in MMFR’s overall productivity over years (coefficient = −3.974, p < 0.05) with a strong inverse
relationship (rho = −0.818, p < 0.05), indicating declining AGB trends. Despite these challenges,
this review underscores the significance of sustainable management practices, effective conservation
efforts, and community engagement in maintaining mangrove ecosystem health and productivity.
In conclusion, sharing management lessons from MMFR can contribute to global conservation and
sustainable mangrove forest management efforts, fostering resilience in these vital ecosystems.
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1. Introduction

Mangrove forests are situated in the coastal areas within tropical and subtropical re-
gions, typically between the latitudes 25◦ N and 25◦ S, covering approximately 150,000 km2

globally and occupying less than 1% of coastal regions [1–3]. These ecosystems are charac-
terised as wetlands with abundant vegetation [4]. These unique habitats support diverse
plant species thriving in the intertidal zones of coastal and marine environments, encom-
passing ferns, palms, shrubs, and trees [5].

Their existence in challenging conditions, including high salinity, tidal fluctuations,
extreme temperatures, and oxygen-deprived soils, shapes their unique structures and
functions [6,7]. These are recognised as the most productive wetlands in tropical and
subtropical regions, providing a multitude [8–11] of products, trade opportunities, and
vital services [12,13]. Furthermore, their significance extends to mitigating soil erosion,
safeguarding coastlines from natural disasters, supporting fish farming, reducing high
levels of global warming worldwide, and contributing to the global carbon cycle by acting as
coastal carbon sinks [14–18]. Studies have indicated that mangroves exhibit a significantly
greater carbon footprint than non-wetland forests. Specifically, it has been observed that
the carbon emissions from one hectare of mangroves are equivalent to the destruction
of approximately 3 to 5 hectares of tropical forest [19]. This demonstrates their ability to
sequester carbon in comparison to other ecosystems. Simply put, the mangrove ecosystem
is widely regarded as one of the most productive ecosystems [20]. Since this review focuses
on productivity, it is imperative to discuss the concept of productivity in mangroves.

2. Productivity

According to [21], productivity includes four components: biomass increase per unit
time, litter turnover, herbivory, and the dissipation of dissolved organic matter from roots.
High productivity demands substantial nutrient and trace element inputs to uphold growth
and vital physiological functions [22]. Mangrove forests epitomise highly productive and di-
verse ecosystems, offering ecological, economic, and social benefits [10,11,13]. Evidenced by
higher AGB (aboveground biomass) production, amplified net primary production (NPP),
lower biomass decomposition rates, and a pronounced AGB to belowground biomass
(BGB) ratio, mangrove ecosystems demonstrate a higher carbon storage capacity. These
characteristics give mangroves an essential role in mitigating climate change because they
can absorb and store three to five times more carbon than other terrestrial forests, pre-
dominantly within the soil [16]. However, the escalating pace of mangrove deforestation,
exceeding that of inland terrestrial forests with global average losses estimated between
0.16% and 0.39% annually, poses an alarming threat to carbon emissions [23]. Many factors,
including changes in the physical or chemical environment, such as soil pH, O2 concen-
tration, drainage, soil type, nutrients, tides, temperature, and solar radiation, influence
riparian vegetation’s productivity. The presence of different vegetation types in the tidal
zone also affects the production patterns.

Litterfall measurements serve as a fundamental metric used to assess the primary
productivity of mangroves [24], compared to other forest ecosystems [25]. Globally, litter
productivity values in mangroves range from 2 to 16 tonnes per hectare per year, peaking
at 14 tonnes per hectare per year within 0 to 20 latitude locations and dipping below
2 tons per hectare per year in subtropical regions. This suggests that the impact of litter
production on latitudinal changes is more complex than that of plant biomass [26]. The
accumulation of AGB and the measurement of litter fall represent the most reliable methods
for estimating forest net primary productivity (NPP). In the case of mangroves, the average
rate of aboveground NPP is 11.1 tonnes of dry weight (DW) ha−1 year−1, with a decrease
in this rate observed as latitude increases [12]. Mangroves exhibit elevated productivity
in terms of AGB [22], substantial soil carbon content [16], and a notable proportion of
AGB [27] and demonstrate rapid rates of carbon sequestrations [27–29]. These ecosystems
are well suited to intertidal conditions, and their primary production serves as a crucial
energy source within aquatic food webs [30]. According to a hypothesis, mangrove primary
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production is transported through marine action to the surrounding areas of the coasts,
leading to malnutrition [31]. According to [1], mangroves rank as the second largest
marine ecosystem globally after coral reefs, contributing approximately 5% of net primary
productivity and exhibiting high carbon sequestration values.

Field studies have consistently showcased the remarkable attributes of mangrove
ecosystems, revealing their high productivity [22,32], and significant soil carbon con-
tent [16]. Thriving in intertidal conditions, mangroves play a crucial role as primary
producers, contributing significantly to aquatic food webs and serving as vital energy
sources [30]. Their existence is pivotal for sustaining tropical and subtropical coastal ecosys-
tems, notably supporting fisheries and acting as essential breeding grounds for diverse fish,
prawn species, and food sources [33]. The productivity of mangroves exhibits significant
variation across different sites [34]. Beyond factors such as climate, soil conditions, hy-
drology, and human influences [35,36], the structural composition of mangrove forests can
significantly influence their primary productivity. This structural aspect directly impacts
the photosynthetic capacity of mangroves [37]. Hence, variations in forest structure play a
pivotal role in determining the overall productivity of mangrove ecosystems. In the last two
decades, there has been a notable shift in paradigms regarding the factors influencing man-
grove forest structure and ecosystem dynamics. Previously, forces such as the frequency
and duration of tidal flooding, salinity levels, and sediment characteristics (including nutri-
ent availability and redox conditions) were considered the primary drivers. The outwelling
hypothesis proposed that mangrove primary production was transported through tidal
action to adjacent nearshore ecosystems, sustaining detrital-based food webs [31]. This
paradigm shift reflects a more nuanced understanding of the intricate interactions and
multifaceted drivers shaping the dynamics of mangrove ecosystems. Measuring produc-
tivity is essential to better understand the characteristics of forest ecosystems. Thus, this
study focused on assessing the productivity of MMFR (Matang Mangrove Forest Reserve)
in Malaysia.

3. Study Area

The MMFR is located on the northwest coast of Peninsular Malaysia [38], in the state
of Perak (4◦45′ N, 100◦35′ E) [39] (Figure 1). The reserve covers an area of 40,600 ha, with
30% mainland forest and 70% island forest [20,40], extending 51.5 km from Kuala Gula to
Bagan Panchor [41]. The climate in the MMFR is characterised by moisture. It is influenced
by two monsoon seasons: the southwest monsoon, which occurs from May to September,
and the northeast monsoon, which takes place from November to the following March. The
region’s rainiest months are October and November, while it receives an average monthly
rainfall of 200–400 mm [42]. According to Chan [42], the Sepetang River’s annual mean
water temperature is 29 ◦C, with pH ranges from 6.8 to 7.2, and its salinity in coastal water
is between 15.1 ± 0.1 and 24.5 ± 0.5. The tides in this region are semi-diurnal, meso-tidal,
with an elevation of the source and tides being 2.69 m and 2.06 m, respectively [43].

Since 1902, the State Forestry Department of Perak has been responsibly managing the
Matang Mangrove Forest Reserve (MMFR), focusing on sustainable timber production [39].
This forest reserve is categorised into four distinct forest management groups: protec-
tive, productive, unproductive, and restrictive productive forests. The productive zone
comprises 110 blocks/compartments, which feature several mature stands of Rhizophora.
Specifically, this zone primarily contains forests where Rhizophora apiculata and Rhizophora
mucronata are the dominant species [6]. The protective zones, as the name suggests, are
designated for protection (Table 1).

The non-productive zones include various areas such as urban villages, lakes, infras-
tructure zones, charcoal kilns, and offices as identified by [44]. In contrast, the protective
zones comprise a rich diversity of mangrove formations, including:

1. Avicennia-Sonneratia tree stands: These stands typically comprise young Avicennia
trees that colonise new mud flats near river mouths. The dominant species in these
stands are Avicennia alba Blume and A. officinalis L. However, patches of Sonneratia
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alba can also be found in A. alba and A. officinalis clumps. These stands are submerged
during high tides and cover an area of 3299 hectares.

2. Rhizophora apiculata tree stands: Found within the protected zone, these consist of
Rhizophora apiculata and Rhizophora mucronata forms that are not subject to exploitation.
While Rhizophora apiculata predominates, Rhizophora mucronata can also be found along
estuaries and riverbanks. This stand covers an area of 1665 hectares.

3. Dryland forest stands: These stands represent a transition to the local forest. They
are characterised by a forest floor containing high densities of Acrostichum aureum
Linnaeus and dry deciduous trees [42]. Dryland forest stands have 30 different tree
species [45], including four main mangrove species such as stripe mangrove. These
dryland forest stands are submerged by the equinoctial tides and are located at higher
elevations inland. The total volume of dryland forests spans 2291 hectares [42].
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Figure 1. Map of the Mangrove Forest Reserve: (a) Location of Matang Mangrove Forest Reserve
in Peninsular Malaysia, (b) Matang Mangrove Forest Reserve, and (c) Compartments in Matang
Mangrove Forest Reserve [39].

Table 1. The Matang Mangrove Forest Reserve total acreage breakdown [42].

Range Compartment Protective
Zone (ha)

Restrictive
Zone (ha)

Productive
Zone (ha)

Unproductive
Zone (ha)

Total
(ha)

Kuala Sepetang 1–50
62–64 5164 1369 14,357 179 21,069

Kuala Trong 51–61
65–86 834 480 9560 84 10,958

Sungai Kerang 87–108 1362 1043 5877 157 8439

Total 7360
(18.2%)

2892
(7.2%) 29,794 (73.6%) 420

(1%)
40,466
(100%)

The latest iteration of the Matang Management Plan involves the period from 2010 to
2019, and it adheres to a 30-year rotation system [44]. This comprehensive strategy oversees
the management of 110 compartments, facilitating an annual harvest of approximately
1000 hectares of mangrove forests. After logging activities, reforestation involves planting
Rhizophora apiculata seedlings within one to two years. Management activities entail a
two-fold thinning approach: firstly, at the 15-year mark, selectively cutting down smaller
trees within a 1.2 m radius; subsequently, after 20 years, conducting a second thinning
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operation by removing live trees within a 1.8 m radius. The managed forest predominantly
comprises single-species stands of Rhizophora apiculata, occasionally integrating trees from
species such as Bruguiera parviflora, B. gymnorhiza, B. cylindrica, and R. mucronata [46]. This
thinning process aims to enhance the growth of the remaining trees and procure poles, as
highlighted by [47–49].

In parallel, Malaysia has witnessed a troubling decline in mangrove areas, shrinking
by 12% from 1980 to 1990 due to various developmental activities, as reported by [50].
Presently, mangrove forests encompass a mere 1.8% of the total land area, with an aston-
ishing loss of over 50% between 1950 and 1985. Notably, the Matang Mangrove Forest
Reserve (MMFR), covering over 40,000 hectares and constituting nearly 40% of Malaysia’s
mangrove area, has experienced a significant decrease in production from 296 tonnes per
hectare in the late 19th century to 136 tonnes per hectare in the late 1970s [51].

In response to these challenges, effective enforcement and management strategies are
imperative to ensure the conservation and sustainable utilisation of mangrove ecosystems.
Given the alarming decline in mangrove areas and productivity, maintaining a consistent
monitoring process becomes paramount. Such monitoring endeavours aim to comprehen-
sively assess the structure, plant diversity, and biomass of mangrove forests. Therefore, this
study aimed to delve into the productivity of the MMFR over different time frames and
scrutinise the factors influencing this decline by analysing previous research findings.

4. Productivity of MMFR

Productivity can be defined as “the amount of biomass produced in an ecosystem”. It is
denoted in units of kg/m2/year. Productivity is often linked to the above ground structure
of plants [25]. In mangrove-managed forests, i.e., the MMFR, productivity is always
defined as the increase in stem diameter and height or tree biomass. Other vegetative
and floral parts are ignored in the harvesting process and management. Various studies
have been conducted previously to estimate the biomass and productivity of MMFR, and
a few studies have claimed that the MMFR is the best-managed mangrove forest in the
world [20,49,52]. In the present study, we tried to review all those previous papers and
collected the biomass data for different years and different species in the MMFR (Table 2).
Table 3 shows the productivity status and trends (indicators) of mangrove forests for
different years. The difference table (Table 3) presents an estimated biomass productivity
comparison between the current and previous years for two stands of identical age and
species. This comparison is denoted by an indicator illustrating whether there was an
increase or decrease in productivity.

Table 2. Aboveground biomass of MMRF in different years.

Years Age Species ABG t/ha Sources

1950 - Rhizophora apiculata 270 [53]
1980 5 Rhizophora apiculata 72 [54]
1980 13 Rhizophora apiculata 131 [54]
1980 23 Rhizophora apiculata 155 [54]
1980 28 Rhizophora apiculata 153 [54]
1981 Seedling to mature Rhizophora apiculata 460 [53]
1984 1–10 (5) Rhizophora apiculata 100 [55]
1984 11–20 (10) Rhizophora apiculata 200 [55]
1984 21–30 (15) Rhizophora apiculata 300 [55]
1985 10 Rhizophora apiculata 18 [55]
1985 15 Rhizophora apiculata 13 [55]
1985 25 Rhizophora apiculata 12 [55]
1986 >80 Rhizophora apiculata 270 [53]
1986 >80 Rhizophora apiculata 460 [53]
1986 >80 Rhizophora apiculata 400 [53]
1986 30 Rhizophora apiculata 150 [53]

1986 (1950–1981) Seedling to mature Rhizophora apiculata 409 averages [53]
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Table 2. Cont.

Years Age Species ABG t/ha Sources

1990 - Rhizophora apiculata 185.30 [51]
1990 1–30 Rhizophora apiculata 202.53 [51]
1993 5 Rhizophora apiculata 8 [54]
1993 10 Rhizophora apiculata 90 [54]
1993 15 Rhizophora apiculata 100 [54]
1993 25 Rhizophora apiculata 150 [54]
1993 30 Rhizophora apiculata 300 [54]
1995 20 Rhizophora apiculata 228 [54]
2011 15 Rhizophora apiculata 216 [52]
2011 20 Rhizophora apiculata 217 [52]
2011 30 Rhizophora apiculata 372 [52]

2014 >80

Rhizophora apiculata
Rhizophora mucronata
Bruguiera parviflora
Avicennia officinalis

Sonneratia alba
Excoecaria agallocha

Bruguiera gymnorrhiza
Bruguiera cylindrical

415 [52]

2014 15 Rhizophora apiculata 216 [52]
2014 20 Rhizophora apiculata 217 [52]
2014 30 Rhizophora apiculata 372 [52]

2016 (1980–1989) - All species in the area 177 [56]
2016 (1990–1999) - All species in the area 175 [56]
2016 (2000–2009) - All species in the area 179 [56]

2019 15 Rhizophora apiculata 168 [20]
2019 15 Rhizophora apiculata 235 [20]
2019 25 Rhizophora apiculata 241 [20]
2019 25 Rhizophora apiculata 283 [20]
2019 30 Rhizophora apiculata 266 [20]

Through remote sensing base
1991 All age class species All species in MMFR 153 t/ha [57]
2011 All age class species All species in MMFR 140 t/ha [57]
2017 90 (protective forest) All species in MMFR 210 Mg ha−1 UAV data [58]
2017 90 (protective forest) All species in MMFR 143 Mg ha−1 ground inventory data [58]
2017 15 productive forests All species in MMFR 217 Mg ha−1 UAV data [58]

2017 15 productive forests All species in MMFR 238 Mg ha−1

ground inventory data
[58]

Table 3. Difference table showing trends of mangrove forest productivity.

Years Difference between
ABG t/ha

Estimated ABG t/ha
Difference per/year

Indication
Increase/Decrease

1950–1980 270–153 117 Decreased
1980–1981 153–460 307 Increased
1981–1984 460–300 160 Decreased
1984–1986 300–400 100 Increased
1986–1990 400–202 198 Decreased
1990–1993 202–300 98 Increased
1993–1995 300–228 72 Decreased
1995–2011 228–372 144 Increased
2011–2014 372–415 43 Increased
2014–2016 372–177 195 Decreased
2016–2019 177–168 9 Same
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The dynamics of mature mangrove forests, particularly exemplified by the MMFR,
exhibit intricate changes influenced by multifaceted factors. Extensive study [53] in 1986
revealed a historical timeline of transformations within the MMFR. During the 1930s, a
noteworthy surge in the population of selected trees contrasted with a gradual decline
in Rhizophora apiculata growth from the 1920s to the 1950s. Over this period, the relative
number of tree species other than Rhizophora apiculata contributing to seed production
increased between 1920 and 1981. However, the number of trees with a diameter at
breast height (DBH) exceeding 10 cm decreased between 1950 and 1975, followed by an
increase between 1975 and 1981. Notably, from 1975 to 1981, mortality rates remained
constant and did not significantly impact biomass, which decreased from 270 to 153t/ha,
showing a variation of 117 t/ha (Table 3). The rapid biomass declined between 1965 and
1975 was primarily attributed to the death of large-sized trees (40–50 cm DBH). Biomass
increased from 153 to 460 t/ha in 1981, with a difference of 307 t/year, owing to the
planting of seedlings during the 1980s. Similarly, it decreased from 460 to 300 tons per
hectare in 1984 due to the felling of some mature trees. As shown in Table 2, a regression
analysis conducted on Rhizophora apiculata data with age as the predictor and AGB as
the response variable indicated a significant relationship (slope = 3.61, intercept = 112.25,
R-squared = 0.686), suggesting a positive trend in AGB increasing with age (Figure 2). This
highlights how AGB changes with the increasing age of Rhizophora apiculata in the MMFR,
providing a quantitative measure for comparisons with mangrove chronosequence studies.
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Figure 2. Relationship between age and aboveground biomass (AGB) of Rhizophora apiculata.

Old-growth mangroves exhibit high dynamism, notably creating canopy gaps through
processes like tree mortality, which are subsequently filled by smaller-statured species,
e.g., Derris uliginosa. In this ecological theatre, tree saplings on the forest floor emerge as
crucial architects of the canopy, actively contributing to its formation. The difference in
biomass observed in 1986, approximately 300–400 t/ha (100 t/ha), may be attributed to the
felling of some mature trees in 1984, leading to the emergence of root suckers that filled
the canopy gaps. In the management of the MMFR, a notable practice involves conducting
artificial regeneration two years after the final harvest if the natural regeneration stock
falls below 90%. However, the results of these studies should be interpreted cautiously, as
many factors influence the dynamics of old-growth mangrove forests. Additional research
may be necessary to gain a comprehensive understanding of MMFR productivity. As
shown in Table 3, the regression analysis for trends based on years revealed a statistically
significant decline in AGB per year (coefficient = −3.974, p = 0.0179), while a Pearson’s cor-
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relation analysis further supported a strong negative relationship (rho = −0.818, p = 0.0037)
(Figure 3). This detailed statistical examination elucidates the overarching negative trend
in the MMFR’s productivity, offering insight into potential drivers behind these trends and
comparing them with historical and current productivity metrics [53].
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In 1990, there was a significant decline in biomass in the MMFR, with biomass declin-
ing from 400 to 202 tonnes/ha over four years, possibly due to logging for wood or charcoal
production. Ref. [55] recommended early thinning at 8–9 years of age to increase biomass,
followed by first thinning at 12–13 years of age and the next thinning at 17–18 years of age.
They also suggested a short rotation of 25 years rather than 30 years because there was no
increase in stem biomass after 18 years.

However, biomass increased from 202 to 300 t/ha (98 t/ha difference) in 1993 due to
some trees producing good quality seedlings. From 1993 to 1995, biomass decreased from
300 to 228 t/ha, a difference of 72 t/ha, probably due to the presence of numerous mature
trees. Ref. [59] supported this trend, highlighting a significant decrease in AGB storage
with forest age. Ref. [2] found that net canopy photosynthesis was strongly associated
with forest age, although primary productivity decreased with forest age. This surge was
attributed to the increase in stand age, progressing from 20 years in 1995 to 30 years in
2011, allowing mature trees to sequester more carbon, thereby contributing to increased
biomass. This finding aligns with [51] study, which delineated escalating AGB with stand
age progression: 50 t/ha in 5-year-old stands, 70 t/ha in 8-year-old stands, 95 t/ha in
13-year-old stands, and 120 t/ha in 18-year-old stands.

However, in 2014, the difference in biomass was not significant, only 43 t/ha, despite
the stand being a mix of different species and older than 80 years. This is because mature
trees have a limited capacity to sequester carbon and produce biomass, while younger trees
have a greater capacity for growth. Further support for this trend is found in the study
conducted by [51], which highlighted rapid biomass increases from 72 t/ha in 13 years to
131 t/ha in 23 years, followed by a decrease from 161 t/ha to 155 t/ha at 23 years. These
findings indicate the dynamic nature of biomass accumulation with varying stand ages. In
2016, a notable decline in biomass occurred, reducing significantly from 372 to 177 t/ha
and recovering slightly to 195 t/ha. This decline was attributed to the presence of a young
stand that year, experiencing amplified seedling mortality, resulting in decreased density
and, consequently, lower biomass productivity. Ref. [53] supported this by stating that
the death of old trees and their replacement by new trees, which are often more shade
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tolerant, can reduce biomass productivity. Additionally, ref. [60] highlighted the impact
of hot, dry seasons on mangrove ecosystems. Their findings suggested that such climatic
conditions could elevate mortality rates and induce long-term declines in living biomass.
Consequently, this diminishes the ability of mangrove forests to sustain high net primary
productivity (NPP) over time. Environmental factors, e.g., soil abiotic properties, can also
affect the productivity of biomass in mangroves [61]. In 2019, biomass productivity did
not change significantly, with a negligible difference of 9 t/ha, as the stand age remained
the same. This is in line with [62], who observed that the AGB trend of mangrove forests
depends on tree age, stand structure, and habitat characteristics.

5. Factors Affecting Productivity

Tropical and subtropical mangroves are valuable for biodiversity conservation and
coastal and coral reef protection including seagrass beds [63]. They provide habitat, spawn-
ing grounds, and food for three-quarters of commercially hunted species in tropical re-
gions [64]. However, several abiotic factors, such as nutrients, affect the productivity of
mangrove wetlands. There is an obvious misconception about mangroves; they are highly
productive and rich in carbon but poor in nutrients. Most mangrove research has focused
on how mangroves maintain high productivity despite low nutrient availability [65]. Cur-
rent evidence suggests that mangroves have the capacity for high productivity, even in
cases where growth is limited by nutrient availability. This is achievable by efficiently
utilising appropriate nutrients and effective nutrient storage mechanisms.

5.1. Nutrients

According to Hutchison et al. [65], mangrove trees are highly productive but poor in
nutrients. This is believed to be due to an efficient nutrient cycle and retention mechanism.
Mangroves have evolved the ability to store nutrients to survive in oligotrophic, anoxic
water and soil conditions. Although the abundances of Na (sodium), K (potassium), S8
(sulphur), B (boron), and Mg2+ (magnesium), N (nitrogen) and P (phosphorus) are likely
to be limited in coastal wetlands [30], N and P are considered the most likely limiting
nutrients in mangrove ecosystems; these nutrients play a vital role in the robust growth of
mangroves. [63,65] discovered that nutrient enrichments such as of N and P perform better
in north Queensland. A mixture of N and P encouraged the growth of dwarf mangroves
in a coral reef ecosystem off the coast of Belize. Nutrient interactions, soil composition,
salinity, and tidal inundation also affect mangrove nutrition [65].

Mangroves have higher nutrient use efficiency for N and a moderate range for P
compared to other tropical forests [22]. Mangroves retain N and P by mobilising available
solutes and plenty of dead roots. P is fixed with inorganic soil components, for example, Al
(aluminium), Fe (iron), Ca (calcium), and S2− (sulphides). At the same time, N is present in
the form of NH4

+ (ammonium) due to its low energy requirement [22]. Mangrove trees
have sclerophyllous leaves and more roots that lead to lower P and water availability than
shoot ratios due to water loss through the leaves in highly saline environments. However,
high root biomass provides more surface area for nutrient capture and helps to prevent
the immobilisation of soil NH4

+. Therefore, a non-linear relationship exists between the
root-to-shoot ratio and soil condition.

Plants along the riverside are taller and more robust and grow in soils with lower
H2S content than plants detached from the river. This suggests that H2S concentration is
a main factor in controlling the productivity and forest structure of mangroves. The soil
ammonification, nitrification, and the conversion of nitrate (NO3

−) to ammonium (NH4
+)

play crucial roles in sustaining primary production within mangrove ecosystems. These
mechanisms are pivotal in nutrient cycling, facilitating the availability and utilisation of
essential nutrients to support and maintain the productivity of these environments. Any
external factor that alters these processes, such as soil disturbance, can negatively affect
mangrove productivity [30]. In addition, soil N storage, belowground root production, litter,
deforestation, and tidal exchanges can also affect productivity. Ref. [51] conducted a study
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to investigate the nutrient composition of the MMFR, including N, P, and macronutrient
concentrations. The study also examined nutrient export patterns concerning stand age
(1 year to 30 years) in productive and non-productive zones. The study found that the
concentrations of nutrients in the MMFR follow the decreasing order of Na > Mg > Ca > K
(Figure 4).
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management mechanisms inherent to mangrove ecosystems [66].

5.2. The Gradient Effect of Flooding

Several factors cause the absence of understory plantations in mangroves due to stress,
for example, insufficient lighting, H2S (hydrogen sulphide), anoxic soils, soil salinity, and
nutrient deficiency nutrients [27]. Snedaker et al. [67] argued that plants cannot meet the
energy requirements of the highly stressful environment in the shade of mangroves, so
they cannot grow in their shade. Species distribution within mangrove forests is primarily
influenced by inundation frequency, pore water salinity, and water logging [27]. Previous
research has suggested that the specific substrate elevation is limited by certain character-
istics like tide levels, times, and flooding frequencies. Moreover, a recent study by [40],
specifically within the MMFR, revealed that flood patterns substantially influence nutrient
uptake among similar and different species within the mangrove. This finding underscores
the significant impact of flood dynamics on nutrient distribution within these ecosystems.

5.3. Pollution

The impact of pollution on mangrove vegetation can be assessed based on biological
responses such as biomass composition, defoliation, survival rate, effect on photosynthesis,
and the expressions of enzymes. As a weak link between freshwater and marine ecosystems,
mangroves assume a vital role in absorbing pollutants and facilitating the flow of nutrients
within marine ecosystems. However, increasing pollution pressure from human and natural
sources affects these naturally immune ecosystems. Mangroves also act as a sink for heavy
metals. They help capture heavy metals such as lead and fluoride by acting as carriers of
contaminants [68]. Pollutants and carbon can be trapped in the root tissue, where metal
concentrations are generally higher than in the aerial parts. However, mangrove tissues may
not be effective pollution indicators because they typically have a lower bioconcentration
factor than roots. Metals in mangrove tissues follow the occurrence of metal speciation in
sediments. Higher concentrations of Cu (copper) and Pb (Lead) were found to accumulate
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in root tissue, while Cu and Zn (zinc) were found to be greater than 10% in leaf tissue
compared to root [68]. Mangrove sediments, which are generally fine grained, play an
essential role in adsorbing chemical pollutants in mangrove ecosystems between pore
water, overlying water, and solid phases such as sediments and suspended particles. The
precipitation of iron, along with other S2− (sulphide) minerals, e.g., FeS (iron sulphide) in
the S2− zones, is responsible for the sequestration of metals in mangroves [67]. A study
revealed varying degrees of heavy metal accumulation within the MMFR, with maximum
reported levels for manganese (Mn), occasionally accompanied by high levels of iron
(Fe), while cadmium (Cd) showed the lowest accumulation. The categorisation generally
follows the sequence Mn ≥ Fe > Zn > Cr > Pb > Cu > Cd. Several studies were conducted in
response to concerns regarding heavy metal contamination in the MMFR. Ref. [69] observed
no evidence of heavy metal contamination, while [70] reported low concentrations of heavy
metals in the MMFR, possibly attributed to anthropogenic sources.

Development near mangroves has impeded their landward migration. Human ac-
tivities, such as industrialisation and uncontrolled human activities, have put pressure
on untouched mangrove areas. However, mangrove ecosystems can adapt and act as
natural pollutant sinks. The MMFR has also been affected by human activities, includ-
ing aquaculture practices, industrial projects, settlements, charcoal factories, kilns, and
piling logs [11].

5.4. Climate Change

Sea level and temperature records are essential for understanding mangrove responses
to climate change. Mangroves are anticipated to be among the most vulnerable ecosystems
affected by rising sea levels, and their specific response is influenced by the relative mean
sea level. The responses of mangroves to climate change are directly affected by anthro-
pogenic drivers such as land-use change, damming, groundwater pumping, exploration for
deltaic oil and gas exploration, and aquaculture practices, which affect mangrove sediment
budget and influence their rise/fall. The sediment budget and substrate level are influenced
by several factors, including surface/groundwater salinity, the hydrodynamics of river
basins, sediment volume reaching the coast, the erosion sedimentation balance of the coast-
line, coastal strip, and the mobilisation of contaminants and nutrients in coastal regions.
However, existing sea level and temperature data cannot be used to predict the impact
of sea level rise on mangroves [1]. It has been observed that mangroves can withstand
sea level rises of up to 9 cm/100 years through peat accumulation, with the rate of peat
accumulation in the Hunger Bay mangrove forest being 8.5–10.5 cm/100 years over the last
2000 years based on Holocene records. Changes in sea level, sediment deposition, erosion,
soil gap filling, compaction, and microbial decomposition affect mangrove surface eleva-
tion [27], and the sedimentation rate determines the response of mangroves to sea level rise.
The effects of sea level rise on mangroves depend on location and interactions between the
sea level and the watershed, including changes in continental runoff/sea levels caused by
different patterns of precipitation [15]. Additionally, the rise in sea level poses an unequal
threat to numerous mangrove types and their species. Mangroves growing at the forest’s
edge, obstructed by natural and man-made barriers, are most vulnerable. Fast-growing
species have a better chance of coping with changes than slow-growing species. Climate
change is an important factor affecting the distribution and productivity of mangroves [30].
Furthermore, recent investigations highlight the significance of mangrove species diver-
sity in shaping ecosystem resilience to climate change. Studies have shown that diverse
mangrove forests with a variety of species exhibit greater resistance and resilience to envi-
ronmental stressors, including sea level rise, compared to monoculture stands [71]. The
functional traits and adaptive capacities of different mangrove species play a critical role in
modulating ecosystem responses to changing environmental conditions [72]. Additionally,
the provision of ecosystem services by mangrove forests, such as coastal protection, carbon
sequestration, and habitat provision, contributes to their adaptive capacity and enhances
the resilience of coastal communities to climate change impacts [73].
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5.5. Management of Mangrove Forest

The Matang Mangrove Forest Reserve (MMFR) provides a classic case study for
sustainable management. It has been a managed forest reserve for the past century.
During this time, the reserve lost only 250 hectares of settlements and infrastructure. On
the other hand, there has also been an increase in mangrove forests of approximately
1498 ha [48]. In Malaysia, the Forestry Department of Peninsular Malaysia (FDPM)
is responsible for policymaking and implementation for mangrove conservation. The
FDPM has declared some mangrove forests as reserved to promote sustainable man-
agement. This initiative was taken in 1992 by the National Land Council and Forestry
Council [74]. For a productive forest like the MMFR, management mostly rests on the
supply and demand, and poor management decisions are frequently originated on poor
or fragmented pieces of evidence [75]. In some cases, it has also been observed that
the mangrove forest has been harvested before the rotation period. There is a possibil-
ity that harvesting contractors do not strictly follow the instructions of management
when logging operations are taking place. In short, scientific studies can help MMFR
management to improve productivity and conservation.

6. Conclusions

The present study critically examined the productivity of the MMFR, offering valuable
insights into its management practices as one of the world’s best-managed mangrove
forests. Through a comprehensive analysis of the existing literature, we assessed the status
and trends of its productivity over the years and various factors affecting it. By combining
the available research findings, this review highlights the productivity of the MMFR and
various factors that could affect its productivity. This study shows an increasing and
decreasing trend over the years since 1950. Overall, the productivity of the MMFR has
shown a decreasing trend in recent years (Table 3), which could be more possibly due to
anthropogenic activities, including aquaculture practices and industrial projects. On the
other hand, factors that could contribute to its productivity include sustainable harvesting
techniques, conservation efforts, and community engagement. Moreover, effective monitor-
ing systems, adaptive management approaches, and collaborative partnerships can play
essential roles in sustaining the productivity and functioning of a particular ecosystem. Fur-
thermore, this analysis emphasises the need to share management lessons from the MMFR
to enhance the global conservation and sustainable management of mangrove forests. By
drawing on the benefits and challenges found in this exemplary instance, this study aimed
to catalyse further research, inform policy formulation, and promote the adoption of best
practices in mangrove forest management worldwide.
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