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Abstract: The forest–atmosphere exchange of carbon and water is regulated by meteorological
conditions as well as canopy properties such as leaf area index (LAI, m2 m−2), photosynthetic
capacity (PC µmol m−2 s−1), or surface conductance in optimal conditions (Gs,opt, mmol m−2 s−1),
which can vary seasonally and inter-annually. This variability is well understood for deciduous
species but is poorly characterized in evergreen forests. Here, we quantify the seasonal dynamics of a
temperate evergreen eucalypt forest with estimates of LAI, litterfall, carbon and water fluxes, and
meteorological conditions from measurements and model simulations. We merged MODIS Enhanced
Vegetation Index (EVI) values with site-based LAI measurements to establish a 17-year sequence of
monthly LAI. We ran the Community Atmosphere Biosphere Land Exchange model (CABLE-POP
(version r5046)) with constant and varying LAI for our site to quantify the influence of seasonal
canopy dynamics on carbon and water fluxes. We observed that the peak of LAI occurred in late
summer–early autumn, with a higher and earlier peak occurring in years when summer rainfall was
greater. Seasonality in litterfall and allocation of net primary productivity (FNPP) to leaf growth (af,
0–1) drove this pattern, suggesting a complete renewal of the canopy before the timing of peak LAI.
Litterfall peaked in spring, followed by a high af in summer, at the end of which LAI peaked, and
PC and Gs,opt reached their maximum values in autumn, resulting from a combination of high LAI
and efficient mature leaves. These canopy dynamics helped explain observations of maximum gross
ecosystem production (FGEP) in spring and autumn and net ecosystem carbon loss in summer at
our site. Inter-annual variability in LAI was positively correlated with Net Ecosystem Production
(FNEP). It would be valuable to apply a similar approach to other temperate evergreen forests to
identify broad patterns of seasonality in leaf growth and turnover. Because incorporating dynamic
LAI was insufficient to fully capture the dynamics of FGEP, observations of seasonal variation in
photosynthetic capacity, such as from solar-induced fluorescence, should be incorporated in land
surface models to improve ecosystem flux estimates in evergreen forests.

Keywords: land–atmosphere exchange; land surface model; canopy properties; phenology

1. Introduction

Forest–atmosphere exchanges of carbon and water are driven by atmospheric condi-
tions, soil properties, and forest canopy structural variables such as leaf area index (LAI)
and height [1–3]. Remotely sensed LAI has improved modeling of terrestrial carbon and
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water fluxes in temperate and subtropical coniferous and broadleaved forests in China [4]
but the relationship between LAI and primary production weakened in mesic evergreen
broadleaved forests [5]. Inappropriate representation of canopy structure may contribute
uncertainties to predictions and simulations of ecosystem fluxes [6,7]. Understanding the
interactions between forest canopy dynamics, carbon and water fluxes, and climate will
provide new insights that are required to improve land surface models (LSMs) for under-
standing past and projecting future changes in coupled climate–ecosystem behavior [8–11].

In many temperate forests, especially deciduous forests, LAI has a clear seasonal
pattern, with a period of high LAI in the (summer) growing season and a leafless period in
the (winter) dormant season. Deciduous canopy phenology has been studied extensively
and shown to have been altered by recent climate change [12–14]. For instance, growing
season length is increasing with rising air temperature (Tair) in temperate deciduous forests,
playing a key role in the interannual variability of carbon fluxes [15,16]. The lengthening
of the growing season is also linked to the enhanced amplitude of the seasonal cycle of
atmospheric [CO2] [17–20]. In evergreen forests, in contrast, less is known about seasonal
variation in LAI and its impact on fluxes [21–23]. In some evergreen forests, LAI is relatively
stable, with environmental conditions and leaf age driving the seasonality of carbon and
water exchange [24–27]. However, in other evergreen forests, particularly those with
a relatively short leaf lifespan, seasonal variation in LAI can be significant [28,29]. For
example, in Amazon tropical forests, variations in LAI and leaf physiology were both
important for explaining the seasonal variability of photosynthetic capacity and gross
ecosystem productivity (FGEP) [25,30,31]. Moreover, a land surface model predicted an
inverse relationship between leaf area and carbon fluxes in an Amazon rainforest where
greening occurs during the dry season until canopy phenology was constrained with
satellite-derived LAI observations [9].

Changes in LAI over time are driven by the timing of leaf growth and litterfall. Leaf
growth depends on net primary production (FNPP) and fractional allocation of FNPP to
leaves (af), while litter fall primarily depends on leaf age but can also be influenced by
environmental stress (such as heat and drought stress, wind, and insect attacks) [32,33]. The
underlying mechanisms controlling carbon allocation in forests are not well understood [34],
leading to large discrepancies in simulated LAI among LSMs [35]. Currently, LSMs use
empirical relationships, such as fixed coefficients, allometric relations, or optimization
theory, to determine carbon allocation to leaf growth [36]. The phenology of leaf allocation
has rarely been considered, particularly in evergreen forests (but see [37]). It is widely
assumed that leaf phenology is driven by seasonal variation in FNPP alone. Similarly, few
models consider the phenology of litterfall in evergreen forests, although there is evidence
of environmental controls (e.g., temperature and photoperiod) on the timing of litterfall.
Leaf abscission can be triggered by water stress in response to the production of abscisic
acid [38]; increased leaf life span is linked to soil nutrient limitation and lower mean annual
temperature [39]. A better understanding of the timing of allocation and litterfall would
improve our understanding of ecosystem flux phenology.

LAI can be measured on the ground with a range of methods [28,40]. It can also be
tracked with remotely sensed spectral vegetation indices (greenness) used as proxies, such
as the MODIS (Moderate Resolution Imaging Spectroradiometer) normalized difference
vegetation index (NDVI) or MODIS enhanced vegetation index (EVI) [41–44]. These
proxies are useful to extrapolate from ground-based measurements that are limited in
time and space, as these remote sensing products have been available globally since the
early 2000s. Long satellite-derived time series can help gain a clearer understanding of
LAI dynamics but need to be calibrated against on-ground measurements. Greenness
indices have also been shown to be correlated with other ecosystem functions such as
FGEP [45,46], net ecosystem production (FNEP) [47], and photosynthetic capacity (PC, the
maximum productivity of a canopy, i.e., FGEP in optimal meteorological conditions) [24].
The time-integrated MODIS EVI products, at a spatial resolution of 500 m, can generate
proxies calibrated on flux tower data. At the global scale, EVI is a good predictor of
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FGEP in cropland and deciduous (grassland) biomes but is typically less so in evergreen
forests where EVI varies less seasonally [24,48]. In Australia, where high variability in
precipitation leads to strong variations in soil water availability, EVI has been found to be a
good predictor of FGEP and PC in monsoonal savannas and in semi-arid mulga woodland.
However, the strength of the correlation varies for eucalypt forests with subtle canopy
dynamics. EVI correlation with PC and LAI can be poor in wet-sclerophyll eucalypt forests
(AU-Tum; [24]) but good in temperate evergreen forests (AU-Cum; [49]).

Our primary aim in this study was to quantify the dynamics of canopy properties
in an evergreen forest at the Cumberland Plain Terrestrial Ecosystem Research Network
(TERN) site near Sydney, Australia. This endangered ecosystem hosts unique biodiversity
and provides ecosystem services for the growing human population but is under threat
from increasingly extreme climatic conditions and urbanization. We used a combination of
measurements and the CABLE-POP land surface model to address three questions. (1) How
did LAI respond to environmental drivers over a 17-year period (2001–2017)? (2) What was
the seasonality of weather, canopy properties, and ecosystem fluxes? (3) What did we learn
by comparing measurements with simulations with varying or constant LAI? Our aim is
to improve understanding and modeling of the dynamics of canopy properties and thus
fluxes of evergreen forests.

2. Materials and Methods
2.1. Site Description

The Cumberland Plain site (‘AU-Cum’ in FLUXNET http://sites.fluxdata.org/AU-Cum/,
accessed on 30 June 2018; ‘Cumberland Plain’ http://www.ozflux.org.au/monitoringsites/
cumberlandplain/index.html, accessed on 30 June 2018), is located near Sydney, Australia,
(latitude 33.61518; longitude 150.72362), with mean annual air temperature (Tair) of 17.7 ◦C
(24.3 ◦C mean maximum temperature and 11.1 ◦C mean minimum temperature for the
1993–2018 period) and mean annual precipitation of 800 mm yr−1 for the 1881–2018 pe-
riod [29]. The dry-sclerophyll forest is dominated by Eucalyptus moluccana Wall ex Roxb.
and E. fibrosa F. Muell., with >70% of trees infected by mistletoe toward the end of the
study period (Amyema miquelii Lehm. ex Miq.); the forest also has a mid-canopy stratum of
Melaleuca decora (Salisb.) ex Britten, a shrub layer dominated by Bursaria spinosa Cav., and a
sparse understory composed of forbs, grasses, and ferns [29]. The canopy height is ~24 m,
with individual taller trees (airborne lidar survey, November 2015). A 30-m tall flux tower,
with instruments at 29 m height, is installed near the geographical center of the remnant
Cumberland Plain woodland.

2.2. Meteorological Data

Environmental conditions were measured on site during the 4-year period of 2014–2017.
The detail of the methods can be found in [49]. In brief, meteorological data were logged
every 30 min to match the time step of the tower flux data, including Tair and relative
humidity (HMP155A, Vaisala, Vantaa, Finland sensors at 29 m), photosynthetic photon
flux density (FPPFD, LI190SB, LI-COR Inc., Lincoln, NE, USA), and incoming and outgoing
shortwave and longwave radiation (NR01 radiometer, Hukseflux, Delft, The Netherlands).
Rainfall was measured at an open area with a tipping bucket (TB4, Campbell Scientific Inc.,
Logan, UT, USA) ~2 km away from the studied forest site. Soil water content (SWC) was
averaged between two CS616 water content reflectometers (Campbell Scientific Inc., Logan,
UT, USA) installed horizontally at 5 cm below the soil surface.

Forcing data for the CABLE-POP model simulations for the period 2000–2017 com-
prised gridded rainfall, Tair; vapor pressure deficit; and solar irradiance surfaces. Daily
means of meteorological data gridded at 0.05◦ spatial resolution were retrieved from the Bu-
reau of Meteorology’s Australian Water Availability Project data set (BoM AWAP), [50,51].
Data for the study site were extracted and then down-scaled to an hourly time resolu-
tion [52].

http://sites.fluxdata.org/AU-Cum/
http://www.ozflux.org.au/monitoringsites/cumberlandplain/index.html
http://www.ozflux.org.au/monitoringsites/cumberlandplain/index.html
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2.3. Leaf Area Index

We estimated LAIEVI over the period 2001–2017 using the following steps: first, we
estimated LAI at a high temporal resolution based on canopy light transmittance during the
year 2014–2017 [28] at three locations within the tower footprint, covering approximately
0.1-ha. However, this method underestimates LAI due to the extinction caused by non-leaf
elements. Therefore, in a second step, we adjusted the magnitude of LAI using upward
canopy photography, taken at six-month intervals at 121 locations across a 1-ha grid [53].
In a final step, in order to extrapolate LAI during the time period 2001–2017, we used
a relationship between the previously adjusted LAI based on canopy photography and
EVI [54]. These steps can be visualized in Figure A1.

2.4. Litterfall and Leaf Growth

We collected monthly litterfall (FLfall, g m−2 month−1) from July 2015 to December
2017 in the tower footprint approximately once per month, using three litter traps (0.14 m−2

ground area) located within 5 m of each understory FPPFD sensor (nine traps in total). For
each month, we partitioned the litter into eucalypt leaves, mistletoe leaves, and other
(mostly woody) components. We estimated the leaf mass per area (LMA) of eucalyptus and
mistletoe leaves by sampling approximately 50 fresh leaves of each species in June 2017
(177 g m−2 for eucalypt, 248 g m−2 for mistletoe). We used this LMA to estimate the leaf
litter production (Pleaf) in m2 m−2 month−1 of eucalypt, mistletoe, and total as the sum of
both. Then, we estimated leaf growth (FLgrowth, m2 m−2 month−1) as the sum of the net
change in LAI (∆L) and Pleaf.

We estimated the canopy leaf carbon pool (Cleaf, g C m−2) as

Cleaf = LAI × LMA·0.5 (1)

where LMA is leaf mass per area (g m−2) and 0.5 converts the dry mass of leaves to carbon
mass. LMA is approximated as the average of eucalypt and mistletoe LMA, based on the
observed equal contributions of each to total leaf litterfall.

2.5. Net Ecosystem Exchange of H2O and CO2: Observation

Surface–atmosphere exchanges of carbon (FNEE) and water (FET) were continuously
measured during the 4-year period of 2014–2017 using the eddy-covariance method, as
described by [49]. In brief, FET was measured as the vertical turbulent exchange (change
in storage of water were assumed to be negligible) and FNEE was measured as the sum of
vertical turbulent exchange (FCT) and rate of change in storage (FCS), as follows:

FNEE = FCT + FCS (2)

Net ecosystem production (FNEP) was estimated as—FNEE; positive values of FNEP
thus indicate uptake of CO2 by the ecosystem.

Density of CO2 or water vapor (open-path IRGA (LI-7500A, LI-COR Inc., Lincoln,
NE, USA)) and vertical wind speed (CSAT 3D sonic anemometer (Campbell Scientific
Inc., Logan UT, USA)) were measured at 29 m height, approx. 5 m above the canopy, at
high frequency (10 Hz), and processed using EddyPro (EddyPro® Software (Version 6.2)
LI-COR, Inc., Lincoln, NE, USA) to calculate FCT and FET and a quality check (qc) flag (0:
best quality) of FCT accounting for stationarity tests and turbulence development tests as
presented in [55]. Furthermore, data with a friction velocity (u*) below 0.2 m s−1 were
discarded, leading to the retention of 8800 points or 51% of the best quality raw data [49].

The change in storage of CO2 was calculated using data from a profiler system (CO2
measured at 8 heights), following the equation [56]

FCS =

(
∆C
∆t

)
k=1

× zk=1 + ∑n
k=2

{[(
∆C
∆t

)
k
+

(
∆C
∆t

)
k−1

]
× zk–zk−1

2

}
(3)
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where FCS is the change in storage flux of CO2, C is the CO2 concentration (µmol m−3)
measured at the height zk (m), ∆t (s) is the time between two measurements (1800 s or
30 min), and zk is the height of a layer (between two inlets sampling CO2).

Missing and discarded FNEP were filled using a neural network in PyFluxPro v1.1 [57],
allowing for monthly and annual budgets by integration. The neural network predicted
FNEP as a function of short-wave radiation, vapor pressure deficit, Tair, soil temperature,
and soil water content. FNEP was partitioned into FGEP and FER using a neural network
with 10 nodes and 500 iterations to predict ecosystem respiration (FER) as a function of soil
temperature, Tair, and SWC [49,57]. FGEP was calculated as FNEP + FER.

Soil respiration (FSR) was measured continuously at 30 min resolution and at three
locations and used in CABLE parameterization (see below). CO2 concentration inside a
closed chamber was measured at 1 Hz over 2 min using an IRGA, from which FSR was
calculated (LI-8100, LI-COR Inc., Lincoln NE, USA) [58].

2.6. Net Ecosystem Exchange of H2O and CO2: Modeling

We used the CABLE-POP terrestrial biosphere model [59], driven with the following
meteorological inputs: Tair, rainfall, short-wave downwelling radiation, long-wave down
radiation, surface specific humidity, wind speed, surface air pressure, and CO2 concen-
tration. We first calibrated the model for the site, optimizing five parameters against flux
data (FNEP anomalies, FET, and FSR quality filtered observations from 2014–2017) using the
PEST optimization package (model-independent parameter estimation and uncertainty
analysis, http://www.pesthomepage.org/, accessed on 30 June 2018). For the optimization,
the model was forced with measured meteorological data measured at the site and LAIEVI.
The optimized parameter values are given in Tables 1 and 2.

Table 1. List of symbols and acronyms.

Acronym Short Definition Unit

EC Eddy-covariance -
Cv CABLE-POP varying LAIEVI -
Cc CABLE-POP constant LAIEVI -

FNEP Net ecosystem production Monthly or annual: (g C m−2)
Half-hourly: (µmol m−2 s−1)

FET Evapotranspiration Monthly or annual: (g C m−2)
Half-hourly: (µmol m−2 s−1)

FGEP Gross ecosystem productivity Monthly or annual: (g C m−2)
Half-hourly: (µmol m−2 s−1)

FER Ecosystem respiration Monthly or annual: (g C m−2)
Half-hourly: (µmol m−2 s−1)

LAIEVI Leaf area index (m2 m−2)
PC Photosynthetic capacity (µmol m−2 s−1)
FLfall Litter fall (g C m−2 month−1)
FLgrowth Leaf growth (g C m−2 month−1)
af Allocation of FNEP to leaves fraction
kf Canopy leaf turnover fraction month−1

Gs,opt Surface conductance (mmol m−2 s−1)
FPPFD Photosynthetic Photon Flux Density (µmol m−2 s−1)
Tair Air temperature (◦C)
D Vapour pressure deficit (kPa)
Precip Precipitation (mm month−1)
SWC Soil water content (%)

http://www.pesthomepage.org/
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Table 2. CABLE-POP parameters fitted to measured data using PEST. Net ecosystem production
and evapotranspiration (FET) are from eddy-covariance data and soil respiration (FSR) from auto-
chambers.

Parameter Description Estimation and 95% CI Unit

α (mol mol−1) Quantum yield of electron transport [60] 0.14 ± 0.002 Mol mol−1

kn (dimensionless) Extinction coefficient for leaf nitrogen with
canopy depth 0.61 ± 0.015 -

g1 (kPa0.5) Stomatal conductance parameter [61] 5.36 ± 0.085 kPa0.5

γ (dimensionless) Sensitivity of stomatal conductance and root
water uptake to SWC [62] 2.80 × 10−3 ± 0.600 × 10−3 -

Vcmax_scalar
(dimensionless)

Scaling factor on prior estimate of maximum
catalytic activity of Rubisco, as prescribed by [35] 0.69 ± 0.010 -

In order to test the influence of dynamic LAI as a regulator of ecosystem fluxes
independently from weather, we then conducted two different runs of CABLE-POP: one
with a fixed value of LAIEVI (equal to the average of observed LAIEVI) at all times and one
with time-varying, observed LAIEVI. We compared these two model fluxes outputs to the
measured data (quality-filtered FNEP and FET) over the 2014–2017 period. We used the two
simulations of CABLE-POP (with varying LAI or fixed LAI) to estimate the seasonal and
interannual variability of modeled gross ecosystem productivity (FGEP). This allowed us to
quantify how much variation in LAI and weather contribute, either alone or combined, to
anomalies in modeled FGEP. In what follows, flux outputs from the two simulations are
subscripted “Cv” for variable LAI (e.g., FGEP,Cv) and “Cc” for constant LAI (FGEP, Cc).

We further extracted two measures of canopy performance from both model sim-
ulations and from flux data to evaluate the canopy phenology. We defined monthly
photosynthetic capacity (PC) as the average of FGEP under “optimal” environmental con-
ditions (FPPFD > 1000 umol m−2 s−1, vapor pressure deficit (D) < 1.3 kPa, SWC > median
(SWC)) [49]. For the period 2014–2017, we calculated PC from the flux data and from
the two model scenarios to compare observed seasonal and interannual variation in PC
with simulations from both model runs. Similarly, we calculated the surface conductance
under optimal conditions as follows. We calculated surface conductance (Gs) by solving
the Penman–Monteith equation, then optimal surface conductance (Gs,opt) was calculated
by sub-setting Gs under the following conditions: D between 0.9 and 1.3 kPa (to avoid
stomatal closure), FPPFD between 800 and 1200 umol m−2 s−1 (light saturated condition for
photosynthesis), precipitation in the last 24 h below 0.5 mm, and precipitation in the last
12 h below 0.2 mm (to minimize evaporation contribution to FET).

Finally, we used modeled values of FNPP in conjunction with leaf growth data to
estimate the foliage allocation fraction. In CABLE-POP, FNPP is estimated as the difference
in FGEP and autotrophic respiration [59]. To estimate the allocation of predicted FNPP to leaf
growth, we used a simple difference model of leaf biomass (Cleaf) [63] (Equation (4)), which
assumes that the variation in Cleaf over a period of time is equal to leaf growth minus litter
fall (FLfall) (Equation (5)). We assume that leaf growth (FLgrowth) is equal to the allocation to
leaves multiplied by FNPP and that FLfall is equal to the fraction of the initial Cleaf senescing
over this period of time (Equation (6)).

Cleaft+1 = Cleaft +
dCleaf

dt
(4)

dCleaf
dt

= FLgrowth − FLfall (5)

dCleaf
dt

= a f FNPP − k f Cleaf (6)
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where FLgrowth is leaf growth (gC m−2 month−1), FLfall is litter fall (gC m−2 month−1), Cleaf

is leaf biomass (gC m−2), t is time (month), af is the allocation of FNPP to leaf growth (frac-
tion, 0 to 1), and kf is the turnover rate of leaf biomass due to senescence (fraction month−1).

The only unknowns in these equations are the allocation of FNPP to leaf growth
(af = FLgrowth/FNPP) and the turnover rate due to senescence (kf = Cleaf/FLfall), which were
calculated directly using the measured estimates of FLgrowth and FLfall, and the modeled
estimate of FNPP from the CABLE-POP simulation with varying LAI. Notably, this approach
to estimating af assumes that the carbon used for leaf growth is supplied by that month’s
FNPP, rather than stored non-structural carbohydrates (NSC). We take this approach in
order to illustrate seasonal patterns simply but acknowledge that a stored NSC pool could
also play a role in the seasonal dynamics of leaf growth [64].

3. Results
3.1. Response of LAI to Environmental Drivers

There was large interannual and seasonal variability in LAI (Figure 1a). The monthly
mean of LAIEVI ranged from 0.8 to 2.0 m2 m−2 over the 4-year period of record with
measurements (2014–2017), while the mean annual LAIEVI varied from 1.03 m2 m−2 in
2003 to 1.64 m2 m−2 in 2016 (Table 3). Monthly mean LAI-EVI peaked each year between
February and April (Figures 1 and 2).

Table 3. Annual precipitation, air temperature, leaf area index, and net ecosystem production over
the period 2001–2017. Inter-annual variability of meteorology (precipitation and Tair) and leaf area
index estimated from enhanced vegetation index over the 17-year period of 2000–2017. Notably,
the large inter-annual range (max–min) of the leaf area index relative to its average magnitude (0.6
compared to 1.3). Bold values indicate maxima and minima.

Year Precipitation
(mm) Tair (◦C) LAIEVI

(m2 m−2)
FNEP,Cv

(g C m−2)
FNEP,Cc

(g C m−2)
FNEP,data

(g C m−2)

2001 752.5 17.4 1.58 114.3 114.4 NA
2002 626.3 17.5 1.09 −66.0 97.0 NA
2003 651.1 17.2 1.03 −42.0 84.5 NA
2004 648.8 17.6 1.21 8.3 −1.6 NA
2005 702.4 17.7 1.36 48.6 42.6 NA
2006 479.2 17.6 1.23 15.8 −18.8 NA
2007 1022.4 17.7 1.32 23.7 38.0 NA
2008 810.6 16.8 1.44 90.1 112.1 NA
2009 691.5 18.0 1.31 −53.7 18.1 NA
2010 911.4 17.5 1.26 −11.8 29.5 NA
2011 782.9 17.2 1.38 14.6 30.2 NA
2012 880.8 17.0 1.19 33.3 120.8 NA
2013 789.2 18.0 1.39 54.6 50.1 NA
2014 714.2 18.0 1.31 19.1 58.9 101.4
2015 996.9 17.7 1.55 51.9 0.8 171.2
2016 779.5 18.3 1.64 125.1 61.9 392.7
2017 731.0 18.2 1.49 62.0 58.9 148.9

Average 763.0 17.6 1.34 28.7 52.8 203.5
Max–min 543.2 1.5 0.62 191.1 139.6 291.3

Precipitation is highly variable at the site. Monthly precipitation ranged from 0 mm
(June 2001) to 325 mm (March 2017) (Figure 1), with summer months generally wetter than
winter months (an average of 100 mm month−1 in December through February and an
average of 40 mm month−1 in June through August, Figure 1). There was also significant
interannual variability in rainfall, with annual totals ranging from 479 mm in 2006 to
1022 mm in 2007. Tair is also strongly seasonal but less variable from year to year. Monthly
mean Tair ranged from 9.1 ◦C in July 2002 to 26.9 ◦C in January 2017 (Figure 1). Interannual
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variability in temperature is relatively small, with mean temperature ranging from 16.8 ◦C
in 2008 to 18.3 ◦C in 2016.

Precipitation appeared to be the major driver of variability in LAI, although there was
also a role for temperature. Monthly LAIEVI increased most rapidly during wet summer
months; the rate of increase correlated significantly with precipitation (r2 = 0.20, p < 0.005,
n = 204) and Tair (r2 = 0.24, p < 0.005, n = 204) but was most strongly predicted by the
combination of Tair and precipitation (r2 = 0.29, p < 0.005, n = 204) (Figure A2). The
magnitude of the yearly LAIEVI,max was negatively correlated with the day of the year
on which the maximum occurred (i.e., years with a low LAIEVI,max had a late LAIEVI,max,
r2 = 0.3, p = 0.04, n = 14, Figure 2). If summer precipitation was low, the day of the year of
maximum LAIEVI occurred later; r2 = 0.35, p = 0.025, n = 14, Figure 2. Overall, high summer
precipitation led to a high and early LAIEVI,max whereas low summer precipitation led to
a low and late LAIEVI,max. On the annual time-scale, LAIEVI had a high coherence with
precipitation on an annual period, with no lag (Figure A3), and the yearly max of LAIEVI
was correlated with precipitation over the previous 13 months (r2 = 0.47, n = 14, Figure A4).
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Figure 2. (a) Seasonality of leaf area index estimated from enhanced vegetation index (LAIEVI, as in
2.1.3) over the 17-year period (2001–2017). Black line: daily average for all years. Grey lines: daily
value for individual years. Dots show yearly maxima. (b) Linear regression of LAIEVI max (m2 m−2)
vs. time of LAIEVI max (day of the year, DOY), r2 = 0.3, p = 0.039, n = 14. (c) Linear regression of
time of LAIEVI max (DOY) vs. summer (December–January–February) precipitation (mm), r2 = 0.35,
p = 0.026, n = 14. Higher LAIEVI max tended to occur earlier in the year (b) and the DOY of LAIEVI

max occurred earlier when summer precipitation was high (c).

3.2. Seasonality of Weather, Canopy Properties, and Ecosystem Fluxes

In Figure 3, we examine the seasonal patterns of drivers and fluxes at the site. The
timing of maximum and minimum FPPFD, Tair, and D followed the expected seasonal
pattern, i.e., maximum in summer and minimum in winter (Figure 3k–m). The monthly
average precipitation was maximum in summer and autumn, while SWC was maximum
in autumn and winter (Figure 3n,o).

As noted above, LAI peaked in late summer (Figure 3f). The annual FLfall was 157 g C m−2

or 1.57 m2 m−2 of leaves, which is close to the mean LAI for the site, implying a leaf life
span of about a year. FLgrowth and FLfall both showed peaks in spring and autumn and
reduced to near-zero values during winter (Figure 3h) but the peak in FLgrowth was larger.
The peak in LAI is thus caused by a stronger seasonality in leaf growth than in leaf litterfall.

Photosynthetic capacity, PC, estimated using eddy-covariance data, generally followed
by LAIEVI with a time lag, peaking in autumn, i.e., one or two months after LAIEVImax,
but also showed a second smaller peak in spring (Figure 3f,g). Eddy-covariance optimal
surface conductance, Gs,opt, had a seasonal pattern similar to those of LAIEVI and SWC
(Figure 3f,j,o).

High LAI and high PC in autumn led to a maximum of FGEP,EC in autumn, with a lower
peak in spring, and minimum values in summer and winter (Figure 3c). FER,EC peaked in
summer and had a larger seasonal amplitude than FGEP,EC. As a result, FNEP,EC was positive
in winter and negative in summer (Figure 3a). Interestingly, FET,EC was in anti-phase with
FNEP,EC, as FET,EC was maximum in summer and minimum in winter (Figure 1a,b and
Figure 3). This pattern results from seasonal FNEP following the seasonality of FER, while
FET follows the seasonality of FGEP owing to the coupling between photosynthetic uptake
and transpiration.



Forests 2024, 15, 801 10 of 22

Forests 2024, 15, x FOR PEER REVIEW 10 of 23 
 

 

3.2. Seasonality of Weather, Canopy Properties, and Ecosystem Fluxes 
In Figure 3, we examine the seasonal patterns of drivers and fluxes at the site. The 

timing of maximum and minimum FPPFD, Tair, and D followed the expected seasonal pat-
tern, i.e., maximum in summer and minimum in winter (Figure 3k–m). The monthly av-
erage precipitation was maximum in summer and autumn, while SWC was maximum in 
autumn and winter (Figure 3n,o). 

 
Figure 3. Average monthly measured and modeled fluxes (left column), canopy dynamics (mid-
dle column), and meteorological drivers (right column) at the Cumberland Plain woodland, dur-
ing the 4-year period of 2014–2017. Lines indicate mean monthly values, averaged over four years. 
Shading indicates the standard deviation calculated for four years (n = 4). (a) Net ecosystem 

Figure 3. Average monthly measured and modeled fluxes (left column), canopy dynamics (middle
column), and meteorological drivers (right column) at the Cumberland Plain woodland, during the
4-year period of 2014–2017. Lines indicate mean monthly values, averaged over four years. Shading
indicates the standard deviation calculated for four years (n = 4). (a) Net ecosystem production
(FNEP, gC m−2 month−1, C uptake is shown as positive), (b) Evapotranspiration (FET, mm month−1),
(c) Gross ecosystem productivity (FGEP, gC m−2 month−1), (d) Ecosystem respiration (FER, gC
m−2 month−1), (e) Net primary production (FNPP, gC m−2 month−1), estimated from CABLE-POP,
(f) Monthly leaf area index (LAIEVI, m2 m−2), (g) Photosynthetic capacity (PC, µmol m−2 s−1, FGEP

under optimal conditions: FPPFD > 1000 and D < 1.3 kPa), (h) Litter fall and leaf growth (FLfall and
FLgrowth, gC m−2 month−1), (i) Allocation of FNEP to leaf growth and canopy turnover (af and kf,



Forests 2024, 15, 801 11 of 22

fraction and fraction month−1), (j) Surface conductance (Gs,opt, mmol m−2 s−1), (k) Daily maximum
photosynthetic photon flux density (FPPFD, µmol m−2 s−1), (l) Daily maximum and minimum
air temperature (Tair max and Tair min, ◦C), (m) Daily maximum atmospheric demand (D, kPa),
(n) Monthly precipitation (Precip, mm month−1), and (o) Soil moisture content (SWC, %). Continuous
blue line is for CABLE-POP simulation with varying LAI. Dotted red line is a CABLE-POP simulation
with constant LAI. Thick continuous cyan line is for eddy-covariance estimates. Black line shows
canopy dynamics or meteorological variables. Note that the x-axis, the month of the year, is centered
on December–January, which are summer months in Australia.

3.3. Effects of Varying versus Constant LAI

After parameterization using PEST (see Table 2 for parameter descriptions and values
and Table A1 for parameter correlation matrix), we simulated the fluxes using CABLE-POP,
first with varying and then with constant mean LAI. Modeled half-hourly values of FNEP
and FET are compared against non-gap-filled observations for the period 2014–2017 in
Figure A5. Both sets of simulations were well correlated with observations and showed
little bias. The varying LAI simulations showed a marginally higher r2 (for FNEP, 0.595 vs.
0.581, and for FET, 0.62 vs. 0.61).

Seasonal cycles of CABLE-POP FET and FNEP with varying LAI were similar to those
in eddy-covariance observations (anti-phase, with maximum FET in summer and maximum
FNEP in winter (Figure 3a,b)) but CABLE-POP did not entirely reproduce the observed
variability in the data. Extremes, particularly in winter, were not reproduced by the
model (Figure 1b,c). The simulated seasonal cycles of the component fluxes FER and FGEP
were generally similar to those observed in eddy-covariance data but the eddy-covariance
derived values of both fluxes (FGEP,EC and FER,EC) were generally higher in magnitude than
the modeled values, particularly in autumn (Figure 3c,d). For example, in March, FGEP,EC
was 147.7 g C m−2 month−1 on average while FGEP,Cv was only 103.8 g C m−2 month−1.
The discrepancies between modeled and observed FGEP and FER tend to cancel each other
out, except in winter, when the model overestimates FER and underestimates FGEP, leading
to an underestimation of the winter peak FNEP. Modeled FGEP also produced a dual peak,
in spring and autumn, but monthly FGEP,EC was maximum in March, shortly after LAIEVI
peaked, while FGEP,Cv was maximum in September, coinciding with one of the lowest
values of monthly LAIEVI (Figure 3c,f).

CABLE-POP correctly simulated the sensitivity of light-saturated FNEP to D and SWC:
the slope of FNEP versus D was similar between the model and the observations (Figure A6).
However, the modeled FNEP was lower at low D. The magnitude of PCCv was lower than
the magnitude of PCEC and the variability of monthly PCCv (1.5 µmol m−2 s−1) was much
lower than that of PCEC (4.9 µmol m−2 s−1) (Figure 3g). In contrast, the variability and
seasonal patterns of measured and modeled optimal surface conductance, Gs,opt, were
similar, albeit lagged in time (Figure 3j).

Modeled FNPP,Cv is given by the difference between FGEP,Cv and autotrophic respi-
ration. FNPP,Cv had two peaks during the year, a first peak in spring and a second lower
peak in autumn (Figure 3e) as autotrophic respiration was high during the summer owing
to the high temperatures. The timing of these peaks of FNPP,Cv differs strongly from the
peak of FLgrowth, which was maximum in summer (Figure 3h). As a result, the inferred
foliage allocation fraction af was not constant throughout the year but peaked strongly
in summer, ranging from 0.009 in August to 0.57 in January (Figure 3i). In contrast, the
inferred turnover rate, kf, was less strongly seasonal (ranging from 0.02 in July to 0.15
in October).

Given the strong seasonal pattern of LAIEVI, we anticipated that driving CABLE-POP
with constant LAI would degrade the performance of the model. We found relatively small
differences between the simulations with constant and variable LAI; nonetheless, we found
improved agreement between simulations and observations when the variable LAI was
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applied rather than the constant LAI (Figure A5). For FNEP, the variable LAI simulation had
a lower seasonal amplitude compared to the constant LAI simulation (27.8 vs. 33.1 g C m−2

month−1, Figure 3a) but it also had a markedly larger inter-annual variability (Figure 4,
Table 3). FNEP,Cc ranged from −18.8 to 120.8 g C m−2 yr−1 while FNEP,Cv ranged from
−66 to 125.1 g C m−2 yr−1. On an annual timescale, none of FNEP,Cv, FNEP,Cc or FNEP,EC
correlated with climate variables (annual precipitation or average Tair) but both FNEP,Cv and
FNEP,EC were correlated with mean annual LAIEVI (Figure 4, FNEP,Cv vs. LAIEVI: r2 = 0.72,
n = 17 FNEP,EC vs. LAIEVI: r2 = 0.68, n = 4). These results suggest that interannual variations
in FNEP were more strongly regulated by interannual LAI than by the climate variables
investigated.
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mean leaf area index estimated from enhanced vegetation index (LAIEVI, m2 m−2), (b) annual mean 
air temperature (Tair, °C), and (c) annual precipitation (Precip, mm yr−1). In all panels, continuous 
blue lines and dots are for FNEP estimated from CABLE-POP with varying LAIEVI input. Dotted red 
line and dots are for FNEP estimated from CABLE-POP with constant LAIEVI input. Continuous 
thick cyan lines and dots are for FNEP estimated from eddy-covariance observations. Thin lines 
show the 95% confidence interval of the regression line (often out of borders for the eddy-covari-
ance regression). (**) indicates that the slope is significantly different from 0 at the 0.01 level. Up-
take of C is positive for FNEP. 

Figure 4. Linear regression of annual net ecosystem production (FNEP, g C m−2 yr−1) vs. (a) annual
mean leaf area index estimated from enhanced vegetation index (LAIEVI, m2 m−2), (b) annual mean
air temperature (Tair, ◦C), and (c) annual precipitation (Precip, mm yr−1). In all panels, continuous
blue lines and dots are for FNEP estimated from CABLE-POP with varying LAIEVI input. Dotted
red line and dots are for FNEP estimated from CABLE-POP with constant LAIEVI input. Continuous
thick cyan lines and dots are for FNEP estimated from eddy-covariance observations. Thin lines
show the 95% confidence interval of the regression line (often out of borders for the eddy-covariance
regression). (**) indicates that the slope is significantly different from 0 at the 0.01 level. Uptake of C
is positive for FNEP.

Over the four-year period 2014–2017, PCEC was significantly correlated with LAIEVI
on a monthly time scale (slope = 8.0 ± 1.4, r2 = 0.40, p < 0.001, n = 48) (Figure 5). PCCv
was also significantly correlated with LAIEVI but with a lower slope (slope = 3.5 ± 0.4,
r2 = 0.65, p < 0.001, n = 48). In contrast, PC,Cc was not correlated with LAIEVI, emphasizing
the importance of variable LAI as a major contributor to the observed variability in PC.

Across the entire 17-year period of simulation, the simulated mean annual FNEP,Cv
was lower than the simulated FNEP,Cc (Table 3). In years where mean LAI was similar to
the long-term average LAI used in the Cc simulations, FNEP,Cv was lower than FNEP,Cc.
This difference results because optimal conditions for photosynthesis occur in September–
October, when LAI is lowest in the Cv simulation.

Notably, FNEP,Cc and FNEP,Cv fluxes appear similar in Figure 1 but, when integrated
over an annual budget (Table 3), they are actually quite different, often sink vs. source
of similar magnitude (e.g., 2002, 2003, 2006, and 2010 are −66.0 vs. 97.0, −42.0 vs. 84.5,
15.8 vs. −18.8, and −11.8 vs. 29.5 g C m−2 for FNEP,Cv and FNEP,Cc, respectively). This is
probably because FNEP is large and positive in winter and large and negative in summer
but its annual sum is close to 0.
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optimal conditions (FPPFD > 1000 and D < 1.3), versus monthly estimated LAIEVI (“seen” by the data
and the model with varying LAIEVI only), over the 4-year period 2014–2017 (n = 48 months). Cyan
dots and thick continuous cyan line: eddy-covariance (EC) estimated values of PC. Slope of the fitted
line is 8.0 ± 1.4 (r2 = 0.40, p < 0.001). Red points and dotted red line: CABLE-POP PC, estimated
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against observed LAIEVI. Slope of the fitted line is 3.5 ± 0.4 (r2 = 0.65, p < 0.001).

4. Discussion
4.1. LAI Responses to Environmental Drivers

LAI and af in evergreen broadleaved forests are often assumed to be constant through-
out the year in LSMs because observed changes can be subtle. New leaves typically emerge
in spring and summer in Australian eucalypt forests but new growth can be balanced by
concurrent leaf losses [65–71]. In our analysis, we also found that leaf growth occurred in
the summer months (December through February) and we further observed that climate
drivers could give more information on the precise timing and magnitude of leaf growth
in summer. LAIEVI yearly maxima were driven by summer precipitation, with a high and
early peak when summer precipitation was high (Figure 2). Furthermore, legacy effects of
precipitation during the past year were also important in driving the yearly maximum of
LAIEVI (Figure A4). Extreme climate events may also affect changes in LAI [72], such as the
2018–2020 drought associated with the Black Summer bushfires, and La Nina-induced flood-
ing events in subsequent years; however, such anomalous conditions were not observed
during this study.

Our estimate of FNPP allocation to leaf growth was very high in summer (0.57) and
low in winter (0.009) (Figure 3i). This allocation pattern differs strongly from the default
pattern in CABLE-POP, which is a constant value of 0.3. Understanding the dynamics
of carbon allocation is a key challenge to improving vegetation modeling [34,36,73–76].
Identifying the mechanisms regulating this observed pattern will be important to improve
the representation of evergreen forests in land surface models. It is important to note,
however, that trees may be using carbon reserves for leaf growth in summer, rather than
changing the allocation of new photosynthates to leaf growth, as our estimate of af relied on
the assumption that only recent FNPP could be used for leaf growth. Moreover, ecosystem-
scale carbon uptake from flux tower observations was not clearly associated with carbon
allocation to stem and canopy growth in a different dry sclerophyll eucalypt forest [67],
consistent with observations from forests more broadly [77]. Detailed estimates of carbon
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allocation to all pools (leaves, roots, wood, and storage) are required including where
carbon is being sourced to grow new tissues (recently acquired carbon or old stored
carbon) [64,67].

We also found that litterfall rates varied seasonally. We observed that leaf turnover
was highest in spring and continued through summer but was negligible in autumn and
winter. This means that nutrient availability from decomposing litter was mostly available
in summer.

A further question of interest is whether the dynamics of LAI are adapted to environ-
mental constraints [78,79]. According to our simulations, a higher FNEP would be achieved
if LAI were to be constant rather than varying over time (Table 3). The simulations also
demonstrate that the optimal conditions for carbon uptake occur in spring, which coincides
with the lowest value of LAI. This mismatch between the timing of FNEP and LAI suggests
that the timing of leaf flush is not optimized to maximize carbon uptake but may rather be
constrained by other factors, such as nutrient or moisture availability. For example, the soils
at the site have very low phosphorus availability [80] and leaf production may be timed to
coincide with litterfall in order to maximize the trees’ ability to capture nutrients released
from decomposing litter. Alternatively, [81] demonstrates that the seasonal pattern of LAI
and photosynthetic capacity may enable the trees to avoid loss of conductivity during
dry periods. Further exploration of the costs and benefits of the phenology of leaf area
dynamics in evergreen forests is warranted.

4.2. Seasonality of Weather, Canopy Properties, and Ecosystem Fluxes

Previous studies in other sclerophyll forests in Southeast Australia found the ecosys-
tems to be a net carbon sink all year long, particularly in summer [67,82–84]. In contrast,
the Cumberland Plain site shows a different seasonal pattern, acting as a net source of CO2
in summer and as a net sink in winter [49]. This unusual seasonality of FNEP was simulated
well by CABLE-POP, whereas the seasonality of FGEP was not (Figure 3), suggesting that
some canopy properties were not adequately represented in either version of the model.
We discuss this in further detail below.

4.3. Effects of Varying versus Constant LAI

Application of the CABLE-POP model allowed us to test whether an LSM can repro-
duce the unusual pattern of FNEP at our site and what the key mechanisms causing it are.
In particular, we tested whether variable LAI was necessary to capture this pattern.

After parameter optimization, CABLE-POP with varying LAI successfully reproduced
the seasonal FNEP pattern of the Cumberland Plain site (Figure 3a). Half-hourly FNEP
and FET flux responses to D and SWC were similar between the observation and model
(Figure A6), albeit with a small underestimation by the model at low D (<1.3 kPa). This
model result showed the capacity of the optimal stomatal conductance model to capture
these responses [61]. This seasonal pattern was also shown by CABLE-POP with constant
LAI, indicating that the seasonal variation in LAI was not a major driver of the switch from
sink to source in summertime.

There were some important discrepancies between the data and the model during
specific seasons, particularly in autumn, with FGEP being underestimated by the model,
irrespective of whether LAI was constant or varying (Figure 3c). This seemed to be caused
by a variation in PC not captured in the model (Figures 3g and 5). A possible reasonable
explanation would be the absence of age-dependent leaf-level photosynthetic capacity,
which was observed to be highest in late summer when leaves were mature, at a site within
2 km of the flux tower [85]. The importance of the age-dependent physiology of leaves to
determine FGEP seasonality also contributed to seasonal variations in carbon fluxes in a
tropical evergreen forest [25]. Understanding and incorporating this age dependence of
leaf physiology could potentially improve LSMs [86–89].

Although variable LAI was not important for seasonal patterns, it was key to un-
derstanding the inter-annual variability of FNEP in the model (Figure 4). Annual FNEP,
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modeled with both varying and constant LAI, was not correlated with precipitation or Tair
but only FNEP modeled with varying LAI was correlated with LAIEVI. The four years of
observation had similar results, albeit with lower significance due to the low number of
annual eddy-covariance observations. The stronger slope of annual FNEP,EC vs. LAIEVI
was consistent with the higher slope of PCEC vs. LAIEVI compared to the model (Figure 5),
which may result from age-dependent leaf physiology parameters not incorporated in
the model [25,90,91]. These results suggest that model performance at the inter-annual
time scale cannot be described adequately by comparing half-hourly fluxes as we did in
Figure A5. However, with only four years of data, we could not assess the inter-annual
performance of the model.

5. Conclusions

We found that LAI varied seasonally and this dynamic (timing and magnitude) was
correlated with summer precipitation. We observed that litterfall was the highest in spring,
followed by high leaf growth during summer. The inferred allocation of FNPP to leaf growth
varied seasonally (from 0 in winter to 0.6 in summer). As a result, LAI peaked at the end of
summer, with canopy properties (PC and Gs,opt) peaking in early autumn.

Canopy properties in evergreen forests are often oversimplified in LSMs. We used
a combination of measurements (meteorological drivers, CO2 and water fluxes, litterfall,
and LAI) and modeling (CABLE-POP, with variable or constant LAI) from the Cumberland
Plain ecosystem to study the inter-annual and seasonal dynamics of canopy properties
(LAI, PC, and Gs,opt) of an evergreen forest and demonstrated that the temporal variability
of canopy properties of this forest type cannot be assumed to be negligible in LSMs.

The CABLE-POP model [59] with varying LAI reproduced interannual variability but
was not sufficient to reproduce seasonal variation in fluxes in the Cumberland Plain site.
Based on our findings, we suggest several improvements to be made to LSMs: (1) variable
C allocation patterns to leaves to capture seasonal and interannual variation in the timing of
leaf growth; (2) seasonal variation in leaf turnover rates; and (3) variation in photosynthetic
capacity with leaf age [25]. It would be valuable to determine if similar variations are
observed in other temperate evergreen forests to develop general parameterizations of
these processes for LSMs. Recent developments in satellite remote sensing of solar-induced
fluorescence (SIF) could also be promising to track the phenology of evergreen broadleaf
forest canopy properties in the future when long-time series become available [92].
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Figure A1. Comparison of estimates of LAI at the Cumberland Plain site. Blue line (LAIPPFD 
smoothed) data estimated from continuous measurements of the above-canopy incident and un-
derstorey photosynthetic photon flux density (FPPFD). Data are averaged across three sensors. Pur-
ple dots (LAIphoto): LAI estimated from canopy photography using the MacFarlane method. Data 
are the means of ~200 LAI estimates from upward photography taken on six dates. Red line (LAIs-

caled): LAIPPFD scaled on LAIphoto (linear regression of LAIPPFD vs. LAIphoto, r2 = 0.6, p = 0.07, n = 6, 
equation: LAIscaled = 2.65 LAIPPFD—1.13). Yellow line: LAI estimated from enhanced vegetation in-
dex (EVI) (linear regression of LAIscaled vs. EVI, r2 = 0.68, p << 0.005, equation: LAIEVI = 11.95 EVI—
2.34). 

Figure A1. Comparison of estimates of LAI at the Cumberland Plain site. Blue line (LAIPPFD

smoothed) data estimated from continuous measurements of the above-canopy incident and under-
storey photosynthetic photon flux density (FPPFD). Data are averaged across three sensors. Purple
dots (LAIphoto): LAI estimated from canopy photography using the MacFarlane method. Data are
the means of ~200 LAI estimates from upward photography taken on six dates. Red line (LAIscaled):
LAIPPFD scaled on LAIphoto (linear regression of LAIPPFD vs. LAIphoto, r2 = 0.6, p = 0.07, n = 6,
equation: LAIscaled = 2.65 LAIPPFD—1.13). Yellow line: LAI estimated from enhanced vegetation
index (EVI) (linear regression of LAIscaled vs. EVI, r2 = 0.68, p << 0.005, equation: LAIEVI = 11.95
EVI—2.34).
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Figure A3. Wavelet coherence between dEVI/dt and monthly precipitation (mm month−1), showing 
high coherence at an annual time scale with no lag, as dEVI/dt and monthly precipitation peaked 
once a year, in summer. Some seasonal coherence appeared during summer months. For docu-
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air temperature (Tair, ◦C). Regression fit: r2 = 0.29, p < 0.005, n = 214. dLAIEVI/dt also correlated
significantly with precipitation only (r2 = 0.20, p < 0.005, n = 214) and Tair only (r2 = 0.24, p < 0.005,
n = 214), as Tair and precipitation correlate (r2 = 0.16, p < 0.005, n = 214) due to wet summers and dry
winters at the site. Maximum dLAIEVI/dt occurred in hot and wet months, was always low in cold
months, and was also low in extremely dry hot months.
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Figure A3. Wavelet coherence between dEVI/dt and monthly precipitation (mm month−1), showing
high coherence at an annual time scale with no lag, as dEVI/dt and monthly precipitation peaked once
a year, in summer. Some seasonal coherence appeared during summer months. For documentation
of this analysis, see https://www.mathworks.com/help/wavelet/ref/wcoherence.html#description,
accessed on 23 April 2024.
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Figure A5. Correlations between observed half-hourly eddy-covariance net ecosystem productivity
(FNEP obs., µmol m−2 s−1) and evapotranspiration (FET obs., mm hh−1) and modeled half-hourly
FNEP and FET with CABLE-POP. Black lines show 1:1 while red lines show fitted regressions. (a) FNEP

obs. vs. FNEP CABLE-POP varying LAI (LAIEVI): r2 = 0.595, n = 17005, (b) FNEP obs. vs. FNEP

CABLE-POP constant LAI (LAI = 1.5 m2 m−2): r2 = 0.581, n = 17005, (c) FET obs. vs. FET CABLE-POP
varying LAI: r2 = 0.62, n = 22081, and (d) FET obs. vs. FET CABLE-POP constant LAI: r2 = 0.61,
n = 22081.
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(SWC, brightness indicates SWC, for 5 quantiles, from wet (dark) to dry (bright)). Dots indicates the
average of the y value for four quartiles of x, shading indicates standard error. Blue line: CABLE-POP
with varying LAI. Red line: CABLE-POP with constant LAI. Cyan line: eddy-covariance observation.

Table A1. Parameter correlation matrix (Pearson’s r). Refer to Table 2 for the description and units.

α kn g1 γ Vcmax

α 1 −0.12 −0.54 4.453 × 10−3 0.29
kn −0.12 1 0.34 0.11 0.58
g1 −0.54 0.34 1 0.26 −0.32
γ 4.45 × 10−3 0.11 0.26 1 0.12
Vcmax_scalar 0.29 0.58 −0.32 0.12 1
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