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Abstract: Urban green space (UGS) has been recognized as a key factor in enhancing the urban
ecosystem balance, particularly in arid areas. It is often considered an effective means to mitigate the
urban heat island (UHI) effect. In this study, the reference comparison method was utilized to optimize
the process of nighttime lighting data; the random forest classification method was employed to
extract UGS data; and the radiative transfer method was applied in land surface temperature (LST)
inversion. Additionally, moving window analysis was conducted to assess the robustness of the
results. The objective of this research was to analyze the spatial distribution characteristics of UGS and
LST and to explore their bivariate local spatial autocorrelations by calculating four landscape metrics,
including the aggregation index (AI), edge density (ED), patch density (PD), and area-weighted mean
shape index (Shape_am). It was found that the distribution of UGS in the study area was uneven, with
higher temperatures in the eastern and western regions and lower temperatures in the central and
southern regions. The results also revealed that ED, PD, and Shape_am were negatively correlated
with LST, with correlation coefficients being −0.469, −0.388, and −0.411, respectively, indicating that
UGS in these regions were more effective in terms of cooling effect. Conversely, AI was found to be
positively correlated with LST (Moran’ I index of 0.449), indicating that surface temperatures were
relatively higher in regions of high aggregation. In essence, the fragmented, complex, and evenly
distributed green patches in the study area provided a better cooling effect. These findings should
persuade decision makers and municipal planners to allocate more UGS in cities for UHI alleviation
to improve quality of life and enhance recreational opportunities.

Keywords: urban green space (UGS); land surface temperature (LST); Gaofen-2; thermal comfort;
bivariate local spatial autocorrelation

1. Introduction

The United Nations 2030 Agenda for Sustainable Development has proposed 17
Sustainable Development Goals (SDGs), of which SDG 11 is “to build inclusive, safe,
resilient and sustainable cities and human settlements” [1]. This goal underscores the global
and national focus on sustainable urban development, which was intensified by rising
personal incomes and public demand for higher-quality living environments. Consequently,
the Chinese government escalated the requirements for living environments of residents
in its pursuit of ecological civilization [2]. Urban green space (UGS) is a vital component
of the urban environment, playing significant roles in the ecological and social realms [3].
Therefore, rationalizing the allocation of UGS to enhance thermal comfort in urban areas
has become a pressing issue.

Since the 20th century, the rapid development of cities has brought many ecological
and environmental problems, among which the urban heat environment is particularly
prominent. Large amounts of construction, industrial emissions, and other human activities
lead to a continuous increase in surface temperature, causing cities to be hotter than
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surrounding zones. This phenomenon is known as the urban heat island (UHI) effect [4].
In general, two types of UHI are recognized: the air temperature UHI, which affects
atmospheric conditions, and the surface temperature UHI, sometimes referred to as the
surface urban heat island (SUHI), which impacts the temperatures of urban surfaces [5]. Air
temperature UHI can be extracted from infrared remote sensing images with land surface
temperature (LST) and has been extensively utilized to study the UHI phenomenon [6].
LST threatens the urban ecological environment, and there are natural disasters such as
heat waves and floods, and it is increasingly used to study UHI. A number of researchers
have indicated that UGSs perform a very valuable function in improving urban thermal
environment problems [7–9] and has important ecological landscape and health value
for cities and residents, not only improving air quality and reducing noise pollution
and extreme weather impacts on people’s lives, but also reducing stress on humans by
controlling the development of UHI. It can improve air quality, reduce the impact of noise
pollution and extreme weather on people’s lives, as well as promote psychological health by
reducing stress, thus making residents more comfortable. With the growing urbanization
and the increasing expectation to have a higher quality of life in urban environments,
the impact of UGS on human settlements has proven to be increasingly evident and has
become a key enabling aspect for all governments and societies in urban planning. However,
different green space patterns have different relationships with urban temperature, and
exploring their patterns and distributions is important for planners to optimize urban
patterns in the future.

Recent studies have consistently highlighted the crucial role of UGS in mitigating UHI
effects [10–12]. These studies illustrate various mechanisms, through which UGSs lower
LST, such as shading and evapotranspiration [13,14]. Despite the limited availability of land
for greening in urban planning, more attention has been given to the effect of the spatial
configuration of green space on LST, aiming to maximize cooling benefits by modifying
its spatial distribution. It has been demonstrated that the spatial configuration of green
space significantly influences LST [11,15], with the area, shape, and type of UGS being
crucial factors. While some studies indicate a strong cooling effect related to the proportion
of area covered by UGS [8,16], there is no consensus on the impact of UGS shape and
type on temperature, potentially due to variations in study areas, data spatial resolution,
etc. [6,17,18]. Furthermore, comparative studies across different urban settings have shown
that the effectiveness of UGS in reducing LST varies significantly and depends on the local
climatic conditions, urban morphology, and vegetation types [19,20]. However, while there
is a growing understanding of these processes, significant gaps remain in specific areas
such as semi-arid regions, where unique climatic challenges exacerbate the UHI effect [21].
Moreover, the impact of UGS configuration—such as the size, shape, and connectivity of
green spaces—on urban thermal comfort is still not fully understood, with studies reporting
mixed outcomes based on the spatial resolution of the data used and the methodological
approaches employed [22,23].

This study delineates the influence of various configurations of UGS on LST, providing
crucial insights for strategic UGS planning and optimization within urban settings. Notably,
variations in the geographic scope of study areas, analytical scales, and the resolution of
the data employed can significantly affect temperature outcomes. A review of the literature
highlights a significant lack of empirical investigations into arid regions [24], which face
unique challenges such as acute water shortages that could be exacerbated by global warm-
ing [25]. These gaps underscore the need for a comprehensive exploration of the direct
interactions between UGS and LST. Additionally, variations in findings regarding the asso-
ciations between landscape metrics and LST across different studies call for comparative
analyses with other regional case studies.

This investigation aims to provide a robust scientific basis for UGS optimization by
addressing pivotal questions including the following: (1) What are the spatial distributions
of UGS landscape patterns in different regions? (2) How does LST vary spatially across these
regions? (3) What are the differences in the correlation between the spatial distribution of
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UGS and LST in different regions? To our knowledge, this is the inaugural study in Urumqi
employing GIS technology and spatial metrics to analyze the correlation between UGS
and LST. The outcomes of this analysis are anticipated to furnish the governmental policy
makers and urban planners with enhanced understanding of the UGS spatial patterns and
facilitate more profound investigations into the correlation between UGS and LST across
the entire urban community.

2. Materials and Methods
2.1. Study Area

Urumqi, the capital of Xinjiang, is situated in the northwest border of China, encom-
passed by coordinates ranging from 86◦37′33′′ to 88◦58′24′′ E and 42◦45′32′′ to 45◦00′00′′ N.
It is enclosed by mountain ranges on three sides, and the city boasts an average altitude of
800 m (Figure 1). Characterized by a mid-temperate semi-arid continental climate, Urumqi
is distinguished as the city farthest from any ocean globally, receiving an average annual
precipitation of only 236 mm. According to the Köppen-Geiger climate classification system,
this climatic condition categorizes Urumqi in the Cold Semi-Arid (BSk) zone. Summers ex-
hibit high temperatures, with peak heat occurring in July and August, boasting an average
temperature of 25.7 ◦C. Winters, on the other hand, are characterized by mild conditions,
with an average temperature of −15.2 ◦C. This moderation is attributed to the barrier effect
of the Tien Shan Mountains, which effectively entraps cold air within the basin.
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As reported in the 2021 National Economic and Social Development Statistical Bulletin
of Urumqi (http://www.urumqi.gov.cn/fjbm/tjj/tjgb/509211.htm, accessed on 14 Septem-
ber 2022), the city covers an area of approximately 1.38 × 104 km2, with the built-up area
having expanded by 14.60 km2 from the previous year to 536.20 km2. With a resident
population of 4.05 million, Urumqi stands as Xinjiang’s major urban center and the most
populous and economically dynamic city in Central Asia. The UGS in Urumqi faces signifi-
cant challenges due to the harsh dry climate, climate change, and rapid urban expansion,
which emphasize the necessity for strategic environmental planning and management.
Thus, Urumqi, the capital of the Xinjiang Uyghur Autonomous Region, is selected as the
focal study area to investigate the impact of green space composition and configuration
on LST.

http://www.urumqi.gov.cn/fjbm/tjj/tjgb/509211.htm
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2.2. Research Data

UGSs, distributed within urban areas, are the focus of this paper. For the precise defi-
nition of urban built-up areas, nighttime light data from the Lujia-1 (LJ1-01) satellite [26,27],
developed by Wuhan University, were employed. As the world’s first satellite dedicated
to luminescence remote sensing, LJ1-01 has been widely validated to monitor and extract
economic activities in urban built-up areas. Data acquired on 30 October 2018, with a
spatial resolution of 130 m, were utilized to define urban built-up areas accurately.

The Gaofen-2 (GF-2) satellite, launched by China, represents a significant advancement
in civil optical remote sensing technology. With a spatial resolution exceeding 1 m, it is the
highest resolution civil remote sensing satellite developed by China to date. Its extensive
observation area and long operational lifespan [28] make GF-2 an exemplary data source
for urban studies [29]. In this research, GF-2 PMS images captured on 21 July 2021 and
1 August 2021 were used to comprehensively cover the designated study area. The image
processing was meticulously executed using ENVI 5.3 software, which involved several
critical stages. Radiometric calibration was performed with settings adjusted to “Radiance”,
converting raw data to accurate radiance values, and atmospheric correction was applied
using the FLAASH module, configured for an urban aerosol model and mid-latitude
summer atmospheric conditions. Orthogonal correction was performed using a cubic
convolutional resampling method to correct geometric distortions. Image fusion was
conducted using NNDiffuse Pan Sharpening to improve spatial resolution. Finally, the
images were mosaicked and cropped to accurately define the study area, ensuring high
fidelity and consistency of the processed images. These steps are essential to maintain the
integrity and usability of the data for detailed urban structure analysis.

Landsat 8, the eighth installment in the U.S. Landsat program, is equipped with the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which provide
spatial resolutions of 30 m and 100 m, respectively. This study utilizes Landsat 8 OLI_TIRS
data collected on 2 August 2021, notable for its minimal cloud coverage of 0.01%, to derive
surface temperature estimates. The accuracy of these derived temperatures was assessed
using the Landsat Collection 2 Level-2 product data. This product, available from the USGS
(https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-temperature, ac-
cessed on 12 September 2022), includes multispectral band surface reflectance and thermal
infrared band surface temperatures, which have been processed using the enhanced Land
Surface Reflectance Code (LaSRC) with an improved atmospheric correction algorithm [30].
The use of Collection 2 Level-2 data is critical in validating the accuracy of inverted surface
temperatures due to its proven efficacy in surface temperature analysis [31]. This validation
process ensures that the surface temperature data derived from the Landsat 8 images are
robust and reliable for subsequent analyses.

2.3. Methodology
2.3.1. Reference Comparison Method

In this study, the delineation of built-up areas in Urumqi was performed using the
reference comparison method, which is a widely recognized technique for processing
nighttime lighting data [32]. This method involves setting various lighting thresholds
and comparing the extracted built-up area results against official built-up area statistics
released by the government. The optimal threshold, identified as the one that minimizes
discrepancies between these datasets, was selected to ensure the robustness of the findings.
Supported by quantitative analysis, this method allows the accurate delineation of built-up
areas and ensures high precision and consistency in the spatial data utilized [33].

2.3.2. Random Forest Classification Method

For the extraction of UGS, hyperspectral data were analyzed using a supervised
classification technique under ENVI 5.3 software, employing the Random Forest (RF)
algorithm. This algorithm was chosen due to its proven efficacy in handling similar spectral
categories [34,35], demonstrating superior performance over other classification methods.

https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-temperature
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The RF algorithm, configured to default settings with a number of trees set to 100 and the
number of features determined by the square root of the total number of features, was
utilized. Classification samples were meticulously selected based on visual interpretations
of Google Earth and GF-2 true color imagery, ensuring the relevance and accuracy of the
training data. The effectiveness of this method was quantitatively assessed, achieving
an overall classification accuracy of 92.6% with a kappa coefficient of 0.82, which affirms
the robustness of the classification process and validates the suitability of the data for
subsequent analytical applications.

2.3.3. Radiative Transfer (Atmospheric Correction) Method

Currently, there are three main surface temperature inversion algorithms, with the
radiative transfer method (also known as the atmospheric correction method) having an
advantage over a single-channel and split-window algorithms for inversion of surface tem-
perature [36]. The thermal infrared radiation brightness value Lλ received by the satellite
sensor in the radiative transfer method consists of three components: the atmospheric
upward radiation brightness L↑; the energy of the real radiation brightness of the ground
reaching the satellite sensor after passing through the atmosphere; and the energy L↓
reflected by the atmospheric downward radiation reaching the ground. The expression of
the thermal infrared radiation brightness value Lλ received by the satellite sensor is shown
as follows (radiation transmission equation):

Lλ = [εB(TS) + (1 − ε)L ↓]τ + L ↑ (1)

Ts =
K2

ln
((

K1
B(TS)

)
+ 1

) (2)

where B is the Planck function; ε is the surface specific emissivity; τ is the atmospheric
transmittance in the thermal infrared band; TS is the true surface temperature (K); K1
and K2 are the radiation constants, for TIRS Band10, K1 = 774.89(W·m−2·sr−1·µm−1),
K2 = 1321.08 (K); TIRS Band11, K1 = 480.89(W·m−2·sr−1·µm−1), K2 = 1201.14 (K).

2.3.4. Statistical Analysis of the Sampling

In this paper, we focus on the spatial distribution of UGS and LST. So, it is necessary
to determine the scale of the analysis. The sample method is an important method to study
the inner city [37,38]. Therefore, 527 sample grids were obtained after a 1 km × 1 km grid
sampling of the study area. Then, the UGS landscape metrics and mean surface temperature
of each grid were extracted.

2.3.5. Moving Window Analysis

The moving window analysis employed FRAGSTATS 4.2 (http://www.umass.edu/
landeco/research/fragstats/fragstats.html, accessed on 26 September 2022) software land-
scape metrics are sensitive to changes in scale. If the window is too small, the local
characteristics of the landscape will cover the overall characteristics, and the generated
image will appear to have no continuity. If the window is too large, details will be lost, and
the resulting image will be blurry [39]. To avoid the increase in the spatial heterogeneity
of the landscape pattern due to the unreasonable setting of the moving window size, the
variation maps of landscape indices (AI, ED, PD and Shape_am) under the corresponding
windows are generated by setting different moving window edge lengths. Most of the
current studies based on semi-variance function and block–base ratio in determining the
analysis scale of landscape patterns assume that the variation degree of the landscape index
is the same in all directions [40,41], that is, isotropic. This is followed by determining the
analysis magnitude of the study area with the help of omnidirectional semi-variance func-
tion to quantitatively describe the spatial heterogeneity of the landscape pattern. A total of
735 random points were randomly generated under ArcGIS 10.4.1, and the landscape index
values of the spatially randomly distributed points were extracted. GS+ 10.0 software was

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
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used to simulate the landscape index semi-variance function under different moving win-
dow radii. This was followed by calculating the block–base ratio to analyze and determine
the appropriate moving window size for the study area, and the results are shown in
Figure 2.
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In a moving window, the window is always rounded to the nearest odd cell so that
the focal cell can be located in the center of the window. In this study, an odd multiple of
30 m was used as the test moving window size, which is a multiple of the resolution of
Landsat 8 data. A total of 22 moving window sizes were set in intervals from 300 to 1600 m.
From Figure 2, the fluctuation amplitude starts to decrease when the moving window edge
length is in the interval from 810 to 990 m. Finally, 870 m was determined as the window
edge length for the moving window analysis, and the shape was chosen as square, and
the moving window was moved from the top left of the study area to analyze the whole
study area.

2.3.6. Bivariate Local Indicator of Spatial Association (LISA)

The analysis in this study incorporates the bivariate local spatial autocorrelation (Bi-
variate Moran’s I), a methodological advancement over the traditional Moran’s I index for
spatial autocorrelation, facilitated by GeoDa 1.18 software (http://geodacenter.github.io/,
accessed on 28 March 2022). It extends the utility of Moran’s I by enabling the examination
of the correlation between a specific attribute of a spatial unit and a corresponding attribute
of its neighboring units. Developed to provide deeper insights into spatial interdepen-
dencies, the Bivariate Moran’s I allows a more nuanced exploration of spatial patterns
by quantifying the degree of correlation between two distinct but spatially contiguous
attributes [42,43], with the following equation:

Ii
ab =

Xi
a − Xa

σa
×

n

∑
j=1

Wij
X j

b − Xb

σb
(3)

where xi
a is the value of attribute a of cell i; xi

b is the value of attribute b of cell j; σa and σb
are the variances of attributes a and b, respectively.

The analysis of the spatial distribution data from regions i and j revealed distinct
patterns of correlation between the independent and dependent variables, which can be
categorized into four primary types of clustering including High–High (H-H), Low–Low

http://geodacenter.github.io/
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(L-L), High–Low (H-L), and Low–High (L-H). The H-H and L-L clusters signify a positive
correlation, indicating that high values of the independent variable in region i are associated
with high values of the dependent variable in region j and similarly for low–low correlations.
Conversely, H-L and L-H clusters represent a negative correlation, where high values of
the independent variable in one region correspond to low values of the dependent variable
in another, and vice versa.

Figure 3 shows the conceptual framework of this study divided into four stages:
(1) collection of data and pre-processing; (2) extraction of built-up area, UGS and inversion
of urban LST; (3) spatial distribution of LST and UGS landscape indices; and (4) analyzing
the relationship between the spatial distribution of LST and UGS landscape indices.
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3. Results
3.1. Extracting Built-Up Area and UGS as Well as Inversing Land Surface Temperature

Built-up areas of Urumqi were delineated using the reference comparison method
with LJ-01 satellite nighttime lighting data. This approach involved layering nighttime
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lighting data from high to low intensity to align with officially announced built-up area
statistics as of 15 June 2022, accessible via the Urumqi municipal website (http://www.
urumqi.gov.cn/fjbm/tjj/tjgb/509211.htm, accessed on 14 September 2022). This method
ensured accurate and current representations of urban extents. The results, depicted in
Figure 4, indicate that the built-up area encompasses approximately 536.20 km2, primarily
distributed across six districts including Tianshan, Saybag, Shuimogou, Xinshi, Toutunhe,
and Midong.
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Secondly, the UGS within the study area were delineated using high-resolution HMS-2
satellite imagery, as depicted in Figure 5. The map illustrates a varied distribution of UGS,
with sparse coverage in the northern regions and more extensive coverage in central and
southern sectors of the study area. Due to the 1 m spatial resolution of the HMS-2 imagery,
which demands substantial memory for processing, it was necessary to resample these data.
Therefore, Landsat imagery with a 30 m resolution was employed for resampling purposes.
This resolution is acknowledged as optimal for examining the relationship between LST
and landscape patterns [44]. The resampled UGS map at 30 m resolution facilitates more
efficient subsequent analytical processes, ensuring the study maintains computational
feasibility without compromising the spatial integrity of the environmental data.

http://www.urumqi.gov.cn/fjbm/tjj/tjgb/509211.htm
http://www.urumqi.gov.cn/fjbm/tjj/tjgb/509211.htm
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Surface temperature was derived using a radiative transfer method applied to Landsat
8 imagery. The inversion results, displayed in Figure 6, reveal a spatial temperature
distribution with higher temperatures predominantly located in the eastern and western
parts of the study area, whereas the central and southern parts exhibit lower temperatures.
To ensure the reliability of these results, a rigorous validation process was conducted
using Landsat Collection 2 Level-2 data. Specifically, 500 random points were selected
for a comparative analysis between the surface temperatures obtained from the Landsat
8 inversion and the corresponding data from the Collection 2 Level-2 data. The analysis,
visualized in Figure 7, indicated a strong correlation and alignment between the two
datasets, substantiating the accuracy of the inversion process. These validated results
provide a robust basis for supporting subsequent studies and analyses.

Forests 2024, 15, 878 9 of 17 
 

 

maintains computational feasibility without compromising the spatial integrity of the 
environmental data. 

 
Figure 5. Extraction of urban green spaces (UGSs) for the study area. 

Surface temperature was derived using a radiative transfer method applied to 
Landsat 8 imagery. The inversion results, displayed in Figure 6, reveal a spatial 
temperature distribution with higher temperatures predominantly located in the eastern 
and western parts of the study area, whereas the central and southern parts exhibit lower 
temperatures. To ensure the reliability of these results, a rigorous validation process was 
conducted using Landsat Collection 2 Level-2 data. Specifically, 500 random points were 
selected for a comparative analysis between the surface temperatures obtained from the 
Landsat 8 inversion and the corresponding data from the Collection 2 Level-2 data. The 
analysis, visualized in Figure 7, indicated a strong correlation and alignment between the 
two datasets, substantiating the accuracy of the inversion process. These validated results 
provide a robust basis for supporting subsequent studies and analyses. 

 
Figure 6. Surface temperature inversion diagram. Figure 6. Surface temperature inversion diagram.



Forests 2024, 15, 878 10 of 16Forests 2024, 15, 878 10 of 17 
 

 

 
Figure 7. LST inversion accuracy verification. 

3.2. Spatial Distribution of UGS Landscape Metrics 
Figure 8 visualizes the distribution of four key landscape indices: AI, ED, PD, and 

Shape_am, which are instrumental in analyzing UGS configuration for urban thermal 
environment studies. 

 
Figure 8. Spatial distribution of urban green space (UGS) landscape indies: (a) aggregation index 
(AI); (b) edge density (ED); (c) patch density (PD); and (d) area-weighted mean shape index 
(Shape_am). 

Figure 7. LST inversion accuracy verification.

3.2. Spatial Distribution of UGS Landscape Metrics

Figure 8 visualizes the distribution of four key landscape indices: AI, ED, PD, and
Shape_am, which are instrumental in analyzing UGS configuration for urban thermal
environment studies.
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High aggregation values, ranging from 0.51 to 1.00, were observed in Midong, Toutunhe,
and northern Xinshi, suggesting that there is a great deal of connectivity between green
space, and that large, contiguous green spaces are critical for ecological corridors and
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effective urban heat mitigation (Figure 8a). Lower edge densities in these areas correspond
to the reduced fragmentation, supporting cohesive green infrastructure, which is advan-
tageous for maintaining microclimatic stability and reducing edge effects that negatively
impact flora and fauna by exposing them to urban environmental stresses (Figure 8b). Ele-
vated patch densities in southern Xinshi, Saybag, Shuimogou, and Tianshan demonstrate a
fragmented arrangement of green patches (Figure 8c). More irregularly shaped patches
in southern Xinshi, with Shape_am values above 1, demonstrate a complex green space
structure (Figure 8d), which is in contrast to more regular and simpler green space shapes
that dominate in Toutunhe and Midong. These indices collectively provide a quantitative
foundation for evaluating the structural and functional characteristics of UGSs within
Urumqi, supporting targeted urban planning initiatives aimed at optimizing the ecological
and thermal benefits of urban green spaces.

3.3. Spatial Distribution of LST

Empirical studies have established a significant correlation between LST and key urban
surface features, notably for impervious surfaces and vegetation cover. High-temperature
areas are primarily concentrated in Midong District, Toutunhe District, and the western
part of the new urban area, while low-temperature areas cluster in the southern part of the
new urban area, Saybag District, Shuimogou District, and Tianshan District (Figure 9a).

Forests 2024, 15, 878 11 of 17 
 

 

High aggregation values, ranging from 0.51 to 1.00, were observed in Midong, 
Toutunhe, and northern Xinshi, suggesting that there is a great deal of connectivity 
between green space, and that large, contiguous green spaces are critical for ecological 
corridors and effective urban heat mitigation (Figure 8a). Lower edge densities in these 
areas correspond to the reduced fragmentation, supporting cohesive green infrastructure, 
which is advantageous for maintaining microclimatic stability and reducing edge effects 
that negatively impact flora and fauna by exposing them to urban environmental stresses 
(Figure 8b). Elevated patch densities in southern Xinshi, Saybag, Shuimogou, and 
Tianshan demonstrate a fragmented arrangement of green patches (Figure 8c). More 
irregularly shaped patches in southern Xinshi, with Shape_am values above 1, 
demonstrate a complex green space structure (Figure 8d), which is in contrast to more 
regular and simpler green space shapes that dominate in Toutunhe and Midong. These 
indices collectively provide a quantitative foundation for evaluating the structural and 
functional characteristics of UGSs within Urumqi, supporting targeted urban planning 
initiatives aimed at optimizing the ecological and thermal benefits of urban green spaces. 

3.3. Spatial Distribution of LST 
Empirical studies have established a significant correlation between LST and key 

urban surface features, notably for impervious surfaces and vegetation cover. High-
temperature areas are primarily concentrated in Midong District, Toutunhe District, and 
the western part of the new urban area, while low-temperature areas cluster in the 
southern part of the new urban area, Saybag District, Shuimogou District, and Tianshan 
District (Figure 9a). 

Figure 9b shows that the high values are mainly concentrated in the western part of 
Xinshi District, the central part of Toutunhe District, and the eastern part of Midong 
District, indicating that not only their own temperature is high, but also the temperature 
of the adjacent units is equally high. The low values are mainly concentrated in Tianshan 
District, Saybag District, and Shuimogou District, with less distribution in the north and 
south of Xinshi District, the north of Midong District, and the west and south of Toutunhe 
District. The two cells with high values surrounded by low values are located in Toutunhe 
District and Tianshan District, indicating that these two cells are in high temperatures in 
spatial distribution and the cells next to them are in low-temperature conditions. The only 
cell with low values surrounded by high values is located in Tianshan District, indicating 
that this cell is at a low temperature in spatial distribution, but the cells next to it are at a 
high temperature. The conclusion drawn in Figure 9b coincides with Figure 9a. 

 
Figure 9. Spatial distribution of surface temperature: (a) AverLST; (b) cluster analysis. 

  

Figure 9. Spatial distribution of surface temperature: (a) AverLST; (b) cluster analysis.

Figure 9b shows that the high values are mainly concentrated in the western part
of Xinshi District, the central part of Toutunhe District, and the eastern part of Midong
District, indicating that not only their own temperature is high, but also the temperature
of the adjacent units is equally high. The low values are mainly concentrated in Tianshan
District, Saybag District, and Shuimogou District, with less distribution in the north and
south of Xinshi District, the north of Midong District, and the west and south of Toutunhe
District. The two cells with high values surrounded by low values are located in Toutunhe
District and Tianshan District, indicating that these two cells are in high temperatures in
spatial distribution and the cells next to them are in low-temperature conditions. The only
cell with low values surrounded by high values is located in Tianshan District, indicating
that this cell is at a low temperature in spatial distribution, but the cells next to it are at a
high temperature. The conclusion drawn in Figure 9b coincides with Figure 9a.

3.4. Spatial Distribution Relationship between UGS and LST

It has been consistently indicated by previous research that an increase in UGS leads
to a reduction in LST. Building on this foundation, the current study employs bivariate
local spatial correlation analysis to investigate the influence of urban landscape structure
indicators on regional surface temperatures, which is depicted in Figure 10.
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The landscape indexes were all significantly correlated with LST to different degrees,
and AI, ED, PD, and Shape_am were all significantly correlated with LST at the 0.001 level.
The results indicated that the degree of aggregation, edge density, patch density, and
shape complexity index all played a role in LST. Among them, ED, PD and Shape_am
were all negatively correlated with LST, and the Moran’ I index was −0.469, −0.388, and
−0.411, respectively, indicating that plaque fragmentation, UGS with a complex shape
and better cooling effect, and ED had more significant effect on LST than PD. AI was
positively correlated with LST, and the Moran’ I index was 0.449, indicating that the higher
the aggregation, the higher the LST.

Based on these results, planners can logically assume that a uniform distribution of
street trees within the city may be an effective way to reduce the urban heat island effect.
This suggests that when planning for cities in the future with cooling benefits from UGS
as an option, decision makers should focus more on the pattern of UGS rather than their
number to bring maximum benefits with the same number of UGS. This is especially true
for cities with severe spatial constraints due to the competing land use demands, where
adding more UGS remains a major challenge.

4. Discussion
4.1. Policy Influence on Spatial Distribution of LST

The spatial distribution of LST in Urumqi has been notably influenced by the national
planning policies, especially during the 14th Five-Year Plan period. Development was
primarily focused in the Toutunhe district, potentially overlooking environmental consid-
erations, thereby impacting the ecological balance. In contrast, traditional districts like
Tianshan, Saybag, and Shuimogou have achieved an equilibrium between development
and environmental benefits (thanks to mature urban planning). Notably, areas such as the
Botanical Garden and Liyu Mountain Park, located in the south of the new urban area,
exhibit lower average surface temperatures, underlining the cooling effects of well-planned
green spaces. Conversely, the Midong District, further from the city center, exhibits higher
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temperatures due to its lower population density, minimal green coverage, and proximity
to industrial zones.

4.2. Influence of Spatial Resolution and Landscape Metrics on LST

The relationship between the landscape metrics and LST appears to vary significantly
depending on the spatial resolution of the remote sensing imagery used. For instance, ED
was found to be negatively correlated with LST in studies utilizing Landsat TM imagery
with a resolution of 30 m [15,45]. However, this relationship was reversed in higher
resolution imagery from SPOT (10 m) and QuickBird (2.44 m), where a positive correlation
between ED and LST was observed, and it intensifies with increased resolution [46]. PD
has predominantly shown a negative correlation with LST, which is aligning with our
findings [47]. An analysis using Sentinel 2A data to assess cooling effects in green spaces
indicated a significant positive correlation between LST and PD [16]. Similarly, using GF-6
imagery and a spatial analysis grid of 1 km × 1 km, researchers found a positive correlation
between PD and LST, and a negative correlation between ED, AI, and LST, which diverges
from the results reported by Bao et al. [48] where AI was positively correlated with LST.
A comprehensive study by Xiang et al. [49] explored the impact of various landscape
metrics on LST using a 9000 m × 9000 m analysis grid. The findings indicated that AI was
negatively correlated with LST, whereas PD, ED, and Shape_am were positively correlated,
utilizing land cover data at a 30 m resolution and LST data from MODIS MYDLT1D. These
findings underscore the complexity of the interactions between landscape structure and
LST, suggesting that spatial resolution and methodological nuances significantly influence
these relationships.

4.3. Methodological Considerations and Future Directions

Discrepancies observed in the correlation between landscape metrics and LST across
various studies may largely stem from the differential spatial scales, at which these metrics
were calculated, coupled with the inherent sensitivity of the metrics to scale changes.
In our study, UGS model metrics were computed using a 1 km × 1 km grid, primarily
focusing on smaller urban patches. Conversely, studies by Li et al. [46] and Xiang et al. [49]
concentrating on larger UGS such as parks, often overlook the smaller patches within urban
settings. This variation in scale fundamentally affects the cooling distances attributed to
different UGS, thereby leading to the conflicting results noted across studies. Additionally,
the significant variation in overall urban form and existing UGS patterns across different
cities elucidates the observed contradictions [50]. For instance, a comprehensive assessment
of urban morphology’s impact on UGS models in 262 cities across China revealed that
factors such as the UGS perimeter-area ratio, road density, and a composite topographic
complexity index exert significant influences on landscape metrics [51]. These findings
highlight the critical role that both the scale of landscape metrics and urban structural
complexities play a role in influencing LST outcomes.

Recognizing several inherent limitations could impact the generalizability and preci-
sion of our findings. Firstly, the spatial resolution of the Landsat 8 data used to derive LST
is relatively low (30 m for OLI and 100 m for TIRS), which may affect the granularity of our
UGS and LST analysis. While this resolution is adequate for large-scale urban analysis, it
might not capture finer landscape details crucial for micro-scale urban studies. To overcome
this, it is recommended that future studies utilize higher-resolution satellite data, such as
from the Landsat 9 mission or commercial high-resolution satellites, which can provide
more detailed information and thus enhance the accuracy and reliability of the analysis.
Moreover, our study’s focus on a single city, Urumqi, limits the ability to generalize our
findings across different urban forms and climatic regions. Urumqi’s unique geographic
and climatic conditions may not represent other urban environments where different UGS
configurations and broader climatic factors might influence the urban heat island effect
differently. To address this limitation, future research should aim to include multiple cities
that vary significantly in size, climatic conditions, and urban morphology. Conducting
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comparative studies across these diverse settings will help identify robust UGS evaluation
indicators that are applicable under varying urban conditions. Expanding the research
scope to include a broader array of urban settings will also allow for the development of
generalized urban green space strategies tailored to specific climatic zones or urban config-
urations. This approach is crucial for devising effective urban planning and management
strategies that can mitigate the urban heat island effect and contribute to climate mitigation
and urban sustainability more broadly. Additionally, integrating advanced spatial anal-
ysis techniques and exploring the potential of new analytical methods, such as machine
learning models that can handle complex variable interactions in large datasets, might
provide deeper insights into the dynamics of UGS and LST. In conclusion, while the current
study provides valuable insights into the correlation between UGS and LST in Urumqi,
acknowledging and addressing these limitations through methodological enhancements
and broader geographic studies will greatly enhance the reliability and applicability of
future urban ecological research.

5. Conclusions

The degradation of urban environmental quality, evidenced by deteriorating air quality
and increasing UHI effects, is one of the adverse consequences of uncontrolled urbanization.
Nonetheless, these negative effects can be mitigated. Urban vegetation plays a pivotal role
in preserving the ecological equilibrium within cities, with the ecological services offered by
UGS exhibiting notable diversity across varying landscape configurations. Consequently,
this study analyzed the spatial distribution characteristics of UGS and LST in Urumqi,
situated in an arid zone, and explored the bivariate local spatial autocorrelation between
UGS distribution and LST as a reference for urban planners to design UGS scientifically.
The following conclusions are drawn from the results of this study:

(1) Patches with a high aggregation index are predominantly located in the study area of
Midong District, Toutunhe District, and the northern part of Xinshi District, whereas
the distribution of edge density contrasts with that of the aggregation index. The
southern part of Xinshi District, Saybag District, Shuimogou District, and Tianshan
District exhibit higher densities of patches, with Xinshi District encompassing the
largest distribution area of UGS, albeit non-uniformly distributed.

(2) The high-temperature zones are primarily concentrated in Midong District, Toutunhe
District, and the western part of Xinshi District, while the low-temperature zones pre-
dominantly cluster in the southern part of Xinshi District, Saybag District, Shuimogou
District, and Tianshan District.

(3) AI, ED, PD, and Shape_am were all found to be significantly correlated with LST at
the 0.001 level. Conversely, ED, PD, and Shape_am exhibited negative correlations
with LST, while AI was positively correlated with LST.

This study provides a more scientific reference for urban planners to evaluate UGS
by studying the influence of different landscape metrics of UGS on LST. However, further
studies and in-depth exploration of different cities are needed to reveal the impact of the
UGS model.
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31. Onačillová, K.; Gallay, M.; Paluba, D.; Péliová, A.; Tokarčík, O.; Laubertová, D. Combining landsat 8 and sentinel-2 data in

google earth engine to derive higher resolution land surface temperature maps in urban environment. Remote Sens. 2022, 14, 4076.
[CrossRef]

32. Zhang, M.; Zhang, F.; Chen, D.; Tan, M.L.; Chan, N. Urban local surface temperature prediction using the urban gray-green space
landscape and vegetation indices. Build. Environ. 2022, 226, 109723. [CrossRef]

33. Li, G.; Fan, J.; Zhou, Y.; Zhang, Y. Development characteristics estimation of Shandong peninsula urban agglomeration using
VIIRS night light data. Remote Sens. Technol. Appl. 2020, 35, 1348–1359.

34. Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region,
by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens.
2012, 69, 167–179. [CrossRef]

35. Pu, R.; Landry, S.; Yu, Q. Assessing the potential of multi-seasonal high resolution Pléiades satellite imagery for mapping urban
tree species. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 144–158.

36. Liu, H.; Weng, Q. Scaling effect on the relationship between landscape pattern and land surface temperature. Photogramm. Eng.
Remote Sens. 2009, 75, 291–304. [CrossRef]

37. Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer
equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [CrossRef]

38. Mutani, G.; Todeschi, V. Roof-integrated green technologies, energy saving and outdoor thermal comfort: Insights from a case
study in urban environment. Int. J. Sustain. Dev. Plan 2021, 16, 13–23. [CrossRef]

39. Vega, K.A.; Küffer, C. Promoting wildflower biodiversity in dense and green cities: The important role of small vegetation patches.
Urban For. Urban Green. 2021, 62, 127165. [CrossRef]

40. McGarigal, K. FRAGSTATS Help; University of Massachusetts: Amherst, MA, USA, 2015; 182p.
41. Mou, Y.; Chen, Q.; Li, L.; Tu, C.; Lu, X. Spatial differentiation and influencing factors of surface soil selenium in Huaxi District,

Guiyang. Acta Sci. Circumstantiae 2022, 42, 415–424. (In Chinese)
42. Song, S.; Wang, Y.; Shi, M.; Hu, S.; Xu, D. Effects of landscape pattern type on soil erosion. Soil Water Conserv. Res. 2022, 29, 85–92.

(In Chinese)
43. Gutiérrez, J.; García-Palomares, J.C.; Romanillos, G.; Salas-Olmedo, M. The eruption of Airbnb in tourist cities: Comparing spatial

patterns of hotels and peer-to-peer accommodation in Barcelona. Tour. Manag. 2017, 62, 278–291. [CrossRef]
44. Yao, X.; Zeng, J.; Li, W. Spatial correlation characteristics of urbanization and land ecosystem service value in Wuhan Urban

Agglomeration. Trans. Chin. Soc. Agric. Eng. 2015, 31, 249–256.
45. Li, B.; Shi, X.; Wang, H.; Qin, M. Analysis of the relationship between urban landscape patterns and thermal environment: A case

study of Zhengzhou City, China. Environ. Monit. Assess. 2020, 192, 540. [CrossRef] [PubMed]
46. Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the

effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [CrossRef]
47. Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of

Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [CrossRef]
48. Bao, T.; Li, X.; Zhang, J.; Zhang, Y.; Tian, S. Assessing the distribution of urban green spaces and its anisotropic cooling distance

on urban heat island pattern in Baotou, China. ISPRS Int. J. Geo-Inf. 2016, 5, 12. [CrossRef]
49. Xiang, Y.; Ye, Y.; Peng, C.; Teng, M.; Zhou, Z. Seasonal variations for combined effects of landscape metrics on land surface

temperature (LST) and aerosol optical depth (AOD). Ecol. Indic. 2022, 138, 108810. [CrossRef]
50. Huang, J.; Lu, X.; Sellers, J. A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landsc.

Urban Plan. 2007, 82, 184–197. [CrossRef]
51. Huang, C.; Yang, J.; Jiang, P. Assessing impacts of urban form on landscape structure of urban green spaces in China using

Landsat images based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10980-012-9833-1
https://doi.org/10.1186/2048-7010-1-3
https://doi.org/10.1016/j.scitotenv.2022.154006
https://www.ncbi.nlm.nih.gov/pubmed/35192831
https://doi.org/10.3390/s18113665
https://www.ncbi.nlm.nih.gov/pubmed/30380616
https://doi.org/10.11834/jrs.20211296
https://doi.org/10.3390/rs14164076
https://doi.org/10.1016/j.buildenv.2022.109723
https://doi.org/10.1016/j.isprsjprs.2012.03.005
https://doi.org/10.14358/PERS.75.3.291
https://doi.org/10.3390/rs6109829
https://doi.org/10.18280/ijsdp.160102
https://doi.org/10.1016/j.ufug.2021.127165
https://doi.org/10.1016/j.tourman.2017.05.003
https://doi.org/10.1007/s10661-020-08505-w
https://www.ncbi.nlm.nih.gov/pubmed/32710260
https://doi.org/10.1016/j.landurbplan.2013.02.005
https://doi.org/10.1016/j.rse.2011.07.008
https://doi.org/10.3390/ijgi5020012
https://doi.org/10.1016/j.ecolind.2022.108810
https://doi.org/10.1016/j.landurbplan.2007.02.010
https://doi.org/10.3390/rs10101569

	Introduction 
	Materials and Methods 
	Study Area 
	Research Data 
	Methodology 
	Reference Comparison Method 
	Random Forest Classification Method 
	Radiative Transfer (Atmospheric Correction) Method 
	Statistical Analysis of the Sampling 
	Moving Window Analysis 
	Bivariate Local Indicator of Spatial Association (LISA) 


	Results 
	Extracting Built-Up Area and UGS as Well as Inversing Land Surface Temperature 
	Spatial Distribution of UGS Landscape Metrics 
	Spatial Distribution of LST 
	Spatial Distribution Relationship between UGS and LST 

	Discussion 
	Policy Influence on Spatial Distribution of LST 
	Influence of Spatial Resolution and Landscape Metrics on LST 
	Methodological Considerations and Future Directions 

	Conclusions 
	References

