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Abstract: Dental pulp and periapical diseases make patients suffer from acute pain and economic
loss. Although root canal therapies, as demonstrated through evidence-based medicine, can relieve
symptoms and are commonly employed by dentists, it is still difficult to fully restore a dental pulp’s
nutrition, sensory, and immune-regulation functions. In recent years, researchers have made signifi-
cant progress in tissue engineering to regenerate dental pulp in a desired microenvironment. With
breakthroughs in regenerative medicine and material science, bioactive scaffolds play a pivotal role
in creating a suitable microenvironment for cell survival, proliferation, and differentiation, following
dental restoration and regeneration. This article focuses on current challenges and novel perspectives
about bioactive scaffolds in creating a microenvironment to promote dental pulp regeneration. We
hope our readers will gain a deeper understanding and new inspiration of dental pulp regeneration
through our summary.

Keywords: dental pulp regeneration; bioactive scaffold; regeneration microenvironment

1. Introduction

As a unique structure in our body, the tooth contains a hard shell and soft inner tissues
to perform the chewing function. Once the hard shell is injured by caries or trauma, the
outer bacterium will not only exert detrimental influences on the internal environment
of the teeth but may also give rise to inflammation of the pulp or periapical tissue [1].
The onset of caries, pulpitis, and periapical periodontitis is more easily overlooked, so
the incidence rate has been comparatively high in recent years. [2,3]. This results in
painful experiences, tooth defects, and even tooth loss, which have long perplexed people
tremendously. The conventional treatment method is root canal therapy, but that still
leaves challenging problems such as persistent periapical infection, tooth discoloration,
and heightened tooth brittleness [4–6]. Dental pulp regeneration with the participation of
stem cells is an excellent way to resolve it. For some young permanent teeth, regenerative
pulp therapy can partially be achieved by indirect or direct pulp capping, apexification,
and revascularization [7]. However, the methods have limited effectiveness for mature
permanent teeth, and further studies are still in the laboratory or clinical trial stage [8].

The tooth development process provides a favorable reference for pulp tissue engineer-
ing. In the seventh week of an embryo, the tooth lamina is formed in the primitive mouth.
Then, mesenchymal stem cells from the ectodermal mesenchymal layer start to form dental
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papilla, which further develops into dentin and pulp through three continuing stages:
the bud, cap, and bell phase [9]. This process is regulated by complex signals, such as
TGF-β, Wnt, and FGF signaling pathways, during epithelial-mesenchymal interactions [10].
Furthermore, blood supply is vital for early tooth development. The papilla is infiltrated
by multitudinous capillaries during the bell stage of embryonic development [1,11]. In
a healthy and mature tooth, the vascular system predominantly contains supply arteri-
oles, capillary networks, and venular networks, which constantly adapt to the nutritional,
metabolic, and homeostatic needs of the tissues [1,12,13]. Regarding neurogenesis, pio-
neer nerve fibers ramify into the tooth germ and penetrate the inner dental papilla until
dentinogenesis begins to form pulp tissue [9,14].

Teeth can regenerate once affected by caries, trauma, or other severe external stimuli.
Odontoblasts around the dental pulp will secrete reparative dentin to cope with mild
injuries. Nonetheless, suppose the damage is extensive and results in the death of odonto-
blasts; the mesenchymal stem cells will first redifferentiate into odontoblast-like cells and
then secrete extracellular components to form restorative dentin subsequently [15]. This
process is also regulated by many growth factors, such as TGF-β, IGF, and FGF2 [16–18].
When the damage continues to evolve, it will affect the dental pulp cells and the local blood
supply and nerve function [19,20]. It is easy to obtain an oxygen-deficient environment
since oxygen can travel about 100–200 microns through diffusion [21]. Such hypoxia condi-
tions result in cells secreting pro-angiogenic factors that act on adjacent vascular endothelial
cells to propel neovascularization. Unfortunately, this self-regulation is comparatively lim-
ited [22,23]. If the pulp continues to suffer from the insufficient blood supply, pulpitis and
pulp necrosis may occur and even deteriorate to periapical periodontitis [24]. Meanwhile,
peripheral nerve damage and gene expression changes will also occur, resulting in changes
in pain thresholds and then give rise to various painful symptoms [25]. Consequently, it is
paramount to maintaining a suitable microenvironment for dental pulp restoration and
regeneration to enhance its regenerative capacity, whether the pulp is mildly irritated or
even completely necrosis.

The effects of tissue regeneration rest with mesenchymal stem cells and their mi-
croenvironment, just as plants’ growth depends on their healthy seeds and fertile soil
(Figure 1) [26–28]. Dental stem cells are a large class of commonly used seed cells with
the ability of cell proliferation and multi-differentiation, such as dental pulp stem cells
(DPSCs), stem cells from the apical papilla (SCAPs), and stem cells from human exfoliated
deciduous teeth (SHEDs), which have the potential to differentiating dental pulp [29–32].
The natural dental pulp microenvironment is crucial to maintaining the phenotype and
differentiation potential of stem cells [33]. Specifically, the cellular microenvironment is
the local and micro-scale environment of cell interaction, including soluble biochemicals,
insoluble extracellular matrix, and surrounding cells, which is vital for regulating cell
behavior and function [34–36]. It is well known that mesenchymal stem cells, scaffolds,
and growth factors are the three critical components of tissue regeneration [37]. In other
words, scaffolds and bioactive factors provide a favorable microenvironment and stimulate
the differentiation of stem cells to propel pulp regeneration [38]. This paper primarily
concentrates on forming bioactive materials with strategies from different angles to provide
a favorable microenvironment for dental pulp regeneration.
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Figure 1. A schematic picture showing the relationship between mesenchymal stem cells and their 
microenvironment: the special microenvironment is to mesenchymal stem cells what soil is to seeds. 
Seeds grow slowly into trees under the nourishment of the soil just as mesenchymal stem cells strive 
to develop in their microenvironment, aiming to reach the goal of tissue regeneration. 

2. Strategies 
From January 2010 to October 2022, we conducted a literature search on the PubMed, 

ScienceDirect, and Web of Science databases, involving keywords such as “pulp regener-
ation,” “bioactive scaffold,” “regeneration microenvironment,” and “angiogenesis” to 
summarize strategies for creating a pulp regeneration microenvironment; 718 research ar-
ticles were retrieved after removing duplicate records. Due to the wide range of retrieval 
and different methods for measuring the experimental research results, it is challenging 
to compare articles with each other to form a systematic literature review. Therefore, our 
review mainly includes 146 research articles on dental pulp regeneration microenviron-
mental scaffolds for a comprehensive narrative review, focusing on constructing bioactive 
scaffolds and their biological effects. 

2.1. Natural and Naturally Derived Biomaterials 
Many biological materials derived from natural tissues or cells have been reported, 

such as sodium alginate, gelatin, and collagen, which have been widely utilized in regen-
erative tissue engineering [39]. Here we will introduce some innovative, newly reported, 
tissue-specific bioactive materials that achieve satisfactory results through simple treat-
ment. 

2.1.1. Decellularized Extracellular Matrix 
Decellularized extracellular matrix (dECM) refers to biological materials formed by 

human or animal tissues or organs through decellularized methods [40]. Decellularized 
muscle matrix biomaterials were first reported in 1948; scientists have gradually deepened 
their research correlated with dECM in recent years [41–45]. Some dECM materials are 
FDA-approved, such as AlloDerm® for skin repair [46]. Decellularized extracellular ma-
trix refers to a kind of 3D culture framework that contains many extracellular macromol-
ecules, including collagen, elastin, fibronectin, and matricellular proteins, creating a per-
fect regeneration microenvironment [47]. Furthermore, it retains some physicochemical 
properties and signal molecules obtained from the original tissues and provides a favora-
ble carrier for recellularization [48]. Consequently, dECM has promising application pro-
spects in damaged organ repair and tissue regeneration. 

Decellularized pulp matrix from humans, swine, bovines, and rats have been exper-
imented with using hypotonic or surfactant methods, exhibiting satisfactory decellulari-
zation efficiency [49–53]. Decellularized pulp retains major extracellular matrix compo-
nents, such as type Ⅰ collagen, type Ⅲ collagen, laminin, and fibronectin [50]. Moreover, 
it contains some bioactive factors, including transforming growth factor β (TGF-β), dentin 
matrix protein 1 (DMP-1), and dentin sialoprotein (DSP) [51]. Furthermore, it retains the 
vascular structure and vascular endothelial growth factor (VEGF) and increases the rela-

Figure 1. A schematic picture showing the relationship between mesenchymal stem cells and their
microenvironment: the special microenvironment is to mesenchymal stem cells what soil is to seeds.
Seeds grow slowly into trees under the nourishment of the soil just as mesenchymal stem cells strive
to develop in their microenvironment, aiming to reach the goal of tissue regeneration.

2. Strategies

From January 2010 to October 2022, we conducted a literature search on the PubMed,
ScienceDirect, and Web of Science databases, involving keywords such as “pulp regen-
eration”, “bioactive scaffold”, “regeneration microenvironment”, and “angiogenesis” to
summarize strategies for creating a pulp regeneration microenvironment; 718 research
articles were retrieved after removing duplicate records. Due to the wide range of retrieval
and different methods for measuring the experimental research results, it is challenging
to compare articles with each other to form a systematic literature review. Therefore, our
review mainly includes 146 research articles on dental pulp regeneration microenviron-
mental scaffolds for a comprehensive narrative review, focusing on constructing bioactive
scaffolds and their biological effects.

2.1. Natural and Naturally Derived Biomaterials

Many biological materials derived from natural tissues or cells have been reported,
such as sodium alginate, gelatin, and collagen, which have been widely utilized in regen-
erative tissue engineering [39]. Here we will introduce some innovative, newly reported,
tissue-specific bioactive materials that achieve satisfactory results through simple treatment.

2.1.1. Decellularized Extracellular Matrix

Decellularized extracellular matrix (dECM) refers to biological materials formed by
human or animal tissues or organs through decellularized methods [40]. Decellularized
muscle matrix biomaterials were first reported in 1948; scientists have gradually deepened
their research correlated with dECM in recent years [41–45]. Some dECM materials are
FDA-approved, such as AlloDerm® for skin repair [46]. Decellularized extracellular matrix
refers to a kind of 3D culture framework that contains many extracellular macromolecules,
including collagen, elastin, fibronectin, and matricellular proteins, creating a perfect regen-
eration microenvironment [47]. Furthermore, it retains some physicochemical properties
and signal molecules obtained from the original tissues and provides a favorable carrier
for recellularization [48]. Consequently, dECM has promising application prospects in
damaged organ repair and tissue regeneration.

Decellularized pulp matrix from humans, swine, bovines, and rats have been experi-
mented with using hypotonic or surfactant methods, exhibiting satisfactory decellulariza-
tion efficiency [49–53]. Decellularized pulp retains major extracellular matrix components,
such as type I collagen, type III collagen, laminin, and fibronectin [50]. Moreover, it contains
some bioactive factors, including transforming growth factor β (TGF-β), dentin matrix
protein 1 (DMP-1), and dentin sialoprotein (DSP) [51]. Furthermore, it retains the vascular
structure and vascular endothelial growth factor (VEGF) and increases the relative mRNA
expression level of angiogenesis markers during the treatment of recellularization [54].
Conditioned medium made from decellularized scaffolds can ameliorate the proliferation
and migration ability of DPSCs, and the animal model of dental pulp regeneration demon-
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strates ideal results [51,54–57]. Decellularized pulp matrix also enhanced the odontogenic
differentiation ability of DPSCs with high BMP4 expression with the help of recombinant
adenovirus [58]. Considering the loss of extracellular matrix components during the acellu-
lar process, some researchers modified the decellularized dental pulp matrix materials with
laminin, a kind of extracellular matrix protein, which exhibits more advantages in odonto-
genic differentiation [59]. Moreover, other soft tissue components of teeth, such as the tooth
bud, indicate promising pulp regeneration potential after decellularized treatment [60–62].

Furthermore, the hydrogel derived from bone decellularized matrix showed a similar
ability to promote odontogenic differentiation [63]. According to the related report, bovine
bone tissue was treated to form 5 wt% dECM solution after decellularized treatment; then,
the solution was mixed with DPSCs as part of the bio-ink to conduct 3D printing. As
confirmed by experiments in vitro and in vivo, this 3D printing material has the charac-
teristics of promoting bone/tooth differentiation [64]. Human amniotic tissue, rich in
bioactive factors, forms a gel scaffold after decellularization that can sufficiently support
the directional differentiation of DPSCs [65].

Apart from the description mentioned above, DPSCs-derived extracellular matrix has
been reported. As revealed by relevant reports, such a matrix can enhance the mineraliza-
tion level of dental pulp stem cells or gingival fibroblasts [66–68]. Regarding application,
DPSCs can be seeded on another material, cultured for some time, and then treated with a
decellularized method to form the decellularized composite material. For instance, DPSCs
were cultured in a collagen/chitosan hydrogel for 2 weeks or grown on 3D-printed porous
polylactic acid scaffolds for 7 days and then were decellularized [69,70]. These dECM-
composites had favorable effects, indicating their potential application in pulp regeneration.
DPSCs-derived extracellular matrix combined with colloidal microgels also enhanced the
expression level of odontogenic genes in DPSCs [71]. Similarly, the extracellular matrix
derived from other stem cells, such as stem cells from exfoliated deciduous teeth (SHEDs)
or periodontal ligament stem cells (PDLSCs), also improved the mineralization ability of
DPSCs [72].

The decellularized pulp matrix is obtained from the dental pulp tissue after decellular-
ization, which retains most of the microstructures of the pulp tissue, carries some bioactive
factors related to dental pulp regeneration, and largely preserves the original microenvi-
ronment of dental pulp cells, showing good potential for promoting pulp regeneration
using bioactive scaffolds for the growth, proliferation, and differentiation of stem cells
in clinical pulp regenerative therapy, despite the lack of clinical trial evidence to confirm
it. Nonetheless, decellularized extracellular matrix materials have minor shortcomings,
such as their complex steps, disinfection, batch-to-batch variation, and toxicity of residual
decellularized liquids, which require further improvements to meet the needs of clinical
practice [48].

2.1.2. Treated Dentin Matrix

Treated dentin matrix (TDM) is made of dentin, the hard tissue that accounts for
the most significant proportion of teeth after treatment with ethylenediaminetetraacetic
acid (EDTA), which has a certain degree of demineralization, containing fully exposed
dentin tubules and loose fiber bundles [73]. This material is abundant in proteins involved
in dentin production, such as COL-1, DSP, TGF-β1, and DMP-1, suggesting that TDM
can create a favorable microenvironment for dentin regeneration, confirmed by in vitro
and in vivo experiments [74–77]. Further mechanistic studies revealed that the biological
activity of TDM was achieved by regulating Wnt/β-catenin pathway [78]. SHEDs sheet-
derived pellets with TDM are a promising strategy for pulp regeneration [79].

Treated dentin matrix paste (TDMP) could be used for pulp capping. TDMP could
contribute to the odontogenic differentiation and create a more continuous dentin bridge in
the dental pulp exposure model in miniature pigs [80]. Another improved TDM material,
treated dentin matrix hydrogel, exhibited excellent results in direct capping [81,82]. TDM
and stem cells have also been studied in periodontal tissue regeneration [83]. Apart from
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the previously introduced TDM (dentin treated with EDTA), lyophilized dentin had a
similar effect [84].

Furthermore, a randomized controlled clinical trial involving 25 patients aged 7–12 years
old with tooth avulsion caused by dental trauma also confirmed that decellularized dentin
matrix combined with autologous DPSCs aggregates at the root of the tooth could effectively
simulate the microenvironment of tooth development and support the continued root
growth of young permanent teeth [85]. Similarly, TDM can also be used as a component of
pulp-capping agent, which will play an influential role in direct or indirect pulp-capping
clinical treatment.

In conclusion, the composition of TDM is similar to dentin, but its structure is looser
than that of dentin. It contains and properly releases bioactive factors to create a microenvi-
ronment for pulp regeneration.

2.1.3. Exosomes

Exosomes are extracellular vesicles generated by cells and contain nucleic acids, pro-
teins, lipids, and metabolites, which play a vital role in intercellular communication and
microenvironment creation [86,87]. Some studies have revealed that exosomes derived
from dental stem cells favor promoting dental pulp regeneration [88,89]. Huang et al. [90]
first isolated and identified DSPC-derived exosomes, and then confirmed that other DP-
SCs could endocytose these exosomes to activate the P38 MAPK pathway and have an
odontogenic differentiation effect on DPSCs, which was also validated in animal models.
Aside from that, exosomes derived from Hertwig’s epithelial root sheath cells, SCAPs,
SHEDs, and Schwann cells could give an impetus to regenerating pulp dentin complex
tissue [91–95].

As was reported in the relevant study, DPSCs-derived exosomes can enhance the
angiogenic capacity of HUVECs [96]. Apoptotic vesicles from SHEDs stimulated vascu-
lar endothelial cells through the transcription factor EB-autophagy pathway and exerted
similar effects [97]. LPS-pretreated DPSCs-derived exosomes make efforts to propel odon-
togenic differentiation of Schwann cells. Because exosomes are in small quantities and
difficult to store, type I collagen membranes and fibrin gels could be loaded with exosomes
to better simulate the microenvironment for in vivo experiments, which exhibits promising
clinical applications [90,98].

Due to the complex production and the difficulty in storing and transporting exo-
somes, there are currently no reports on clinical trials in dental pulp regeneration [99].
Since exosomes participate in and contribute to a better regenerative microenvironment,
they are waiting for follow-up research progress to meet the needs of clinical treatment
and play an active role in cell homing and promoting stem cell proliferation in pulp
regenerative treatment.

2.1.4. Other Perspectives

Aside from the dECM, TDM, and exosomes mentioned above, other strategies utilize
bioactive substances derived from natural ingredients to help create a microenvironment
for regeneration.

Microvascular fragments isolated from adipose tissue ameliorated the vascularization
and the dental pulp regeneration ability of DPSCs aggregates [100]. Regarding the con-
struction of cell aggregates, Itoh et al. [101] scraped DPSCs from a culture plate. They filled
the cell sheet in a gel model to obtain a rod-shaped 3D cell structure after culturing for
2 days, which then exhibited a satisfactory effect of dental pulp differentiation in related
studies. In terms of clinical trials, 40 patients with pulp necrosis of young permanent teeth
caused by tooth trauma were recruited. The researchers cultured DPSCs from autologous
deciduous teeth to form aggregates and collected them into treated root canals. A two-year
follow-up showed continuous development of tooth root and more blood flow signal
through the ultrasound doppler test, which will be more widely used in clinical practice in
the future [102]. There are problems in the preparation and application efficiency in form-
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ing cell aggregates, suggesting that a more extensive and convenient clinical application
also needs better assistance from scaffold materials to achieve the curative effect of dental
pulp regeneration.

As for platelets-derived bioactive substances, platelet lysates loaded with hyaluronic
acid hydrogels or gelatin methacrylate (GelMA) microspheres also create a microenviron-
ment to propel vascularized pulp regeneration [103,104]. Platelet-rich fibrin showed a
more substantial regenerative potential of DPSCs, compared with platelet-rich plasma,
mainly in LPS-induced inflammatory states, which has been confirmed by clinical tri-
als of necrotic permanent teeth [105–108]. Studies have shown that placing autologous
platelet-rich plasma or platelet-rich fibrin into the treated root canal could promote the
continued development of the root apex of young permanent teeth, and it also promotes
the restoration of pulp sensitivity to a certain extent when applied to mature permanent
teeth with pulp necrosis [107,109,110].

Microvascular fragments, cell sheets, and blood component derivatives are abundant
in bioactive factors, which can become part of the extracellular microenvironment to help
regenerate dental pulp tissue.

2.2. Artificial Synthetic Material

Apart from the natural or naturally derived materials summarized above, synthetic
materials can create a suitable microenvironment for tissue regeneration by assisting in 3D
culture, simulating extracellular matrix, and loading bioactive factors.

2.2.1. Agents for Creating a 3D Environment

As illustrated by relevant studies, the 3D culture of DPSCs can ameliorate the multidi-
rectional differentiation potential and improve the mineralization level, helping to maintain
the in vivo microenvironment of stem cells [111,112]. On that account, we primarily intro-
duce three novel strategies to realize 3D culture.

Self-Assembled Peptide Hydrogel

Self-assembled peptide hydrogel is a bioactive peptide motif that forms an ordered
structure on a micro-scale through molecular self-assembly. It can simulate the system
of natural extracellular matrix to a certain extent, encapsulate bioactive factors with sat-
isfactory biocompatibility and degradability, and show a promising application in tissue
engineering [113,114]. Meanwhile, it is easy to achieve a 3D culture of cells because it is
performed by self-assembling peptide motifs through non-covalent interactions [115].

Commercialized self-assembled peptide hydrogel, Puramatrix (RADA16-I), has been
reported in dental pulp regeneration. For instance, DPSCs cultured in Puramatrix for
3 weeks could obtain odontogenic markers with high protein levels [116]. DPSCs alone or
co-cultured with HUVECs in the same hydrogel exhibited vascularized pulp-like tissue
in the subcutaneous model of nude mice for 4 weeks [117]. HIF-1α-stabilized SHEDs
cultured in Puramatrix displayed ideal pulp regeneration effects in vivo and in vitro ex-
periments [118]. Some researchers combined RAD with dentonin, a functional peptide
motif of an extracellular phosphoglycoprotein, to form a functionalized self-assembling
peptide hydrogel. As revealed by their research findings, it could give an impetus to
the odontogenic differentiation of DPSCs [119]. Similarly, it has been reported that the
self-assembled peptide hydrogels with RAD and VEGF mimetic epitopes have compara-
ble results [120]. Using self-assembled hydrogels derived from the angiogenic peptide,
SLan, to create an angiogenic niche has also been demonstrated to form dental pulp-like
tissue in the canine orthotopic model [121]. Apart from that, the dentinogenic peptide
is applied to self-assemble into hydrogels to support the growth of DPSCs, but it suffers
from the problem of rapid degradation [122]. Similarly, self-assembled peptide hydrogels
can cooperate with bioactive factors to create a pulp regeneration microenvironment. For
instance, Mu et al. [123] constructed Puramatrix (RADA16-I) encapsulated with stem cell
factor (SCF) to generate more blood vessel-like structures.
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Microspheres

Microspheres are spherical polymeric networks with diameters ranging from about 100
to 400 microns, with sufficient oxygen diffusion capacity and a high surface area [124]. They
can provide a 3D biomimetic environment and are commonly utilized in tissue regeneration
and cell delivery [125]. As has been reported, different types of microspheres, such as
nanofibrous spongy microspheres and gelatin methacrylate microspheres, were used to
propel odontogenic differentiation of DPSCs and this achieved favorable results [126–128]. In
line with related reports, unique microcapsules composed of co-encapsulation of DPSCs and
HUVECs have been used for microstructural delivery in dental pulp regeneration [129,130].

Microspheres loaded with bioactive factors have also been reported, such as those con-
taining the platelet lysates mentioned above [103]. The hierarchical nanofiber microsphere
system loaded with VEGF or the gelatin methacrylate frozen gel microspheres loaded with
simvastatin will be introduced in the following section of scaffold materials with bioactive
factors [129,131,132].

3D Printing

Apart from self-assembled hydrogel or microsphere systems, 3D printing technology
is suitable for creating a comfortable 3D environment for cell culture. Park et al. [133]
incorporated BMP-2 simulated peptides into gelatin methacrylate bio-ink and found it
could give an impetus to the odontogenic differentiation of DPSCs after 3D printing.
Decellularized dentin matrix or calcium silicate could be applied as part of bio-ink for 3D
printing, exhibiting satisfactory effects of promoting odontogenic regeneration [134,135].

Altogether, the 3D culture of DPSCs is still in the developing stage. Furthermore,
building a dental pulp organoid model with a complex microenvironment is one of the
goals of tissue engineering in the future, as was reported on the organoid models of the
intestine, lung, and other structures [136,137].

2.2.2. Biomimetic Scaffolds

Because natural materials are limited by sources, costs, and mechanical properties, it is
considered an excellent strategy to use bioactive materials that simulate extracellular matrix
to provide an appropriate microenvironment. In line with research from Wang et al. [138],
a poly-L-lactic acid nanofiber scaffold mimicking the structure of type I collagen can propel
the odontogenic differentiation of DPSCs, showing a better effect if loaded with BMP-7.
Similarly, Qu et al. [139] adopted nanostructured gelatin/bioactive glass to mimic collagen,
which promoted the differentiation and biomineralization of DPSCs.

Moreover, a 3D tubular nanofiber matrix was created by adopting micropatterning
technology to regulate the arrangement, migration, and differentiation of DPSCs, which
helped obtain the dental pulp and dentin complex, which was analogous to the natural
structure in the further in vivo experiments [140]. Based on the problem that DPSCs could
not stably adhere to the root canal wall, some researchers, inspired by mussel adhesion,
designed a dopamine-modified hyaluronic acid coating on the dentin surface to form an
effective attachment bridge between DPSCs and dentin, which had a favorable performance
on odontogenic differentiation ability [141]. Dopamine coating on the mineral trioxide
aggregate (MTA) surface had a similar effect [142]. Consequently, biomimetic materials
simulating extracellular matrix components or natural binding structures are widely used
in tissue regeneration.

2.2.3. Scaffolds Loaded with Bioactive Factors

As described in the first part, dental pulp restoration and regeneration is regulated
by a series of bioactive factors. Therefore, bioactive factors could be introduced to provide
a regeneration microenvironment to improve stem cells’ proliferation and directional
differentiation ability during tissue engineering. Since bioactive factors are mainly ions,
peptides, and proteins, the scaffold loaded with bioactive factors is expected to have stable
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concentrations. This better and more lasting effect makes this strategy more applicable in
tissue engineering.

Bioactive Factors

The following list (Table 1) contains the common bioactive factors that regulate dental
pulp regeneration.

Table 1. Various bioactive factors involved in dental pulp regeneration.

Main Function Bioactive Factors Related Articles Notes

Odontoblastic/
Odontogenic

differentiation

TGF-β1 [143–145] Angiogenesis

BMP2, BMP7 [146–149] Extracellular Ca2+, Mg2+

can enhance their effects

FGF [18] Angiogenesis

IGF [17,150] Cell proliferation and
migration

EREG [151] /

PDGF-BB [152] Migration capability

Ca2+ [153,154]

Mg2+ [149] /

Sr2+ [155] /

miRNA [156] For example: miR-140-3p
[157], miR-675 [158], etc.

Angiogenesis

VEGF [159,160] /

HIF-1α [161] /

miRNA [93] For example: miR-26a
(SHED)

Neurogenesis

BDNF [162] /

bFGF + NGF [163] /

Nell-1 [164] /

Chemotactic function

SDF-1α [95,165,166] Homing factors in dental
pulp regenerationSCF [166,167]

G-CSF [168,169] Ameliorate regeneration
potential

Scaffolds Loaded with Bioactive Factors

Given the complicated clinical situation, the release of bioactive factors needs to
consider such issues as activity, concentration, and effect, so it is essential to use scaffolds
with specific biological effects to load bioactive factors to play the leading role. The
standard methods of scaffolding loaded with bioactive factors include surface presentation,
encapsulation, and layer-by-layer assembly [170,171]. Different loading strategies were
selected based on the characteristics of materials and biological activity of factors, which
showed satisfactory results.

1© Surface presentation
The surface presentation can be achieved by physical adsorption or chemical binding

to create the ideal microenvironment due to the unique morphology, functional groups,
and charge on the material’s surface.

Based on the microporous structure and adsorption properties, silk protein was used
for physical absorption of SDF-1α and slowly released the factor within 24 h after loading,
exhibiting a good pulp regeneration effect [165]. In line with the relevant report, researchers
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loaded collagen with BMP-7, injected it into the root canal, and then added DPSCs to
the root tip to simulate endogenous stem cells. They found that it could stimulate cell
migration and propel regeneration of vascularized pulp tissue in subcutaneously nude mice
models [172]. The 50 mm diameter polydioxanone fibers containing VEGF exhibited a good
angiogenic effect [173]. Another example of the synergistic effect of this material with some
bioactive factors is chitosan and its derivatives scaffolds; they were loaded with simvastatin,
displaying the ability to improve the odontogenic differentiation and mineralization of
DPSCs [174–176]. Regarding chemical binding, chitosan-loaded calcium ions through
coordination bond is a good example; they continued to release calcium ions for 21 days,
displaying potential applications in dental tissue engineering [177]. Like calcium ions,
strontium could become part of nano-bioactive glass through the ionic bond and can be
slowly released from the material, facilitating dentin formation in vivo studies [178].

The binding of cytokines to materials through chemical bonding has not been re-
ported in dental tissue engineering. Although the number of bioactive factors adsorbed
on the physical surface is limited, the experimental results are comparatively ideal, which
adequately exhibits its potential clinical application.

2© Encapsulation and layer-by-layer assembly
Encapsulation is an intelligent strategy that can protect the bioactive factors from

premature degradation [170]. Some scholars have made relevant attempts. TGF-β and
FGF2 were coated with degradable lactide and ethyl lactide polymers to form microspheres
to continuously release the two factors and facilitate the proliferation and migration ability
of DPSCs [144]. Porous chitosan microspheres containing TGF-β1 showed more restorative
dentin in the pulp-capping model than the control one [179]. Li et al. [131] prepared a
hierarchical nanofiber microsphere system encapsulated with VEGF, which simulated the
structure of natural collagen fibers at the nanoscale. As demonstrated by their research
findings, the VEGF in the system could be released slowly and uniformly within 4 weeks.
Moreover, vascularized regenerated pulp tissue was successfully formed, accounting for
over two-thirds of the entire root canal in the subcutaneous semi-in situ model of nude mice.

The materials mentioned above are primarily loaded with bioactive factors through
the strategies of surface presentation or encapsulation according to their surface properties,
thereby forming a favorable microenvironment for dental pulp regeneration. Meanwhile,
endogenous bioactive factors can be released through special treatment to play their bio-
logical roles. For instance, endogenous TGF-β could be activated and released through
low-intensity laser or injectable alkaline gel treatments, which is conducive to stimulating
the differentiation of pulp dentin of DPSCs [16,180]. Apart from the traditional methods
of loading bioactive factors, we expect that there will be new strategies for the design of
scaffolds loaded with bioactive factors to simulate the structure of the extracellular microen-
vironment as well as the temporal and spatial distribution of bioactive substances based on
the latest physical and chemical principles, to meet the needs of clinical practices better.

3. Novel Perspectives of Pulp Regeneration

Tissue regeneration rests on the interactions among scaffolds, bioactive factors, and
stem cells. The above studies primarily concentrate on natural and naturally derived
materials and artificial synthetic materials that simulate a microenvironment by creating
a 3D culture environment or loading bioactive factors. The following content introduces
different strategies for pulp regeneration from a novel perspective to better supplement the
potential of the regeneration microenvironment.

3.1. Changing Physical Conditions

The biological activities of tissue cells are regulated by physical signals, such as matrix
stiffness, magnetism, and light, which have been attempted as additional interventions for
tissue engineering [181].

As revealed by research conducted by Qu et al. [182], DPSCs formed mineralized tissue
on a 3D NF-gelatin scaffold with a high-stiff surface and pulp-like tissues on a low-stiff
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structure. They first designed a scaffold structure with a low-stiffness inner core and a
high-stiffness surface and simulated the actual structure of teeth. Then, the subcutaneous
experiments in nude mice revealed that the pulp dentin composite-like structure was
successfully generated.

The external magnetic field can modulate the behavior of stem cells. As indicated
in related studies, static magnetic fields can ameliorate the proliferation, migration, and
odontogenic differentiation ability of DPSCs through the activation of YAP/TAZ and p38
MAPK signaling pathways [183,184]. Some researchers have adopted magnetic fields to
control the transportation and relative location of cells [185]. For example, DPSCs and
HUVECs were labeled with magnetic nanoparticles and the two cells were assembled layer
by layer under magnetic control. The experimental results showed that the functional
vascular network could be formed within 3 days, providing a fundamental basis for pulp
regeneration [186]. The synergistic effect of graphene and pulsed electromagnetic fields on
DPSCs can implement their neurogenic differentiation [187]. Future attempts can also be
made to construct scaffolds containing endogenous magnetic fields to propel odontogenic
differentiation of DPSCs, as described in a report where the magnetic layer drove the
osteogenic differentiation of MC3T3 cells [188].

Likewise, photobiomodulation and optogenetics have been introduced to use DPSCs for
regeneration. As the primary method of photobiomodulation, the low-level laser can enhance
the odontogenic differentiation ability of DPSCs and SCAPs on scaffolds [189,190]. Arany
et al. [16] found that low-level laser could activate endogenous TGF-β1 through reactive
oxygen species. The in vitro and rat pulp-capping model experiments demonstrated
that activated TGF-βs could improve the odontogenic differentiation ability of DPSCs.
Regarding optogenetic regulation, Niyazi et al. [191] have transfected the light-sensitive
protein, channelrhodopsins, which could activate the CaMKIIa (a kind of protein involved
in nerve cell function) in DPSCs. After optical stimulation for 5 days and 90 min per day, it
can propel the neural differentiation of DPSCs. Furthermore, the photothermal effect of
gold nanoparticles is also adopted to elevate the mitochondrial metabolism and energy
supply levels, enhancing the odontogenic differentiation of DPSCs [192].

Furthermore, the 3D microgravity culture system’s construction positively improves
the proliferation and odontogenic differentiation of DPSCs [193,194]. The above physical
conditions, such as matrix stiffness, magnetic field, and light stimulation, can ameliorate the
survival-promoting potential of the microenvironment. The specific biological regulation
needs further exploration.

3.2. Antibacterial Material

Root canal environments expected to realize pulp regeneration in clinical practice may
still have residual bacterial toxin components, which raises an antibacterial requirement
for pro-regenerative scaffolds, including hydrogels, nanomaterials, microspheres, etc. For
instance, Afami et al. [112] developed functionalized hydrogels with cell adhesion motifs
for the 3D culture of DPSCs, which had antibacterial activity against common bacteria in
the root canal. As was precisely described in relevant studies [195,196], a low concentration
of graphene oxide-copper composites can give an impetus to odontogenic differentiation
of DPSCs while inhibiting the formation of biofilm from Streptococcus mutans. Mean-
while, pulp-capping materials with antibacterial and dentin regeneration properties are
in considerable demand. Calcium–zinc–silicon-based micro-nano spheres have advanta-
geous antibacterial effects. In particular, they can lessen the release of pro-inflammatory
factors from M1 macrophages and give an impetus to DPSCs’ odontogenic differentia-
tion [197]. The antibacterial property is easy to ignore in tissue regeneration materials; how
to skillfully achieve the balance between antibacterial and stem cell regeneration remains
further discussed.
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3.3. Other Novel Viewpoints

Cerium oxide has a favorable function of scavenging active oxygen. In consideration
of these properties, researchers made cerium oxide nanoparticles. They found that they
could be internalized into DPSCs to play an antioxidant role and ameliorate cell viability,
showing their potential applications in dental pulp regeneration [198].

Oxygen is the fundamental prerequisite for cell proliferation and differentiation during
tissue regeneration. Oxygen diffuses into every corner of the tissue through dissimilar types
of blood vessels in human tissue, supporting cell survival and physiological functions. Re-
viewing the existing literature, the current strategies to propel angiogenesis predominantly
use scaffold materials with or without bioactive factors, as mentioned. Similarly, the co-
culture of vascular endothelial cells (ECs) and dental pulp stem cells (DPSCs) can heighten
their ability for odontogenic differentiation and angiogenesis [199]. In accordance with the
relevant report, microtissue spheroids composed of HUVECs and DPSCs could successfully
form vascular pulp-like tissue in vivo after transplantation in animal models [200]. In
addition, making oxygen-containing hydrogels is also a preferable choice. Zou et al. [201]
produced a gelatin methacrylate (GelMA) hydrogel containing calcium peroxide to release
oxygen in situ to ensure the average growth of SCAP under a hypoxic environment.

Unlike the above small-scale clinical trials of natural or natural-derived materials such
as PRF and TDM, artificial synthetic materials must undergo more stringent demonstrations
and plans. Currently, there is no relevant clinical trial report, and we are waiting for
further research.

4. Summary

In conclusion, we first reviewed the primary process and participating elements
involved in dental pulp development and restoration, indicating that the microenvironment
is vital for tissue regeneration. The microenvironment is composed of surrounding cells,
insoluble extracellular matrix, and soluble bioactive factors, each of which can affect the
state of stem cells to some extent and can exert a specific influence on the construction of a
suitable regenerative microenvironment.

From the viewpoint of creating a microenvironment that propels tissue regeneration,
the above studies summarized three topics containing natural and naturally derived materi-
als, synthetic materials, and novel perspectives applied to materials (Figure 2). Natural and
naturally derived materials consist of decellularized extracellular matrix, treated dentin
matrix, exosomes, and platelet derivatives, which can simulate the microenvironment
of tissue for the most part. This has a preferable effect on odontogenic differentiation.
Nevertheless, some problems need to be solved. For example, it is not easy to mass produce
and achieves homogenization between different batches. Artificial materials can overcome
some of these problems quickly. Synthetic materials mainly consist of 3D culture scaffolds,
biomimetic scaffolds, and bioactive factor-loading scaffolds, which primarily simulate the
microenvironment by creating 3D culture conditions, imitating the morphology of the
extracellular matrix or loading bioactive factors to help achieve pulp regeneration. As for
novel perspectives, it contains materials or conditions that change the physical environ-
ment, have antibacterial effects, and elevate the oxygen content of tissue, which exhibits
promising prospects in achieving pulp regeneration.

We put forth some strategies to assist in creating a microenvironment, hoping to
inspire subsequent research on pulp regeneration. We look forward to more inspiring,
practical, and clinically applicable strategies for pulp regeneration in the future.
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