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Abstract: In China, ion-adsorbing rare earth minerals are mainly located in the southern hilly
areas and are important strategic resources. Extensive long-term mining has severely damaged
the land cover in mining areas, caused soil pollution and terrain fragmentation, disrupted the
balance between mining and agriculture, severely restricted agricultural development, and affected
ecological development. Precise and detailed classification of land use within mining areas is crucial
for monitoring the sustainable development of agricultural ecology in these areas. In this study,
we leverage the high spatial and high spectral resolution characteristics of the Zhuhai-1 (OHS)
hyperspectral image datasets. We create four types of datasets based on spectral, vegetation, red
edge, and texture characteristics. These datasets are optimized for multifaceted features, considering
the complex land use scenario in rare earth mining areas. Additionally, we design seven optimal
combination schemes for features. This is performed to examine the impact of different schemes on
land use classification in rare earth mining areas and the accuracy of identifying agricultural land
classes from broken blocks. The results show that (1) the inclusion of texture features has the most
obvious effect on the overall classification accuracy; (2) the red edge feature has the worst effect on
improving the overall accuracy of the surface classification; however, it has a prominent effect on
the identification of agricultural lands such as farmland, orchards, and reclaimed vegetation; and
(3), following the combination of various optimization features, the land use classification yielded
the highest overall accuracy, at 88.16%. Furthermore, the comprehensive identification of various
agricultural land classes, including farmland, orchards, and greenhouse vegetables, yielded the most
desirable outcomes. The research results not only highlight the advantages of hyperspectral images
for complex terrain classification and recognition but also address the previous limitations in the
application of hyperspectral datasets over wide mining areas. Additionally, the results underscore
the reliability of feature selection methods in reducing information redundancy and improving
classification accuracy. The proposed feature selection combination, based on OHS hyperspectral
datasets, offers technical support and guidance for the detailed classification of complex land use in
mining areas and the accurate monitoring of agroecological environments.

Keywords: rare earth mining area; agricultural development monitoring; land use classification;
hyperspectral; feature optimization

1. Introduction

The ecological environment in mining areas is closely related to the agricultural
development in the area. The sustainable development of agriculture in mining areas can
result in sustainable ecological development in the area. Southern China hosts significant
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ion-adsorbing rare earth mineral resources in its hilly and mountainous regions. However,
early pool leaching, heap leaching, and in situ leaching processes can lead to soil erosion,
acidification, desertification, and other environmental problems [1,2]. Moreover, chaotic
mining processes lead to important changes in the physical and chemical properties of
soil in mining areas. Consequently, both vegetation and crops not only suffer significant
damage but also obstacles in their natural growth [3].

Agricultural development, whether in farmland, orchards, or other entities like re-
claimed vegetation, is affected by varying degrees of land fragmentation and poor growth
under the current status quo. In addition, there are many other land classes in mines, such
as tailings land, bare land, and sedimentation tanks, among others, which contribute to
the complex land cover classes. Therefore, it is crucial to have a precise understanding
of regional land use information. This is pivotal for correctly distinguishing between
agricultural and industrial land classes in mining areas, monitoring and comprehending
the agroecological environment conditions within these mining zones, and assessing the
overall ecological environment conditions [4,5].

There have only been a few studies on the detailed land use classification of complex
surfaces in mining areas and most of them focused on using existing land use datasets or
multispectral imagery to classify mining areas into simple land classes. For instance, Zhang
Zemin et al. [6] used 100 m spatial resolution land use datasets to study the change in land
use classes in a typical mining area and Jiaxing Xu et al. [7] combined 30 m spatial resolution
OLI satellite images with 30 m spatial resolution to classify a mining area into simple land
classes such as cropland, forest land, industrial and mining land, and water and proposed
a random forest classification method based on a multi-feature combination classification
scheme for remotely sensed images. However, these studies failed to achieve a detailed
classification of complex land classes within mining areas. Hyperspectral remote sensing
datasets, with their high spectral resolution, extensive information content, and multiple
narrow spectral bands, are highly sensitive to minute spectral details. This sensitivity
enables the detailed classification of land use, leveraging its potential to capture intricate
spectral features and differences in land classes [5,8]. Advances in hyperspectral technology
have endowed satellite hyperspectral images, such as those from Zhuhai-1 (OHS), with a
high spatial and spectral resolution, as well as enabling them to provide wide coverage
and large quantities. This capability enables the detailed classification of land use data in
rare earth mining.

However, there are still some problems in recognizing and detecting different kinds
of features using hyperspectral datasets. During the differentiation of complex landforms
or similar species, different landforms or species may present the same spectral features
or a mixed spectral phenomenon in a certain spectral segment [9], which can impact the
classification accuracy. To overcome this situation, many studies have adopted different
methods to extract and classify land classes or species for different study areas. Fei Xing
et al. [10] used a multi-end-element spectral mixing analysis method based on OHS hy-
perspectral imagery to extract and analyze alpine grass cover. Peng Qin et al. [11] used a
U-Net convolutional neural network to extract and use intersection as a basis for classifying
water in OHS hyperspectral imagery extraction and used intersection as the evaluation
index for model training. Guoli Zhou et al. [12] used spectral, topographic, texture, vegeta-
tion index, and other feature variables to construct an XGBoost model and combined this
with OHS hyperspectral datasets for bamboo species identification, achieving better user
accuracy and producer accuracy. Binge Cui et al. [13] proposed a small scene embedding
network (TSE-Net) based on scene representation and an attention mechanism for coastal
wetland small scene classification based on OHS hyperspectral images. Canran Tu et al. [11]
proposed a collaborative classification method fusing OHS hyperspectral imagery and
Gaofen-3 fully polarized synthetic aperture radar (SAR) imagery for wetland mapping and
achieved robust classification results. Previous studies have shown that whether it is the
extraction of individual landforms or the classification of multiple landforms/species, bet-
ter results can be achieved by using OHS hyperspectral datasets, which fully demonstrates
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the advantages of OHS hyperspectral datasets in landform extraction and classification.
Furthermore, researchers have used different methods for different scenarios, revealing the
differences between each research method in different scenarios.

However, in the current study, the use of hyperspectral datasets for landform extraction
and classification focuses more on the classification of small scenes and the identification
of individual landforms. The study area is more concentrated in coastal wetlands, alpine
grasslands, and other common areas. Rare earth mining areas are located in the hilly
and mountainous areas of southern China, receiving less attention and, because of the
complexity and fragmentation of features caused by long-term mining, the identification of
agricultural-related features such as farmland and reclaimed vegetation is more difficult,
with fewer studies addressing these challenges. Using OHS hyperspectral datasets to
classify the land use in these mining areas serves a dual purpose. It not only addresses
the underutilization of hyperspectral datasets on a large scale in mining areas but also
enables accurate identification and monitoring of agricultural land classes linked to the
ecological environment. This, in turn, provides valuable insights for promoting sustainable
agriculture and ecological stability in mining areas.

In addition, as mentioned above, hyperspectral datasets are characterized by high
spatial and spectral resolution, rich spectral information, and high sensitivity to subtle
features leading to highly complex data; ordinary algorithms find it difficult to effectively
deal with its high-dimensional characteristics; nevertheless, the random forest algorithm
(RF) stands out due to its exceptional performance in handling this complex data, as
evidenced by its parallel training, resistance to overfitting, and adaptability to a large
number of input features. In current hyperspectral classification research, RF is widely used.
You Mo et al. [14] used an RF classifier combined with multiple feature indicators for land
use classification in the Pearl River Delta based on OHS hyperspectral datasets, achieving
robust results. Zhihua Wang et al. [15] proposed a method for the detailed classification
of crops using a combination of feature transformation and RF based on unmanned aerial
vehicle (UAV) hyperspectral imagery. Somnath Paramanik et al. [16] applied RF modeling
to classify the distribution of three species and two species combinations of mangrove
forests with the desired results. Haiming Qin et al. [17] used an RF classifier to classify
18 species of subtropical broadleaf forests based on different features extracted from UAV
hyperspectral images, radar images, and ultra-high resolution RGB images. It is evident that
the random forest algorithm (RF) has certain advantages and prospects for the classification
and identification of remote sensing images, including hyperspectral images.

In summary, addressing the current gaps in the large-scale application of hyperspectral
datasets in mining areas is crucial. Identifying agricultural land classes, including farmland,
orchards, and reclaimed vegetation, in these regions presents challenges due to fragmented
land surfaces and soil contamination resulting from mining. Given the close connection
between agriculture and the ecological environment, it is imperative to conduct an extensive
and detailed classification of land use in mining areas to accurately identify agricultural
land classes and understand the status of agricultural development.

This study focuses on analyzing the Lingbei rare earth mining area using OHS hy-
perspectral datasets. The analysis involves creating spectral, vegetation, red edge, and
texture feature datasets. These datasets are used to comprehensively interpret the indices
contained in the above different categories of feature variables from the separability of
land classes and feature relevance and rank the importance of features for vegetation
features, red edge features, and texture features. Combinations of these feature variables
are selected as the basis for identifying agricultural land classes and understanding the
agricultural development in the area. Selected feature variable combinations are utilized as
input parameters to assess the impact of different combinations on land use classification
and agricultural land identification in the mining area using the RF algorithm. The goal
is to identify the optimal feature selection combinations suitable for effective land use
classification and agricultural land identification in mining areas.
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2. Data and Methodology
2.1. Overview of the Study Area

The Lingbei Rare Earth Mining Area is located at latitude 24◦51′24′′–25◦02′56′′ N and
longitude 114◦58′04′′–115◦10′56′′ E; it is about 2 km north of Dingnan County, Jiangxi
Province, China, has an area of about 213 km2 (Figure 1), and has been mined for over
30 years. It has been affected by early unregulated mining processes and thus has under-
gone severe internal surface fragmentation, along with soil acidification and soil sanding
due to prolonged mining. These phenomena occur intermittently, impeding the growth of
vegetation and crops. The introduction of the Jiangxi Province Mineral Resources Master
Plan (2008–2015) [18] has brought about some improvement in the ecological environment
of the mining area. This improvement is evident in the alleviation of soil erosion and the
restoration of the ecological environment, achieved through activities like cultivating vari-
ous agricultural land classes such as orchards and reclaimed vegetation. Nevertheless, the
presence of tailing land, bare land, sedimentation ponds, and other land classes arising from
mining activities has complicated the surface of the mining area. This complexity poses
challenges for effectively monitoring the development of agriculture and the ecological
environment within the mining area.
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2.2. Data Sources and Pre-Processing

The ‘Zhuhai-1 hyperspectral satellite’ (OHS) is a micro-nano satellite for remote
sensing. It is financed, constructed, and operated by China’s Zhuhai Orbit Aerospace
Science and Technology Company Limited. Currently, eight hyperspectral satellites orbit
Earth. The OHS hyperspectral satellite carries a payload of Complementary metal-oxide-
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semiconductor (CMOS) detectors and is capable of acquiring data with a spatial resolution
of 10 m and a spectral resolution of 2.5 nm [19], providing data covering 32 bands in the
visible and near-infrared with a wavelength range of 400–1000 nm [19]. This information
captures the visible- to near-infrared wavelength band, crucial for accurately identifying
vegetation and other features.

This study used the OHS hyperspectral datasets consisting of clear and cloudless L1B
level data acquired on 7 December 2021 from the OHS-2A satellite. These data include the
RPC file, spatial extent file, and metadata file. Processing steps such as radiometric calibra-
tion, atmospheric correction, and orthometric correction need to be applied individually to
the data. The study area is the Rare Earth Mining Area in Lingbei, China, with a spatial
extent of 1916 × 1788 pixels.

2.3. Classification System and Sample Point Selection

The Bigmap GIS office sky map image (Bigmap v25.5.0.1) provides access to a variety
of map information, including raster maps, satellite images, and aerial images. With
a resolution of up to 0.5 m, it serves as valuable support for identifying detailed land
classes [20]. Combining Bigmap and OHS hyperspectral images, the surface of the study
area was divided into artificial surfaces and natural surfaces and then the artificial surfaces
were divided into the human–work object class and the artificial building class to generate
a classification system comprising 12 land classes (Table 1). The image was acquired
in winter when farmers use greenhouses covered with plastic films to cultivate certain
crops, extending the period of vegetable production. Therefore, the classification system
encompasses both greenhouse vegetables and farmland. Given the noticeable differences
in the growth of reclaimed vegetation in different areas, it is observed that some reclaimed
vegetation is systematically arranged, predominantly rectangular in shape, with consistent
and robust growth. In contrast, other areas of reclaimed vegetation lack regularity in
distribution, showing uneven growth within the same reclaimed area. Additionally, these
areas often exhibit bare ground near the vegetation. Therefore, the reclaimed vegetation is
categorized into two groups: those with better growth and those with poorer growth.

The quality of the samples is directly related to the accuracy of the landform recog-
nition in mining areas [9]. In this study, Bigmap is used for visual interpretation based
on a classification system. Sample points are chosen, resulting in 2400 sample points
of features—specifically 200 for each land class—after anomalous image element points
are eliminated.

Table 1. Land use classification scheme and image example of Lingbei rare earth mining area in
Jiangxi Province.

Land Class Explicit Explanation
Examples of
Bigmap GIS

Office

Examples of OHS
Hyperspectral

Imagery

Artificial surface

Orchard
(Ora)

The orchard is in the shape of a ladder
with a distinct slope.
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Ponds usually have edges that are easier
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Table 1. Cont.

Land Class Explicit Explanation
Examples of
Bigmap GIS

Office

Examples of OHS
Hyperspectral

Imagery

Building
(Bui)

Buildings are usually rectangular and
neatly arranged.
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Farmland
(Far)

It is composed of a large number of
irregularly shaped plots closely

connected, with obvious features.
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Sedimentation tank
(Sed)

They are generally round and
rectangular in shape and are densely
distributed within a given area of the

mine.
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Greenhouse vegetables
(Gre)

It usually occurs in spring and winter
and is more neatly arranged by adding

tops to farm fields.
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Natural surface

Unused land
(Unu)

Mostly abandoned agricultural land,
soils that are not planted with

vegetation but show signs of cultivation,
etc.
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Original vevetation
(Ori)

Undeforested primary forests exist in
large continuous areas.
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with good average growth, and are

planted in an overall rectangular shape
in the reclaimed area.
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neatly arranged by adding tops to farm fields. 

  

Natural sur-
face 

Unused land 
(Unu) 

Mostly abandoned agricultural land, soils that are not 
planted with vegetation but show signs of cultivation, 

etc.   

Original veveta-
tion 
(Ori) 

Undeforested primary forests exist in large continu-
ous areas. 

  

Reclaimed vege-
tation_good 

(Rec_g) 

The saplings are regularly arranged, with good aver-
age growth, and are planted in an overall rectangular 

shape in the reclaimed area.   

Reclaimed vege-
tation_bad 

(Rec_b) 

There is no clear pattern of saplings in the reclaimed 
area and their growth is clearly uneven, with the sur-

rounding ground more similar to bare ground.   

Bare ground 
(Bar) 

Land without any cover or treatment on the surface, 
generally located in the vicinity of mining areas. 

  
Note: human-work object clas: Orc and Far; artificial building class: Roa, Bui, Poo, Gre, and Sed. 

2.4. Research Method 
Optimizing the constructed multiple feature categories and their associated feature 

indices involves analysis and screening of various features from different perspectives. 
This process is aimed at obtaining feature combinations that are more suitable for the fine 
classification of large-scale land use in mining areas, enhancing accuracy in classifying 
land use and precision in recognizing agricultural land classes. A technological flowchart 
is illustrated in Figure 2. 
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Reclaimed
vegetation_bad

(Rec_b)

There is no clear pattern of saplings in
the reclaimed area and their growth is
clearly uneven, with the surrounding
ground more similar to bare ground.
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2.4. Research Method

Optimizing the constructed multiple feature categories and their associated feature
indices involves analysis and screening of various features from different perspectives.
This process is aimed at obtaining feature combinations that are more suitable for the fine
classification of large-scale land use in mining areas, enhancing accuracy in classifying land
use and precision in recognizing agricultural land classes. A technological flowchart is
illustrated in Figure 2.
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2.4.1. Feature Declaration

Due to the fragmentation of the surface and the complexity of the land classes in
ion-adsorbing rare earth mining areas, the use of only traditional spectral features is not
effective for the detailed classification of features and land class identification. Wanwan Yu
et al. [21,22] showed that the addition of red-edge features can improve the separability
between different land classes, which is promising for detailed land class identification
and mapping. Therefore, 32 raw spectral reflectances from hyperspectral images were
selected as input parameters to construct 12 vegetation indices and 6 red-edge indices.
Pei Huan et al. [23] proposed that the participation of texture information from remote
sensing images for classification can yield a better classification effect than only using
spectral information and, therefore, in this study, eight kinds of texture indices based on
the grayscale covariance matrix were constructed. In summary, four feature classes were
selected in this study: spectral, vegetation, red edge, and texture features, as shown in
Table 2.

The results of the four feature categories above were combined sequentially to form
seven different combinations of experimental schemes (Table 3). These schemes were
designed to investigate how the accuracy of land use classification in rare earth mining
areas changes when incorporating vegetation features, red-edge features, and texture
features using the RF classification algorithm. From them, we can determine the single
feature category with the most significant effect on improving the accuracy of land-use
fine classification on a large scale in mining areas and identify agricultural land classes,
including farmland. In addition, these schemes allow us to intuitively explore whether
the proposed feature selection method effectively enhances the accuracy of land-use fine
classification and agricultural land identification. The objective was to compare the schemes
to identify the optimal feature combinations suitable for the detailed classification of large-
scale land use and the identification of agricultural land classes in rare earth mining areas.

Table 2. Description of various characteristics.

Feature Variable Index Abbreviation OHS Image Calculation Formula Exponential Description

Spectral feature Band B1, B2, . . ., B32

Vegetation feature

GCVI b27/b7 − 1 Suitable for areas with high density
vegetation cover.

RDVI (b27 − b13)/
√

b27 + b13
It can be used for high and low

vegetation coverage.

TCARI 3 ×
[
(b16 − b14)− 0.2 × (b16 − b6)×

(
b16
b14

)] It is very sensitive to changes in
chlorophyll content.

EVI 2.5 ×
(

b27−b13
b27+6×b13−7.5×b1+1

)
More sensitive to high vegetation coverage.
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Table 2. Cont.

Feature Variable Index Abbreviation OHS Image Calculation Formula Exponential Description

NDVI (b27 − b13)/(b27 + b13) Characterize vegetation coverage and growth
and health status.

TVI 0.5 × [120 × (b27 − b7)− 200 × (b13 − b7)]
Affected by chlorophyll and leaf tissue

abundance, the difference between vegetation
was obvious.

SAVI b27−b13
b27+b13+0.5 × (1 + 0.5)

It contains soil regulation coefficient and is
more suitable for low vegetation cover area.

MSR
(

b27
b13 − 1

)
/
√

b27
b13 + 1

The index is based on an assessment of several
vegetation indices derived from a combination

of two spectral bands.

RVI b27/b13
It is used to estimate and measure vegetation

biomass and is sensitive to high
vegetation coverage.

gNDVI (b27 − b7)/(b27 + b7) There was significant correlation with
chlorophyll content and leaf area index.

MACRI [(b27 − b13)− 0.2 × (b27 − b7)]× (b27/b13) It was responsive to chlorophyll concentration
and background reflectance of leaves.

DVI b27 − b13
It is sensitive to the change in soil background,

and the sensitivity to vegetation decreases
when the vegetation coverage is high.

Red edge feature

NDRE1 (b19 − b16)/(b19 + b16) It can be used to estimate leaf area index and
chlorophyll content of plants.

NDRE2 (b22 − b17)/(b22 + b17) It can be used in fine agriculture, vegetation
stress detection, and so on.

MSRred (b27/b16)− 1/
√

b27/b16 + 1
Replace the near infrared band in MSR with a

valley with a red edge.

MTCI b20 − b17/b17 − b15 It is sensitive to chlorophyll content in
plant leaves.

MCARI_red 1.5 × 2.5×(b23−b14)−1.3×(b23−b6)√
(2×b23+1)2−(6×b23−5×

√
b14)−0.5

It is more sensitive to the chlorophyll content
in plants and the higher the value, the higher

the chlorophyll content.

IRECI (b22 − b14)/(b16/b19)

It is correlated with chlorophyll content and
leaf area index of plant canopy and can

quantitatively characterize chlorophyll content
of plant.

Texture feature

Mean

Calculated based on the first four principal
component bands after the original spectral

principal component analysis, using window
size: 5 × 5.

Variance(Var)
Homogeneity(Hom)

Contrast(Con)
Dissimilarity(Dis)

Entropy(Ent)
Second Moment(Sec)

Correlation(Cor)

Table 3. Combination scheme information.

Combination Scheme Specific Feature Information of the Scheme

Scheme 1 Spectral feature(Spe)(RF)
Scheme 2 Spectral feature+Vegetation feature(Spe+Veg)(RF)
Scheme 3 Spectral feature+Red edge feature(Spe+Red)(RF)
Scheme 4 Spectral feature+Texture feature(Spe+Tex)(RF)
Scheme 5 Spectral feature+Vegetation feature+Red edge feature+Texture feature(Spe+Veg+Red+Tex)(RF)
Scheme 6 Spectral feature+Feature importance ranking combination(Spe+Fea)(RF)
Scheme 7 Spectral feature+Vegetation feature+Red edge feature+Texture feature(Spe+Veg+Red+Tex)(SVM)

2.4.2. Feature Optimization Methods

Although the expansion and combination of feature variables can provide better
classification results, using all the features for the classification may lead to information
redundancy, resulting in a “curse of dimensionality”, which could impact the classification
performance [24]. Therefore, using the same feature class as a benchmark and performing
feature optimization on it can yield feature variables that are more favorable for fine-
grained feature classification in mining areas with various types of features. In order to
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select feature indices with a higher separability of features and at the same time avoid
covariance among indices, we utilized the J-M (Jeffreis-Matusita) distance and principal
component analysis for feature variable optimization in the different feature categories.

The J-M distance provides superior results among the many methods for separability
determination [25,26]. It can determine the variability between categories based on the
degree of separation, with values ranging from 0 to 2—the larger the value, the better the
separation. For the training sample set E (i, j = 1, 2,. . ., N, i ̸= j) in two to-be-separated land
classes wi and wj, assuming that mi and mj are the feature means of wi and wj and τi and
τj are the feature standard deviations of wi and wj, the mathematical expression of the J-M
distance is as follows:

J = 2
(

1 − e−B
)

(1)

B =
1
8
(
mi − mj

)2 2
τ2

i + τ2
j
+

1
2

ln
τ2

i + τ2
j

2τiτj
(2)

where J denotes the J-M distance and B denotes the Bachmann distance.
To address variations in differentiation among land classes, we further process the J-M

distance by introducing weighting. These weights are determined based on the criterion
that the more indistinguishable the combination of land classes, the larger the weights,
and vice versa. In this study, we initially categorize land use in mining areas into two
major groups: highly distinguishable artificial and natural land surfaces (Table 1). These
two major categories are then assigned weight values equal to 1. In addition, the artificial
land surface category is divided into two subcategories: artificial objects and artificial
construction. These subcategories are assigned a weight value of 2, particularly for clearly
distinguishable land classes such as farmland and buildings. Finally, weights between land
classes within the same type of land use are assigned values of 3 or 4, determined by the
degree of similarity between features. The weights for specific landform combinations
are presented in Table 4; those not listed carry a weight of 1. We used the weighted J-M
distance to analyze vegetation, red edge, and texture features. Feature variables exhibiting
a strong differentiation of landforms are identified as the preferred characteristics.

Table 4. Weight allocation of land class combination.

Land
Assemblage Weights Land

Assemblage Weights Land
Assemblage Weights

Rec_b, Far 2 Rec_g, Far 3 Gre, Roa 2
Rec_b, Rec_g 4 Far, Bar 2 Gre, Sed 2

Rec_b, Bar 4 Far, Ora 3 Bar, Ora 2
Rec_b, Ora 2 Far, Unu 4 Bar, Roa 4
Rec_b, Unu 3 Far, Ori 2 Bar, Unu 3
Rec_b, Ori 2 Rec_g, Bar 2 Ora, Unu 2
Bui, Gre 4 Rec_g, Ora 3 Ora, Ori 2
Bui, Roa 2 Rec_g, Unu 2 Poo, Sed 3
Bui, Sed 2 Rec_g, Ori 4 Roa, Sed 2
Unu, Ori 2

Principal component analysis (PCA) is a powerful technique for dimensionality reduction
and feature selection. With PCA, a low-dimensional feature space composed of projection
directions can better reflect the spatial structure information of the original high-dimensional
data [27,28] and facilitate the interdependence and correlation analysis of features [29]. As
many as 32 original spectral bands are provided by OHS hyperspectral datasets. Moreover,
using PCA for dimensionality reduction effectively addresses the “dimensionality catastrophe”
problem while substantially preserving the original band information. Covariance between
feature variables can lead to the inclusion of features that do not enhance classification accuracy
because of the diverse features used in this study. Thus, in the current study, correlation tests for
vegetation, red edge, and texture features were separately conducted using principal component
analysis. Feature variables with minimal covariance were prioritized for the classification of
land use to mitigate the adverse effects of covariance.
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2.4.3. Importance Ranking of Features

The ranking of features by importance can help to filter out features with high con-
tributions to classification, regression, and other problems from multiple features in a
short time, improve calculation speed, and reduce the dimensions of data input [30]. This
study ranked the importance of all feature indices, encompassing vegetation, red edge, and
texture characteristics. This ranking provides an overall assessment of the contribution
of each feature type to classification. It allows for an intuitive identification of feature
categories and indices suitable for detailed feature classification in mining areas. The
Relief-F algorithm, a classic multivariate filtering feature selection method used in various
classification problems, assigns weights to features based on their relevance to the landform
class. Features weighing less than a specified threshold are rejected [31]. The algorithm is
computed as follows: given class labels, there are l classes C = [C1, C2,. . ., Cl], a sample Ri is
randomly selected from the training set, then k approximate samples of Ri are identified
in the same class, denoted as Hj (j = 1,2,. . ., k), and k approximate samples of Ri are also
identified from different categories, denoted as Mj(C) (j = 1,2,. . ., k), which repeats the
above steps on each feature dimension and obtains each feature weight as follows:

W(A) = W(A)−
k

∑
j=1

di f f (A, Ri, Hj)

m ∗ k
+ ∑

C ̸=class(Ri)

[
P(C)

1 − P(class(Ri))
×

k

∑
j=1

di f f (A, Ri, Mj(C))
m ∗ k

(3)

where A denotes the feature, W(A) denotes the weight of feature A, m is the number of
iterations, and P(C) denotes the probability that the category is C. diff (A, Ri, Hj) and diff (A,
Ri,Mj(C)) denote the difference between the samples Ri and Hj, Mj(C), respectively, with
respect to A, which is defined as follows:

di f f (A, R1, R2) =


R1[A]−R2[A]

max(A)−min(A)
, i f A is continuous

0, i f (A is discrete) and (R1[A] = R2[A])
1, i f (A is discrete) and (R1[A] ̸= R2[A])

(4)

where R2 stands for Hj, Mj(C).

2.4.4. Land Use Classification

The RF algorithm facilitates the integration of high-dimensional data from multiple
sources, rendering it suitable for complex datasets [32]. It exhibits high adaptability to
overfitting in training samples and accomplishes classification tasks within a brief duration.
The results of a study on the classification of Mediterranean shrub vegetation types in
the Languedoc region of southern France showed that the RF algorithm outperforms
traditional classifiers in the identification of hyperspectral vegetation types for automatic
classification and is especially advantageous for distinguishing vegetation types with small
spectral differences [33]. The input classification data of the study included spectral features,
vegetation features, red edge features, and texture features, which involve more complex
data with higher dimensions. The study area constitutes various land classes with smaller
spectral differences. Therefore, the RF algorithm is effective and offers certain advantages
for the detailed classification of land use in mining areas. RF adopts Bootstrap resampling
to build a decision tree model for each of the k samples selected from the training sample
set. After each tree is classified, the final classification result is determined by voting [34].

H(x) = argmax
y

∑k
i=1 I(hi(x) = Y) (5)

where H(x) denotes the combination of classification models, hi denotes the decision tree
classification model, Y denotes the output variable, and I(◦) is the indicator function.

2.4.5. Accuracy Verification

In order to compare the effects of incorporating different features on the accuracy
of feature classification, this study evaluates the overall accuracy by using the confusion
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matrix. The confusion matrix can help evaluate the accuracy by comparing the degree of
confusion between the classification results and the actual measurements and includes the
overall accuracy (OA), Kappa coefficient, producer’s accuracy (PA), and user’s accuracy
(UA). Among them, the overall accuracy and Kappa coefficient are used to evaluate the
overall performance of the classifier and the producer’s accuracy and user’s accuracy are
used to evaluate the misclassification and omission indicators of a particular class.

OA =
∑K

i=1 Nii

N
(6)

Kappa =
N∑K

i=1 Nii − ∑K
i=1 Ni+N+i

N2 − ∑K
i=1 Ni+N+i

(7)

PAi =
Nii
N+i

(8)

UAi =
Nii
Ni+

(9)

where N represents the total number of samples; K represents the total number of categories;
Nii represents the number of samples assigned to the correct category; and N+i and Ni+
represent the true number of samples in category i and the number of samples predicted to
be in category i, respectively.

3. Results
3.1. Feature Optimization Results
3.1.1. Determination of Spectral Features

Spectral features were calculated and downscaled using principal component analysis. The
contribution of each principal component was used as a benchmark to rank them cumulatively,
as shown in Figure 3, where the horizontal coordinates indicate the new spectral bands generated
by the principal component analysis of the original spectral features and the vertical coordinates
indicate the cumulative contribution of the new spectral bands to the image information. Among
them, the cumulative contribution rate of the first principal component to the fourth principal
component increases more in relative order and, from the fourth principal component onwards,
the growth rate of the contribution rate decreases and the contribution rate value stabilizes
above 0.997. Therefore, this study finally selects the first four principal components as the result
of the final spectral feature preference.
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3.1.2. Determination of Vegetation Features

The 12 vegetation indices were subjected to weighted J-M distance calculations and
principal component analysis and the results are shown in Figures 4 and 5. Figure 4 shows
that most of the vegetation indices have good divisibility of features and some of them
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have outstanding divisibility of specific features but that the divisibility ability of TVI,
DVI, RDVI, and TCARI for the land classes is not ideal, which is in line with the fact that
although they are sensitive to the content of chlorophyll and so on, most of the land classes
are construction land, mining land, etc. [35]. Figure 5 shows that the correlation coefficient
between NDVI and SAVI is close to 1, which is a strong correlation between the two, and
therefore, NDVI was preferred considering that it has a better ability to characterize the
surface reflectance of the features than SAVI [36]. MCARI was not considered because it
had a strong correlation with most of the indices. Therefore, the vegetation characteristics
were finally filtered to GCVI, EVI, NDVI, MSR, RVI, and gNDVI.

3.1.3. Determination of Red Edge Features

The red edge features were also feature optimized using weighted J-M distance and
principal component analysis, as shown in Figures 4 and 5. The figures show that both
NDRE1 and NDRE2 have low separability for most of the land classes and that the degree
of correlation with the other indices is high. Therefore, the final selected red-edge features
are MSRred, MTCI, MCARI_Red, and IRECI.

3.1.4. Determination of Texture Features

The method of feature preference for texture features is the same as that for vegetation
features and red edge features, as shown in Figures 4 and 5. Figure 4 shows that the
separability of cor for each class is obviously extremely low and the separability of hom
for each class, although higher than cor, is still downstream compared to the other indices.
Figure 5 shows that sec, ent, and hom have a high correlation, con and dis have a high
correlation, and con and sec are more divisible when compared to each other and, therefore,
the preferred texture features were finally determined to be mean, var, con, and sec.
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3.2. Importance Ranking of Characteristic Variables

The Relief-F algorithm was used to evaluate and sort the importance of all the feature
variables. The results are shown in Figure 6: texture index mean had the highest score
and was much higher than the other indexes, reaching 0.1200. The vegetation index SAVI,
gNDVI, and NDVI decreased successively. NDRE1, the red index, secured the fifth position.
The vegetation index in the upper and middle reaches of the score was higher and the other
texture indexes except the mean were mostly in the middle reaches of the score. The index
of the downstream region is the red edge index and vegetation index and half of the red
edge index is in this region. After comprehensive consideration, the importance of feature
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variables was ranked in descending order as follows: texture feature, vegetation feature,
and red edge feature.
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Among the three types of feature variables selected, the feature importance of the
red-edge feature ranked last, which is related to the actual land class categories in the study
area: the most different spectral characteristics of green vegetation and other features is the
significant increase in reflectance in the red-edge band [37]. However, the image-capturing
time was December, when some crops were processed into greenhouse vegetables to
ensure their continued growth and the land classes in the complex parcels in mining areas
mostly consisted of buildings, bare ground, sedimentation tanks, and other construction
land. The vegetation land class in the overall land class accounted for a relatively small
portion and, therefore, the red edge features failed to add constructively to the distinction
between land classes. Additionally, the mining area encompasses various features such as
farmland, greenhouse vegetables, sedimentation tanks, and bare ground, where texture
information is more pronounced. Particularly, the texture features not only demonstrate a
certain advantage in the detailed identification of plastic greenhouses [38] but also improve
the classification and identification accuracy of texture information-rich land classes [24],
providing a distinct advantage in the identification of land classes within mining areas.
This is consistent with the texture index “MEAN” being ranked first and being significantly
higher than the other indexes.

3.3. Accuracy Evaluation of Land Use Classification in Mining Area

This study adopts overall accuracy, Kappa coefficient, producer’s accuracy, and user’s
accuracy as the evaluation indexes of the land use classification results of mining areas and
compares the classification results of the seven schemes; the classification accuracy and
classification results of the schemes are shown in Table 5, Figures 7 and 8, and the confusion
matrix of the scheme with the best classification results is shown in Figure 9. The overall
classification accuracy is the lowest when only using the spectral features after principal
component analysis of the original spectrum for the extraction of rare earth mining area
classes; the overall accuracy and Kappa coefficient are only 83.59% and 0.51, respectively.
Schemes 2, 3, and 4, respectively, include the vegetation features, red edge features, and
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texture features after feature optimization on the basis of the spectral features and the
classification accuracy increases compared with that of Scheme 1, which is specifically
represented by the overall accuracy increase of 1.97%, 0.93%, and 3.09% respectively,
indicating that the inclusion of vegetation features, red edge features, and texture features
can effectively improve the classification accuracy of land use in rare earth mining areas;
here, the texture features have the greatest effect on the improvement in accuracy. Scheme 5
integrates the spectral features and feature indices after feature selection from each feature
category and the overall accuracy and Kappa coefficient are again improved significantly.
The overall accuracy of Scheme 5 is the highest among all schemes, being improved by
4.84%, and the Kappa coefficient is improved by 0.11. Scheme 7 uses SVM to classify the
same combination of features and its accuracy is slightly lower than that of Scheme 5,
which indicates that RF works better than other classifiers such as SVM for the detailed
classification of large-scale land use in mining areas; after adopting the importance ranking
of feature variables for the classification of surface cover in mining areas (Scheme 6),
the total feature preference results in overall accuracy and Kappa coefficient values that
are essentially equivalent to those of Scheme 5. The user accuracies of farmland and
greenhouse vegetables are greatly improved in Scheme 4, which correlates with the strong
texture information of these two types of agricultural features. The user accuracies of
orchards and reclaimed vegetation are better in Scheme 3, indicating that the red-edge
features are able to differentiate and recognize these two types of agricultural land classes
from the complex surface environment. A comprehensive analysis of the user accuracy of
the above four agricultural land classes in different programs shows that both Program 5
and Program 6, which are based on the RF algorithm, are able to recognize them relatively
effectively; the user accuracy of Program 5 is higher than that of Program 6 in general.
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Overall, the feature preference method used by the Institute not only effectively
improves the accuracy of the detailed classification of land use in mining areas but also ac-
curately extracts agricultural land classes such as farmland, orchards, reclaimed vegetation,
and greenhouse vegetables from complex land classes, thus supporting the understanding
and monitoring of agricultural development within mining areas.
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Table 5. Precision statistics of the classification results of each scheme.

Classifications Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7

Overall Accuracy 83.59% 85.56% 84.52% 86.68% 88.43% 88.26% 88.16%

Kappa coefficient 0.51 0.55 0.53 0.58 0.62 0.59 0.61

Buildings PA% 82.06 81.29 83.59 82.36 85.74 80.21 84.97
UA% 57.47 63.70 52.40 63.25 58.84 66.88 56.07

Sedimentation
tank

PA% 25.48 26.44 25.00 35.58 38.94 17.79 31.73
UA% 12.83 15.71 15.25 16.37 24.92 14.23 21.36

Pool
PA% 82.82 86.50 68.71 74.85 61.96 68.71 67.48
UA% 13.53 15.06 13.49 17.40 21.40 14.18 22.40

Bare ground PA% 41.29 41.94 40.65 56.13 50.97 34.19 49.68
UA% 4.26 4.93 3.96 7.95 7.47 12.77 7.59

Farmland
PA% 52.04 51.68 58.54 65.51 66.98 54.52 64.86
UA% 83.27 83.33 87.24 89.22 91.01 78.96 91.12

Road
PA% 100.00 100.00 100.00 100.00 100.00 91.67 100.00
UA% 3.46 3.54 4.08 3.66 3.58 1.96 3.79

Orchard
PA% 28.38 25.73 27.32 25.20 28.91 4.24 28.65
UA% 12.74 13.31 19.54 11.63 17.17 3.02 15.91

Original
vevetation

PA% 89.33 91.41 89.93 91.82 93.71 95.20 93.57
UA% 99.24 99.17 99.24 99.21 99.22 99.29 99.19

Reclaimed
vegetation_good

PA% 37.19 32.46 38.99 37.03 36.22 15.50 36.54
UA% 19.81 24.81 17.92 28.13 29.40 20.79 28.75

Reclaimed
vegetation_bad

PA% 27.45 27.12 33.99 29.41 32.03 24.35 30.72
UA% 24.21 25.74 33.66 30.20 36.57 22.11 36.22

Greenhouse
vegetables

PA% 50.90 61.44 52.33 60.68 61.16 60.11 60.78
UA% 70.81 73.69 70.73 66.91 74.62 72.01 70.25

Unused land
PA% 50.00 55.71 55.71 67.14 62.86 85.71 67.14
UA% 12.46 10.66 13.88 16.97 14.47 12.55 15.31

Note: PA: producer accuracy; UA: user accuracy.

4. Discussion

Hyperspectral datasets have multiple narrow bands and contain a large amount of
information, enabling more accurate and detailed feature variables to be obtained. Based
on the OHS hyperspectral datasets, four kinds of feature datasets were constructed: spec-
tral, vegetation, red edge, and texture features. J-M distance calculation and principal
component analysis were carried out for the indices of the different feature categories.
This process aimed to uncover the separability of feature indices to land classes and assess
the covariance between feature indices within the same land classes. This approach was
employed to achieve a more rational and detailed feature preference. The Relief-F algorithm
was used to rank the importance of features, excluding spectral features, and a more precise
and detailed feature preference was obtained from the overall features. This approach
provided feature preference results from an overall perspective, enabling an analysis to
identify the most effective feature categories for the detailed classification of land use in
mining areas. Based on the above analysis method, seven different combinations of feature
variables were designed and the effects of different indices on classification accuracy in
different schemes were analyzed using an RF algorithm to explore the feature preference
combinations applicable to land use classification in mining areas and for agricultural
land class identification. The study results indicate that after feature optimization, all
features of each category attain varying degrees of improvement in classification accuracy
(Table 5). (1) Texture features exert the most pronounced effect on overall accuracy across all
categories, consistent with their high significance in feature importance analysis. Notably,
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incorporating texture features leads to significant enhancements in classification accuracy
for farmland, greenhouse vegetables, and other texture-rich land classes. Conversely, red-
edge features exert the least influence on overall; however, they more effectively recognize
agricultural land classes, such as farmland and reclaimed vegetation within complex land
parcels, compared with other indices. This observation aligns with the recognized issue
of severe fragmentation in farmland and reclaimed vegetation arising from uncontrolled
mining in mining areas. Integrating red-edge features effectively reduces landscape frag-
mentation and improves recognition accuracy [39]. Both types of indices contribute to
the accurate identification of agricultural land classes, facilitating precise monitoring of
agricultural development. (2) Among all schemes, combining the index results of each
category features yields the highest classification accuracy. It can also comprehensively
meet the requirements for improving the identification accuracy of different types of agri-
cultural land. These findings suggest that the feature selection method used in the current
study can provide more appropriate feature optimization results. The approach not only
enables fine-scale land use classification in mining areas on a large scale but also ensures
accurate recognition of different agricultural land classes within mining areas. This method
provides technical support for monitoring agricultural development in mining areas and
offers effective recommendations for further agricultural and ecological sustainability.

In summary, (1) hyperspectral datasets hold promise for the detailed land use classifi-
cation of large-scale complex landforms and (2) the feature selection method is effective in
reducing feature dimensions and improving classification accuracy. Hyperspectral images
can contain hundreds of subdivided spectral bands at consecutive wavelengths, yielding
rich spectral information and enabling more detailed detection and identification of target
features [40]. Many studies have been conducted to utilize hyperspectral datasets for classi-
fication, such as Zhao Peng et al. [41] who fused texture features and spectral features and
combined these with hyperspectral images to identify timber species; their classification
accuracy was higher than that of traditional methods. Fei Xing et al. [8] used a hybrid
analysis method of multiple end-element spectral analysis and extracted alpine grassland
cover using hyperspectral images. Binge Cui et al. [10] classified small scenes of coastal
wetlands using hyperspectral images and achieved robust results. Although previous
studies using hyperspectral datasets have achieved better extraction or classification results,
the research objects were mostly single species or small scenes. There is limited research
on the detailed classification of large-scale complex surface areas. To address this gap,
this study employs in-orbit hyperspectral images for detailed land use classification in
mining areas. Notably, it demonstrates the robustness of the classification accuracy remains,
regardless of the inclusion of features beyond spectral features. In order to further verify
the advantages of hyperspectral imagery for complex surface classification, we compare the
results of this study with those conducted for other similar mining areas. Zhang Chengye
et al. [42] used HF2 imagery to classify the surface of mining areas, dividing it into eight
categories, of which the overall accuracy was only 80.10% even though the classification
accuracy of the restoration and management areas, open-pit quarries, and water bodies
were as high as 95.00%, 85.10%, and 72.5%, respectively. Although the spatial resolution of
the OHS hyperspectral datasets used in this study is only 10 m, which is not better than that
of the Gaofen-2 image with a spatial resolution of better than 1 m, the spectral resolution
is as high as 2.5 nn and, therefore, it contains more detailed spectral information of the
landforms. Furthermore, the degree of spectral differentiation of the complex landforms is
stronger, so the classification precision is obviously higher and the overall classification
precision obtained using spectral indices alone is already 83.59%. The overall accuracy of
classification using only the spectral index is 83.59%. The use of hyperspectral datasets for
land use classification on a large scale in mining areas can improve accuracy, facilitating the
extraction of necessary information from complex surfaces to meet research requirements.

Due to the large number of bands contained in hyperspectral images and the various
feature variables that can be obtained from them, it is highly likely that the direct use of all
these features for classification will result in dimensional redundancy, which will have an
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impact on classification accuracy [43]. To address this situation, many researchers have used
different feature preference methods for dimensionality reduction, such as Mahdianpari
et al. [44] who used the J-M distance to quantitatively analyze the separability of different
types of wetlands under different features; they then classified the land classes after feature
selection based on the separability results, which resulted in robust classification accuracy.
Md Rashedul et al. [45] combined MMF and mRMR methods for the dimensionality reduc-
tion in feature variables. Hao Yufeng et al. [46] and Fushuyu et al. [47] performed variable
optimization for wetland classification through the Relief-F algorithm and RFE algorithm,
respectively. Xiang Songyang et al. [30] selected features involved in hyperspectral image
classification by constructing the ReliefF-RFE feature selection algorithm. Although all of
the above studies used feature selection methods to derive effective preferred features, most
of them only considered land class separability or feature relevance individually. In this
study, we comprehensively considered the separability of land classes and the covariance
between features, not only analyzing each class of features individually for feature selection
but also mining the feature indices of different feature classes that are applicable to the
detailed classification of mining areas. We then ranked the importance of feature class
indices other than the spectral features to analyze the most important feature classes in
terms of the detailed classification of a wide range of mining areas. By designing a multi-
program format and using RF algorithms to explore the effects of the optimal combination
of feature indices after the above multi-faceted analysis, we effectively explored the optimal
feature classes and feature combination programs for detailed and large-scale land use
classification in mining areas and the identification of agricultural land classes such as
farmland. The study results indicate that the proposed feature preference method enhances
both the fine classification of land use and the identification of agricultural land classes.
This technique aids in monitoring agricultural development in mining areas and advancing
sustainable agriculture and ecological practices.

5. Conclusions

The primary aim of this research is to leverage hyperspectral imagery in constructing
diverse feature sets and employ a range of feature selection methods to pinpoint the
most suitable combination of features for rare earth mining areas. This endeavor seeks
to facilitate the refined classification of land use within expansive and intricate mining
territories, enabling the accurate identification of agricultural land types like farmland,
orchards, and reclaimed vegetation from fragmented data. Such efforts are instrumental in
advancing agricultural development monitoring, guiding sustainable agricultural practices,
and fostering ecological sustainability. The results show that

(1) The feature preference method combining J-M distance and principal component
analysis provides a better feature combination scheme from the perspective of land class
separability and feature correlation. It improves the accuracy of land use classification in
mining areas and agricultural land class identification significantly;

(2) Ranking the importance of the other three categories of features, excluding spectral
features, shows that the degree of importance of features in the land use classification of
rare earth mining areas is as follows: texture index, vegetation index, and red edge index;

(3) Combining the indices of the four features after feature optimization yielded the
most significant improvement in land use classification accuracy for mining areas, reaching
88.43%, with a Kappa coefficient of 0.61. This performance not only surpasses the overall
classification accuracy achieved using a single feature but also simultaneously results in an
effective increase in classification accuracy for specific farmland classes such as farmland,
orchards, reclaimed vegetation, and greenhouse vegetables.

Using hyperspectral datasets and feature selection methods, this study has led to
enhanced accuracy in fine land surface coverage classification in mining areas and the
identification of agricultural land classes. It lends technical support for monitoring agri-
cultural conditions in mining areas and promoting sustainable development. However,
the extent to which these results can be applied to other mining areas remains uncertain.
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This uncertainty arises from the limitations imposed by the study area’s environment, the
classification of land classes, the time period, and other factors. Therefore, in the future,
more study areas can be added to further explore the universality of the research methods
and results.
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