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Abstract: Seafood, especially from the ocean, is now seen as a greener and more sustainable source
of protein, causing an increase in its demand. This has also led to people making choices towards
seafood as a replacement for carbon-intensive protein sources. As a result, the demand for seafood is
growing, and as the aquaculture industry looks to increase production, keeping products safe and
sustainable is imperative. There are many challenges faced by the aquaculture industry in meeting
these increased demands. One such challenge is the presence of harmful algal blooms (HABs) in the
ocean, which can have a major impact on aquatic life. In this paper, we look at the impact of this
challenge on aquaculture and monitoring strategies whilst illustrating the potential for technological
interventions to help mitigate the impact of an HAB. We will focus on Abagold Limited, a land-based
marine aquaculture business that specialises in the large-scale production of abalone (Haliotis midae)
based in Hermanus, South Africa. HABs are considered a threat to commercial-scale abalone farming
along the South African coastline and require continuous monitoring. The most recent HAB was
in February–April 2019, when the area experienced a severe red-tide event with blooms of predom-
inantly Lingulodinium polyedrum. We present some of the monitoring strategies employing digital
technologies to future-proof the industry. This article presents the development of a novel hybrid
water quality forecasting model based on a TriLux multi-parameter sensor to monitor key water
quality parameters. The actual experimental real water quality data from Abagold Limited show a
good correlation as a basis for a forecasting model which would be a useful tool for the management
of HABs in the aquaculture industry.

Keywords: harmful algal blooms; sensors; aquaculture; South Africa; marine

1. Introduction

Phytoplankton, also known as microalgae, are like terrestrial plants in that they contain
chlorophyll and require sunlight to live and grow. Most phytoplankton are buoyant and
float in the upper part of the ocean, where sunlight penetrates the water. Marine algal
blooms are commonly referred to as red tides or harmful algal blooms (HABs), but they
occur in a variety of colours depending on the type(s) of algae present. Only a small number
of species have the capacity to form harmful blooms, but when they do, the effects can
be severe for coastal resources, local economies, and public health. Harmful algal blooms
(HABs) occur when algae grow out of control and sometimes produce toxins harmful to
aquatic life and, in some cases, to humans. Hallegraeph [1] categorises them into three
broad groups. Group one is harmless (i.e., non-toxin-producing), colourless algae that can
also form a bloom and deplete a waterbody of oxygen, killing aquatic life; an example is the
dinoflagellates taxon, specifically, Akashiwo sanguinea. The second group includes species
which produce potent toxins that can affect humans, causing a variety of gastrointestinal
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and neurological illnesses; the most common example includes paralytic shellfish poisoning
(PSP) caused by dinoflagellates Alexandrium catenella [2]. However, the focus here is on the
third category of HABs, which produce toxins harmful to aquatic life. While wild aquatic
animals have the option of moving away when such a bloom occurs, farmed aquatic life is
more vulnerable to such HABs.

These types of algae are complex, and their ability to devastate aquaculture farms has
posed a significant challenge to the industry’s sustainability. There are several mechanisms
through which HABs threaten the viability of cultured organisms, primarily through the
dysfunction of the respiratory system by mechanically damaging the gill epithelium or the
induction of hypoxic or anoxic conditions during bloom degradation. These conditions
fuel microbial respiration, resulting in oxygen depletion. Additionally, toxins produced
by specific algal species compromise the sensor motor function in adult and larval fish,
impeding essential behaviours such as feeding [3]. Furthermore, these toxins disrupt
osmoregulatory processes, leading to an increase in blood variables of sodium (Na+), potas-
sium (K+), and chloride (Cl−), resulting in mortality [4]. Moreover, the accumulation of
these toxins within cultured organisms poses a significant public health risk, particularly
shellfish poisoning, should toxin concentrations exceed regulatory limits [5]. Therefore,
aquaculture systems rely on early warning systems to manage blooms effectively, min-
imising the risk of rapid fish loss and preserving public health, as successful management
requires a complex process involving various monitoring and control techniques. The
frequency and intensity of these blooms have developed into a global concern over the
past few years. The impact of blooms is not often quantified except in cases where it has
resulted in massive mortalities of cultured animals and significant economic losses. The
more notable globally iconic blooming events and their impact on the aquaculture industry
are summarised in Table 1 below.

Table 1. Harmful algal bloom events attributed to known species of harmful algae and their impact
on aquaculture.

HAB Toxin Cultured Animal Location Impact Year Reference

Chrysochromulina leadbeateri Not Toxic/No Data Salmon Northern Norway
It was estimated to have killed 8 million salmon, a total of

14,000 tonnes with a value of over EUR 80 million. Fish
death was sudden with gill damage frequently observed.

2019 John, U. et al.,
2022 [6]

Karenia mikimotoi Ichthyotoxins

Mussel
St Austell Bay and Lyme Bay,

English Channel, UK

This led to an 18-week harvesting ban, costing over
GBP 1 million in loss of sales. The okadaic acid

accumulation in the shellfish exceeded regulatory limits.
2018 Ross Brown et al.,

2022 [7]

Noctiluca scintillans Non- toxic

Dinophysis acuminata
Pectenotoxins Okadaic acid

Dinophysis acuta

Heterosigma akashiwo Not toxic/No Data Salmon Canada Resulted in the deaths of more than 250,000 salmon. 2018 Robinson Matt,
2018 [8]

Gonyaulax spinifera Yessotoxins
Yessotoxins Abalone South Africa

Severe disruption of the gill epithelium was characterised
by degeneration and necrosis. The total loss was estimated

to have exceeded 250 tonnes.

2017
Pitcher et al.,

2019 [9]
Lingulodinium polyedrum

Pseudochattonella verruculosa Ichthyotoxins Salmon Chile

This resulted in the mortality of 39 million salmon and an
economic loss of USD 800 million. Examination showed
that gills were the most affected organ with significant

tissue damage.

2016 Díaz et al., 2019 [5]

Alexandrium catenella Saxitoxins Mussel Chile Toxins led to harvesting closures of multiple farms in the
affected areas. 2016

Anderson Donald
and Rensel Jack,

2016 [10]

Alexandrium fundyense Saxitoxin

Mussel Scotland

These toxins result in a yearly average reduction of nearly
15% in production. This is equivalent to a loss of

1080 tonnes of shellfish per year and an economic loss of
GBP 1.3 million.

2005–2015
Martino, Gianella

and Davidson,
2020 [11]Dinophysis sp. Okadaic acid

Pseudo-nitzschia sp. Domoic acid

Alexandrium tamarense Saxitoxins Mussel Australia

Toxins led to harvesting closures of multiple fishery
resources in the affected areas. The marine farming sector
losses based on reductions in landed catch equated to an

estimated AUD 6,308,700.

2012 Campbell et al.,
2013 [12]

Prorocentrum donghaiense Non-toxic

Scallop, Abalone China

Caused significant loss in the mariculture industries of
Zhejiang and Fujian provinces, especially in cultivated

abalone. The direct economic loss was more than USD 330
million. The blooms caused cessation of feeding and

stagnant growth of scallops.

2010–2012 Trainer, V.L. and
Yoshida, T. (Eds.)

2014 [13]
Karenia mikimotoi Ichthyotoxins

Cochlodinium geminatum Ichthyotoxins

Noctiluca scintillans Non-toxic Mussel China

Although this bloom is non-toxic, it accumulates and
releases toxic levels of ammonia into the surrounding

waters. It caused high mortalities and led to
USD 32.6 thousand in economic losses.

2008
Trainer, V.L. and
Yoshida, T. (Eds.)

2014 [13]

Karenia brevis Brevotoxins Mussel Spain This led to harvesting bans that reduced production. 2003–2008

Rodríguez,
Villasante and

Carme García-Negro,
2011 [14]



Sustainability 2024, 16, 3650 3 of 15

Table 1. Cont.

HAB Toxin Cultured Animal Location Impact Year Reference

Protoceratium reticulatum Yessotoxins Mussel South Africa This led to a five-month closure of mussel harvesting. 2005 Pitcher and Louw,
2021 [15]

Alexandrium catenella Saxitoxins Abalone South Africa
The toxin affected the spawning capability of the abalone

and larval survival. Mortalities were recorded in
the broodstock.

1999 Pitcher et al.,
2001 [16]

Chaetoceros wighami Not Toxic/No Data Salmon Scotland
Gills showed severe necrosis with focal hyperplasia and
oedematous separation of epithelia. The economic cost

was a loss of 170 tonnes of production worth GBP 408,000.
1998 Treasurer, Hannah

and Cox, 2003 [17]

AUD: Australian Dollar, EUR: European Union Currency, GBP: British Pound Sterling, USD: United States Dollar.

2. Harmful Algal Bloom Mitigation Technologies

Harmful algal blooms have been a major cause of concern in aquaculture and their
occurrence depends on several factors including temperature, precipitation, wind, surface
water conditions, the presence of nutrients (eutrophication), etc. The changing climate
impacts these parameters, for example, surface water acidification stemming from increased
CO2 emissions which directly alters the surface water conditions, and perhaps more
importantly their extremes [18]. However, the location and intensification, due to increasing
ocean temperatures [19,20], and the composition and spread of HABs will change, making
their occurrence even more unpredictable [21]. This unpredictability of HABs is a cause of
concern for the aquaculture business and there is an immediate need to develop suitable
digital techniques that would allow the farms to mitigate their impact.

There are various tools which have been developed to monitor, quantify, or identify
HABs. This section focuses on various digital technologies that have been developed in the
last few years that support the monitoring/forecasting of HABs.

2.1. Tools and Instruments

The ability to detect HABs without resorting to laboratory-based sample testing is
enabled by a range of sensor technologies detecting increasing turbidity and changes in
chlorophyll-related spectral responses that result from increasing phytoplankton. The
implementation of a specific technology can be dependent on the spatial and temporal
requirements for a specific application. For example, satellite-based remote sensors can
provide measurements over large areas of the globe and show the development and distri-
bution of HABs at regular intervals, typically measured in days. Commercial aquaculture,
by contrast, requires access to real-time data to detect the onset of HABs in farming tanks
and employ in situ multi-parameter sensors. A brief overview of some of the sensor options
available currently is presented below.

Satellite remote sensing of HABs employs spectral measurement technologies such as
the MODIS (moderate-resolution imaging spectroradiometer) and the Sentinel-2A/B optical
multispectral imaging satellite. Spatial resolution is typically of the order of 10s of metres.
An example of this approach is presented by Bondur et al., where satellite data are inte-
grated with ocean temperature data to identify the causes of HABs in the coastal waters
east of Kamchatka, influenced by mineral and biogenic suspensions in river runoff from
the Nalycheva River [22]. A further example is provided by Bu et al., where MODIS data
are integrated with meteorological factors and latitude and longitude information to create
a general regression dataset for harmful algal bloom detection. The analysis by Bu et al.
included data from 192 HAB events from around the world over a 20-year period [23]. One
of the challenges of satellite remote sensing is variability and measurement restrictions
caused by cloud cover and aerosol conditions. A satellite measurement system that aims
to address these issues is the TROPOspheric Monitoring Instrument (TROPOMI), which
can observe red solar-induced fluorescence (SIF) resulting from HABs. This instrument
is mounted on the Copernicus Sentinel-5 Precursor satellite and offers a 5.5 km spatial
resolution and near-daily global coverage [24]. Luis et al. recently presented a comparison
of HAB assessments from the TROPOMI and MODIS satellites and concluded that during
severe HAB conditions, red SIF was consistent with existing monitoring tools and has
the potential to provide nearly double the amount of spatiotemporal fluorescence HAB
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information [24]. Even within satellite-based remote sensing, for a given application, there
are decisions to make relating to measurement robustness, atmospheric conditions, spatial
resolution, and image update rate.

Jordan et al. present an above-water reflectance system capable of monitoring aquatic
ecosystems with the addition of a hyperspectral direct–diffuse solar radiation pyranometer [25].
The reported benefit of this integrated approach was an improvement in measurement pre-
cision resulting from an algorithm that included a function to account for the atmospheric
optical state and the variations in the spectral response of the incoming radiation. The
characterisation of atmospheric properties may also be beneficial in reducing uncertain-
ties associated with atmospheric correction methods employed in satellite observation. It
should be noted that whilst satellite remote sensing can provide images that highlight algal
blooms over large areas, this approach is not able to provide a measure of toxicity resulting
from the algal bloom. However, satellite imagery does provide details of where physical
water sampling activities should be focused.

An alternative approach to satellite-based measurement that overcomes temporal
limitations and atmospheric conditions is the use of unmanned aerial vehicles (UAVs), also
known as drones. A review by Wu et al. outlines the developments and opportunities of
UAVs installed with lightweight high-resolution spectral imaging systems. Whilst data and
image analysis is a significant activity and battery power capacity is a consideration, a key
benefit of UAV-based systems is that spatial resolution can be in the scale of centimetres [26].
In common with satellite-based measurements, many water quality metrics cannot be
measured with UAV-based remote sensing methods. However, a further benefit of rotor-
based drones is the ability to obtain water samples for physio-chemical analysis in the
laboratory and to take in situ measurements. A recent example of this was demonstrated
by Horricks et al., who found that drone-based sampling in a marine environment could
supplement or replace traditional vessel-based sampling methods [27]. Graham et al.
demonstrated that drone-based sampling could collect 2 L volumes of water and be a more
cost-effective solution compared with vessel-based sampling in lakes [28]. An example
of in situ measurements is presented by Korporan et al., where a rotor-based drone was
instrumented to take in situ measurements of temperature, electrical conductivity (EC),
dissolved oxygen (DO), and pH at a predetermined number of waypoints (13) across a
1.1 ha pond [29]. This work also reported that the duration of a flight mission was limited
by available battery power. Castendyk et al. combined drone-based sample water collection
with in situ conductivity and temperature measurements to provide depth profiles with
water samples collected to a depth of 92 m [30].

For an altogether lower-technology approach, the ability to manually measure water
transparency or turbidity can be achieved with a Secchi disk [31], which is a 30 cm white
disc that is lowered into water until the disk is no longer visible; this depth is recorded as
the Secchi depth [32]. For the black-and-white version of the Secchi disc, the definition of
the Secchi depth is based on the detection of any portion of the disc that has the highest
contrast from the background [33]. Furthermore, the Secchi depth is only a measure of
water clarity and therefore does not provide information relating to the specific property
that impacts on water clarity. Variations of the Secchi disk have been developed for ocean
and river applications and the theory and method continue to evolve [32–34]. A significant
figure that the use of the Secchi disk aims to provide is the euphotic depth, the depth of
the uppermost layer of water that receives sufficient sunlight, which allows phytoplankton
to perform photosynthesis. The conversion from Secchi disk depth to euphotic depth is
based on a single scaling parameter in the range of 1.79 to 2 [32,34]. As a result of the
relative simplicity of the Secchi disk and method of use, it has become a popular research
tool around the world. The availability of Secchi disk depth data enabled Boyce et al. to
present a 100-year global assessment of phytoplankton levels; the Secchi depth data were
referenced against available satellite data [35]. In the analysis by Boyce et al., the Secchi
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depth was employed to estimate chlorophyll pigment concentration (‘Chl’), measured in
mg/m3, using the following equation:

Chl = 457D−2.37

where D is the Secchi depth in metres.
A recent citizen-science implementation of the Secchi disk [36], which includes water

pH and colour measurements (using a mobile phone camera), has been presented on the
MONOCLE Project-Multiscale Observation Networks for Optical monitoring of Coastal wa-
ters, Lakes and Estuaries (monocle-h2020.eu) [37]. As a result of the legacy of available data,
access to citizen science, and ease of use, the Secchi disk is still a useful and popular tool for
assessing water conditions for HAB detection and monitoring, which can also complement
the findings from the more technically sophisticated remote sensing methods [33,38].

Focusing on the needs of commercial aquaculture, in situ sensors are commercially
available, such as the FluoroProbe III (https://www.bbe-moldaenke.de/en/) and the
TriLux sensor from Chelsea Technology Ltd., Molesey, UK (as employed in this case study).
These digitally connected multi-parameter sensors employ spectral fluorometry methods
to detect chlorophyll-a and can provide real-time measurements as well as depth profile
responses. Such sensors are suitable for integration with a wide range of surface marine
vehicles, platforms, and installations, including buoys. However, for long-term installations,
regular sensor cleaning needs to be performed to remove dirt and biofilms.

The global need for field-portable instrumentation or on-site monitoring systems is
also driving commercial research and development activities. One example of this type of
instrument is the ‘Harmful Algal Bloom Detection Instrument’ from Giner Labs, Newton,
MA, USA [39]. This low-cost hand-held instrument employs rapid electrochemical analysis
technology to deliver parts-per-billion measurements of HAB-related toxins. An example
of on-site equipment enabling rapid sample analysis comes from FlowCam [40], with a
range of products employing flow imaging microscopy with particle counting and analysis
software. This technology can identify taxonomic groups and estimate the concentration
of the dominant organisms, providing proactive and rapid HAB monitoring and enabling
data-driven water resource management [41]. However, as expected, this is a top-end
instrument which would imply exorbitant cost. Another option to identify specific HAB
species is possible through a combination of instrumentation and Artificial Intelligence
(AI)/machine learning (ML) tools. The next section briefly explores the HAB models to
complement the instrumentation.

2.2. HAB AI/ML Models

The tools and instruments explained in the previous section can usually be supple-
mented with a machine learning model. As harmful algal blooms continue to challenge
the aquaculture industry, different models to predict their occurrence are being devel-
oped. Researchers have attempted to develop models based on the functional traits of the
HABs or/and use data from either in situ sensors or satellite-based measurements. These
models [42] are essential to develop an early warning system using short-term forecasting
of HAB movement and develop actions to mitigate their impact, either by neutralising
them or somehow minimising their impact. David et al. [43] conducted a detailed review
of the models developed in the past decade and classified the HAB models into process-
based, statistical, and hybrid models. Process-based models [44] are more suited to the
study of long-term impact and prediction, for example, the impact of climate change. In
comparison, machine learning models based on statistical methods [45] can be used to
deliver short-term predictions.

The process-based models [46] are usually developed specifically for a species, as
these are mechanistic models and consider the environmental conditions that would favour
the growth of a particular species. These models are also much more complex and rely
on data collected over a few decades; for example, Gobler et al. [19] combine sea surface
temperature records from 1982 to 2016 with laboratory-based growth rates for two HAB

https://www.bbe-moldaenke.de/en/
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species, A. catenella (fundyense) and D. acuminata. Such models are essential for the aqua-
culture industry to understand change in their frequency or impacts, which is important
for building resilience in the business. Kim et al. [47] use a hydrodynamic model, the
Environmental Fluid Dynamics Code (EFDC), to understand algal dynamics, which would
help in developing HAB management strategies. Litchman [44] explains that trait-based
systems would be particularly useful; however, there are insufficient data and some gaps in
the understanding to develop such a system. She suggests a hybrid system that combines a
data-driven model with a trait-based system.

Statistical methods are usually more successful for short-term forecasting, especially
when used with in situ sensors. Yu et al. [48] developed an ML model for two locations in
China and the USA using sensor data that demonstrate the versatility of their ML model.
They selected different water quality parameters such as chlorophyll, ammonia, and nitrate
for each ANN (artificial neural network) model. In [38], the authors use another ANN
model to predict chlorophyll-a in an aquaculture setting.

Most of these HAB models are usually specific to a river or an estuary with a focus
on the environment (including wild fisheries) and public health. There are, however,
some relatively recent initiatives whose focus is on supporting aquaculture, for exam-
ple, the Sustainable Aquaculture Innovation Centre (SAIC) project [49], which provides
a tool for Scottish finfish aquaculture (see https://www.habreports.org/ accessed on
14 January 2024). A similar initiative in South Africa [50] is the National OCIMS (The Na-
tional Oceans and Coastal Information Management System) under the Council of Scientific
and Industrial Research (CSIR), South Africa (see https://www.ocims.gov.za/hab/app/
accessed on 14 January 2024), with the aim of supporting aquaculture operations in the
region in addition to marine ecosystems and communities. However, both tools rely on
satellite data and the results are not available immediately.

3. Aquaculture in South Africa

Africa, second to Asia, has a major market for fishery products, with its current produc-
tion of marine and freshwater aquaculture species exceeding 1.8 million tonnes per annum.
However, the current African aquaculture industry is still not meeting the requirements
of its growing population. The South African aquaculture industry specifically, despite
a growing trend in moderate quantities produced since 2005, had to import an average
of 70,000 tonnes per annum of fish and aquatic invertebrates worth ZAR 1.36 billion to
augment the demand during the past decade [51]. This is largely due to the African
aquaculture industry, in particular South Africa which is still in its infancy and has been
hindered by various environmental, economic, social, geographical, and technological
challenges. This article presents a technical intervention to mitigate HABs through the
use of digital technology. We present our results as a case study of Abagold Limited, a
land-based marine aquaculture business that specialises in the large-scale production of
abalone (Haliotis midae) based in Hermanus, South Africa. One of the challenges faced
by Abagold is the threat of harmful algal blooms (HABs). The most recent HAB was in
February–April 2019; the area experienced a severe red tide event with blooms of pre-
dominantly Lingulodinium polyedrum. In this article, we present mechanisms for the early
prediction of HABs. To monitor HABs, currently, Abagold uses costly and time-consuming
manual water sampling and phytoplankton analysis. The early detection of HABs links
directly to health and food security in more than one way. We build upon a well-established
correlation between parameters like chlorophyll, pH, and turbidity with HABs to establish
a framework for an early warning system.

4. Abagold Limited—A Case Study
4.1. Data Collection Site

Abagold Limited (https://www.abagold.com/) cultivates the abalone species, Haliotis
midae, a marine mollusc which is revered around the world as a food delicacy and is
endemic to South Africa. Abagold exports live, canned, and dried abalone internationally

https://www.habreports.org/
https://www.ocims.gov.za/hab/app/
https://www.abagold.com/
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via an integrated supply chain comprising a hatchery, four grow-out farms, and a processing
factory, as well as a feed mill for sustainable feed supply and development. Abagold is
located in Hermanus, nestled in Walker Bay, where pristine waters provide the necessary
nutrients and environment to produce high-quality abalone (Figure 1).
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View Farm.

4.2. Water Quality Parameter and Sensor Selection

Algal biomass dynamics are non-linear and non-stationary due to the complex interac-
tion of physical, chemical, and biological parameters affecting the growth and accumulation
of biomass, and this is a universal problem, so various models have been developed for
its prediction; these are discussed in Section 2.2. Algae have unique pigments that they
use for photosynthesis; these could be monitored by measuring chlorophyll-a, phyco-
cyanin, and phycoerythrin. Chlorophyll-a has been used for many decades to monitor algal
biomass [52]. The pigment phycocyanin is a more specific indicator of blue-green algae
in freshwater systems, and a similar pigment called phycoerythrin is a useful indicator of
blue-green algae in marine systems [53]. In addition to these parameters, turbidity is also
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linked with the presence of algae in water. As the selected site uses water from the ocean,
chlorophyll-a (named as CHL1 (470), for ease here), phycoerythrin (named as CHL2 (530)
for ease here), and turbidity (Tb) were selected to monitor for HABs.

There are various sensors available on the market for these parameters; our selection
was based on cost and ease of availability and delivery to the South African site. Table 2 lists
three multi-parameter instruments that were short-listed as suitable candidates:

Table 2. List of suitable sensor manufacturers.

Manufacturer/Instrument Parameters Distribution Point Cost (GBP)
(Only for Instrument)

In-situ, Inc.
Aqua Troll 500

chlorophyll-a,
phycoerythrin South Africa 5109

Chelsea Technology
Limited Trilux

chlorophyll-a,
phycoerythrin and

turbidity
United Kingdom 4070

Xylem EXO3 chlorophyll-a,
phycoerythrin South Africa 7500

The main problem with the project was the long delivery times for the short-listed
sensors; this was understood to be due to a global shortage (at the time, i.e., last year)
of some components necessary for these instruments. The Trilux sensor was chosen as
Chelsea Technology Limited (CTL) is a long-term project partner with the University of
Bedfordshire, so CTL agreed to lend an instrument. All the data presented in this paper
were collected using the Trilux sensor (Figure 2).
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Figure 2. Installation of Chelsea Technology Limited Trilux sensor at Abagold. (a) Chealsea TriLux,
(b) TriLux installed at Abagold and (c) data console for TriLux.

The parameters, chlorophyll-a (CHL1 (470)), phycoerythrin (CHL2 (530)), and tur-
bidity (Tb), were measured in the units QSU, µg/L, and FNU, respectively (where QSU
stands for quinine sulphate units and FNU stands for Formazin Nephelometric Unit). The
phytoplankton data were recorded manually at fixed times for the months of January,
February, and March. These months were chosen as this is the algal bloom peak time in
South Africa as the sea temperatures are highest. Although the farm continues to monitor
phytoplankton count throughout the year, this is usually very low during the other months
of the year.

Trilux sensor measurements were recorded throughout the months of January, Febru-
ary, and March at 1 s intervals. However, the phytoplankton count was recorded at fixed
times—usually in the morning at 7.40 a.m. Thus, to correlate with these data, Trilux mea-
surements were averaged over a 20 s window for the corresponding date and time on which
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the phytoplankton count was recorded, as shown in Table 3 below and plotted in Figure 3.
Phytoplankton counts are only measured at specific times, so these are indicated as dots
on the graph, whereas other parameters are measured continuously, represented with
line diagrams.

Table 3. Phytoplankton count and 20 sec averaged TriLux data from the Abagold farm.

Sample
Number Date Time CHL1(470)

(QSU) Tb (FNU) CHL2(530)(µg/L) Phytoplankton
Count

2097 10 January 2023 07:40 587.36 913.18 668.46 2650

2100 11 January 2023 07:40 574.86 880.35 643.82 36,475

2102 11 January 2023 12:40 547.48 818.78 624.9 2450

2106 12 January 2023 07:40 564.97 833.26 645.07 40,900

2109 13 January 2023 10:00 519.94 761.65 644.01 7475

2111 16 January 2023 07:40 291.26 405.28 281.08 2725

2113 17 January 2023 07:40 204.49 270.24 172.56 225

2115 18 January 2023 07:40 160.14 210.47 129.87 225

2117 19 January 2023 07:40 181.34 227.35 125.72 200

2119 20 January 2023 07:40 133.3 192.19 110.42 125

2122 23 January 2023 07:58 122.24 244.26 153.84 225

2124 24 January 2023 07:40 76.94 149.72 107.45 725

2127 25 January 2023 07:40 111.14 211.9 163.76 425

2129 26 January 2023 07:40 139.19 278.49 221.26 1700

2131 27 January 2023 07:40 124.53 250.56 196.03 3150

2133 30 January 2023 07:40 169.16 289.41 200.6 75

2135 31 January 2023 07:40 170.37 286.01 204.91 950

2137 1 February 2023 07:40 181.9 306.23 224.78 150

2139 2 February 2023 07:40 209.94 353.66 238.66 725

2141 3 February 2023 07:40 185.23 333.7 243.69 2225

2143 6 February 2023 07:40 193.37 361.69 295.29 925

2145 7 February 2023 07:40 249.15 360.36 269.27 925

2147 8 February 2023 07:40 252.34 406.9 302.79 375

2149 9 February 2023 07:40 359.09 611.48 468.39 1200

2151 10 February 2023 07:40 273.59 377.57 281.56 800

2153 13 February 2023 07:40 408.62 508.17 390.5 675

2160 17 February 2023 07:40 331.44 627.11 632.65 7475

2162 20 February 2023 07:40 96.68 174.63 112.45 250

2164 21 February 2023 07:40 141.96 186.75 99.63 575

2166 22 February 2023 07:40 168.93 211.61 111.27 475

2168 23 February 2023 07:40 102.61 149.74 93.1 1650

2170 24 February 2023 07:40 102.34 155.05 98.27 1200

2172 27 February 2023 07:40 201.81 241.64 128.54 575

2174 28 February 2023 07:40 275.05 312.1 155.98 750

2176 1 February 2023 07:40 333.6 330.24 157.46 750

2178 2 February 2023 07:40 464.66 429.99 200.13 925

2181 6 February 3023 07:40 904.28 1000 708.17 300

2183 7 February 2023 07:40 632.79 799.17 470.68 200
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5. Statistical Analysis

Trilux sensor measurements were recorded throughout the months of January, Febru-
ary, and March. These measurements were processed, as described in Section 4.2, and are
presented in Table 3 together with the phytoplankton count measured each day. Phyto-
plankton count is representative of algal biomass, so although it is not actually measuring
specific HABs, the expectation is that a higher phytoplankton count would imply a higher
probability of an HAB. The TriLux data presented in Table 3 were already cleaned and pre-
processed. Pre-processing involved interpolating any missing data points; this was carried
out before taking a 20 s window average. The next step was to conduct a statistical analysis
of the collected data to establish correlation. The results presented here used Microsoft
Office Excel 365 2016, statistics, and a data analysis toolbox. In addition, MATLAB 14 was
used for data filling and cleaning.

Pearson’s correlation [54] coefficient technique is used to explore the correlation
between the sensor parameters—chlorophyll, phycoerythrin, and turbidity—and the phy-
toplankton data. The Pearson correlation coefficient between two variables, X and Y, is
formally defined as the covariance of the two variables divided by the product of their
standard deviations (which acts as a normalisation factor), and it can be equivalently
defined by

rxy =
∑(xi − x) ∑(yi − y)√

∑(xi − x)2
√

∑(yi − y)2
(1)

where x = 1
n ∑N

i=1 xi denotes the mean of x and y = 1
n ∑N

i=1 yi denotes the mean of y. The coef-
ficient rxy ranges from −1 to 1 and is invariant on linear transformations of either variable.

The table below shows the correlations obtained between the measured chlorophyll-a
(CHL1 (470)), phycoerythrin (CHL2 (530)), turbidity, and phytoplankton data.

Table 4 shows a strong positive correlation between the sensor parameters and the
phytoplankton count. The next step is to develop a regression equation using regression
analysis. For the regression analysis, phytoplankton data are the dependent variable and
CHL1 (470), CHL2 (530), and turbidity are chosen as independent variables.
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Table 4. Correlation table for TriLux data and phytoplankton count from Abagold Sea View farm.

Chlorophyll
(CHL1 (470)) Turbidity Phycoerythrin

(CHL2 (530)) Phytoplankton

Chlorophyll (CHL1 (470)) 1 0.9489 0.8706 0.3858

Turbidity 1 0.9716 0.4854

Phycoerythrin (CHL2 (530)) 1 0.5094

Phytoplankton 1

The regression analysis of the data in Table 3 gives the following equation:

Phytoplankton = −3596 − 30.18 CHL1 + 35.59 Tb + 4.613 CHL2 (2)

This equation forms the foundation to predict harmful algal blooms, using an artificial
neural network (ANN) forecasting model as described in [38]. The HAB/phytoplankton
forecasting model would be an extension of that developed in [38] as it involves three
independent variables to predict one dependent variable. The hybrid forecasting model
method used merges the ensemble empirical mode decomposition (EEMD) method, a
deep learning long-short term memory (LSTM) neural network (NN), and the multivariate
linear regression (MLR) method [55–57]. The ANN model that we developed for reliably
forecasting algal biomass is described in [58]. The model would be further strengthened
with more data collected over different HAB periods. The final intention is to give at least
half a day’s warning to the business in addition to their continuous access to chlorophyll
data. This forms an essential part of their sophisticated risk model which also considers
environmental conditions like temperature differential, wind speed and direction, and
animal behaviour to determine the likelihood of HABs.

6. Forecasting Advantages and Challenges

The mathematical model developed [38] shows that early forecasting of harmful
phytoplankton (algal blooms) using in situ-measured chlorophyll-a (470), turbidity, and
phycoerythrin (530) is possible; this forecasting capability will undeniably prove to be a
useful tool for the aquaculture industry. The data in Table 3 show the phytoplankton count
at the initial entry point of water into the farm. Other locations are also monitored, but as
the intention here was to demonstrate the correlation with chlorophyll data collected using
sensors, those measurements are not reported here. In this case study, the methodology
described to deliver early forecasting of HABs in commercial abalone production has been
demonstrated. This approach should be transferable to other aquaculture systems; however,
the toxicity thresholds will need to be determined and verified for a specific production
environment and product. It is important to emphasise that the sensor measurements here
relate to algal biomass and the resulting early warning system would be a useful tool to
avert a bloom. For example, the 2017 bloom in South Africa occurred within an afternoon
and stayed in the bay for weeks.

6.1. Advantages

This early warning system will allow farms like Abagold to mitigate the impact of
eventualities like an HAB more effectively and efficiently. Subsequently, this reduces risk
and ensures the long-term sustainability of the company, whilst safeguarding a significant
employer in the local community. This model can complement other existing processes
that Abagold already has in place. For example, Abagold uses a risk model to determine
the probability of an HAB occurring. If the probability is high, then the farm is on high
alert and employs additional mitigation measures, including increased sampling.

The main advantage of developing a forecasting model would be to give farms like
Abagold an early warning of upcoming blooms, a tool that can assign a risk category
with a level of prediction, which will enable action to be taken by the farm to minimise
negative impacts of blooms. A system such as this will safeguard the aquaculture industry
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in South Africa, particularly in the Walker Bay region, where Abagold is based. Early
warning allows farms to take remedial actions which include recirculating their water
(i.e., blocking incoming water from the ocean), repeated water/abalone sampling, and
pre-emptive harvesting.

Additionally, there are significant benefits to remote monitoring, without the need to
be present on site. It allows for continuous risk management (including in the evenings and
at weekends) and the development of a historical reference database to better understand
changes over time.

6.2. Challenges

One of the main challenges in developing an HAB forecasting model is acquiring
access to reliable data. Once a model is developed and established with repeated training
and testing, it can be deployed for use with live data. However, during the development of
the model, we still need to rely on manual phytoplankton counting, which could be prone
to errors. The Trilux sensor is a fluorescence-based optical sensor and needs to be kept
clean as it is prone to debris depositing on the water-exposed optical surface. Abagold,
however, has a process of ensuring that the sensors are cleaned regularly by a dedicated
diver. So, the data quality is ensured.

Although this is a ‘low’-cost system, it still requires a capital investment from the
business. Abagold is a prominent member of the Abalone Farmers Association of South
Africa (AFASA), which represents the abalone producers in South Africa (of which there
are 14), an industry which provides employment for some 2000 individuals. There is the
opportunity to disseminate the work completed here through this association to deliver
broader impacts across the sector and region. The model could additionally have further
applications in the future, including in the mussel, oyster, and finfish aquaculture industry
in South Africa, as well as applications for recreational coastal users.

This project illustrated a need for training in the sector; this is essential not only for
developing useful skills among the workforce but also in challenging mindsets through,
as an example, digital and technical literacy campaigns. Reservations regarding digital
technologies amongst the general workforce include the replacement of manual jobs.
However, appropriately implemented digital technologies stand to allow for improved
effectiveness and efficiency, whilst upskilling critical workforces.

7. Conclusions and Further Work

This article presents the development of a novel hybrid water quality forecasting
model based on a TriLux multi-parameter sensor to monitor water quality parameters and
the application of a specialised EEMD method, with a deep learning LSTM NN. The actual
experimental real water quality data from Abagold Limited show a good correlation as a
basis for the forecasting model.

The mathematical model developed so far shows that early forecasting of phytoplank-
ton activity with the aid of the actual sensor-monitored chlorophyll-a (470), turbidity, and
phycoerythrin (530) time-series data is possible. This forecasting will undeniably prove to
be a useful tool in the management of HABs in the aquaculture industry.

Early prediction of HABs will ensure a reduction in animal health issues whilst im-
proving economic turnover for the aquaculture sector. Furthermore, some HAB-associated
species are also detrimental to human health. Early detection allows for improved food
safety and export compliance. There is a confirmed correlation between monitoring pa-
rameters like chlorophyll and turbidity with phytoplankton count. In seeking solutions to
the aforementioned challenges associated with prevailing water quality monitoring in the
aquaculture industry, more research must be carried out in areas of effectiveness, efficiency,
prediction accuracy, reliability, and the application of existing water quality prediction
models and management methodologies in the precision aquaculture ecosystem.
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