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Abstract: Lakes play a crucial role in the earth’s ecosystems and human activities. While turbidity is
not a direct biochemical indicator of lake water quality, it is relatively easy to measure and indicates
trophic status and lake health. Although ocean color satellites have been widely used to monitor
water color parameters, their coarse spatial resolution makes it hard to capture the fine spatial
variability of turbidity in lakes. The combination of Sentinel-2 and Landsat provides an opportunity
to monitor lake turbidity with high spatial and temporal resolution. This study aims to generate
consistent turbidity products in Taihu Lake from 2018 to 2022 using the Multispectral Instrument
(MSI) on board Sentinel-2A/B and the Operational Land Imager (OLI) on board Landsat-8/9. We
first tested the performance of three atmospheric correction methods to retrieve consistent reflectance
from MSI and OLI images. We found that the Rayleigh correction and a subtraction of the SWIR
band from Rayleigh-corrected reflectance can generate the most consistent reflectance (the coefficient
of determination (R2) > 0.84, the mean absolution percentage error (MAPE) < 7%, the median error
(ME) < 0.0035, and slope > 0.92). Machine learning models outperformed an existing semi-analytical
retrieval algorithm in retrieving turbidity (MSI: R2 = 0.92, MAPE = 18.78%, and OLI: R2 = 0.93,
MAPE = 16.20%). The consistency of turbidity from the same-day MSI and OLI images was also
satisfactory (N = 3110 and MAPE = 26.48%). The distribution of turbidity exhibited obvious spatial
and seasonal variability in Taihu Lake from 2018 to 2022. The results show the potential of MSI and
OLI when combined to monitor inland lake water quality.

Keywords: turbidity; remote sensing; water quality; Sentinel-2A/B; Landsat-8/9

1. Introduction

Lakes are widely distributed on the earth’s surface and are critical for the survival and
development of human society. Lakes not only provide valuable freshwater resources but
also have various ecological and environmental functions [1]. However, human activities
and climate change have caused serious water quality problems in numerous lakes through-
out the world, which directly affect human well-being [2]. For this reason, monitoring lake
water quality parameters has important socioeconomic significance. Turbidity is closely
associated with the nutritional status and primary productivity of the water body [3]. As
an optical scattering indicator of water turbidity, turbidity is measured by detecting the
scattering intensity of water and used as a rough indicator of fine suspended matter in
water [4]. Although turbidity is one of the simplest measures of optical characteristics
and pollution degree of a water body, traditional field sampling methods are difficult to
capture the overall spatial and temporal changes of lake turbidity due to a limited number
of points. In comparison, satellite observation has been widely used to provide long-term
and large-scale water quality monitoring [5].
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Generally, ocean color satellites, such as the Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Medium Res-
olution Imaging Spectrometer (MERIS), have been successfully employed to analyze the
turbidity distribution in coastal waters and inland lakes [6–8]. However, the coarse spatial
resolution (250–1000 m) of ocean color instruments limits their use at small scales due
to their insufficient ability to capture spatial details in turbidity. While moderate spatial
resolution missions (10–100 m) were initially designed primarily for land applications,
some researchers have carried out research using them to monitor the turbidity of water.
For example, Goodin et al. [9] found that the SPOT-HRV2 red band has a good correla-
tion with turbidity and mapped turbidity in the Tuttle Creek Reservoir in Kansas, USA.
Bustamante et al. [10] predicted water turbidity from Landsat band 3 using generalized
additive models. Zhou et al. [11] used a long-time series of Landsat images to retrieve urban
water turbidity and analyze factors driving turbidity changes. Rodríguez-López et al. [12]
combined in situ measurement of Secchi disk depth with Landsat images to develop
empirical turbidity models in Araucanian lakes.

Recently, the new generation of sensors with several enhancements, such as the Mul-
tispectral Instrument (MSI) on board Sentinel-2A/B and the Operational Land Imager
(OLI) on board Landsat-8/9, have become appealing instruments for inland water mon-
itoring [13,14]. The OLI has nine spectral bands in the visible, near-infrared (NIR), and
shortwave infrared (SWIR) with a spatial resolution of 30 m. While the revisit period of
Landsat-8 is 16 days, it was improved to 8 days when Landsat-9 became operational in 2021.
Compared to the OLI, the MSI has three additional red-edge bands, a spatial resolution of
10–60 m, and a 5-day revisit time. Although the OLI and MSI have finer spatial resolution
than ocean color sensors, their low temporal resolution makes it challenging to frequently
monitor quickly changing inland lakes.

Recent publications have demonstrated the capability of combining the MSI and OLI
data for water quality parameter monitoring. MSI and OLI have similar spatial resolution
and radiometric performances, and their combination can improve the revisit time to
2–3 days, which is comparable to the Ocean and Land Color Instrument (OLCI) on board
Sentinel-3 and MODIS. For example, Ciancia et al. [15] trained and validated a Sentinel-
2A MSI-based total suspended matter (TSM) model, then generated a MSI-OLI merged
model by calibrating OLI data. Benjamin et al. [16] mapped water clarity in some lakes
through harmonized images from Landsat-8 and Sentinel-2. Pahlevan et al. [17] assessed
extensive Landsat-8 and Sentinel-2A/B aquatic products, including the top-of-atmosphere
(TOA) reflectance, the remote-sensing reflectance (Rrs), and water quality parameters.
Nonetheless, several challenges remain in combing multiple moderate spatial resolution
satellite missions to generate consistent turbidity products in inland lakes.

A mass of related research and field observation data has proved that the visible and
near-infrared reflectance are elevated with increasing turbidity [18–20]. The accuracy of
turbidity retrievals depends on the performance of atmospheric correction (AC) methods
to recover Rrs from at-sensor measurements. However, the common AC methods are not
yet available for optically complex inland waters, and few attempts have been made to
evaluate the performance of several specialized AC methods [21–23]. Thus, AC is one of the
biggest challenges in creating consistent MSI-OLI turbidity products in inland waters. A
second major challenge is to develop a specialized algorithm to retrieve turbidity in inland
lakes from MSI and OLI Level-2 data. The number of MSI and OLI near-simultaneous nadir
overpasses (n-SNO) is insufficient considering cloud coverage, which requires that the field
data used for MSI and OLI modeling, respectively, be long-term stable. However, in inland
lakes, the use of platforms for stationary water quality measurements is still incipient [24].
Regarding the estimation algorithm of turbidity, most models are empirical and rely on a
strong correlation between turbidity and derived reflectance [25]. In fact, turbidity is often
influenced by several matters such as chlorophyll-a (Chl-a), TSM, and colored dissolved
organic matter (CDOM), so the relationship between turbidity and reflectance is not obvious
when the optical or biochemical properties of water change [26]. Due to their good data
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mining capabilities, machine learning algorithms provide an alternative way to describe
the nonlinear relationship between objective and feature variables.

The goal of this article is to generate consistent turbidity products in Taihu Lake in
China from 2018 to 2022 using Sentinel-2A/B and Landsat-8/9. To achieve this goal, we
began by calculating the agreement of reflectance derived from MSI and OLI to evaluate the
performance of three AC methods. We then trained and calibrated machine learning models
for retrieving turbidity using MSI and OLI datasets, respectively. Finally, we assessed the
consistency of turbidity products and mapped turbidity in Taihu Lake from MSI and OLI
images from 2018 to 2022. The overarching methodological framework is shown in Figure 1.
Specifically, this study is innovative in the following three aspects:

(1) Testing the performance of three aquatic AC methods to retrieve consistent reflectance
products;

(2) Developing a machine learning model for turbidity retrieval in Taihu Lake;
(3) Proposing a method for evaluating the consistency of MSI and OLI products in inland

water bodies.
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Figure 1. Flow chart of this study, yellow rectangles represent the input, green rectangles represent
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2. Materials and Methods
2.1. Study Area

Taihu Lake is located in the Lower Reaches of the Yangtze River and is the third largest
freshwater lake in China with a water surface area of 2338 km2 (between 30◦55′–31◦33′N
and 119◦52′–120◦36′E, Figure 2). The lake’s average water depth is 1.9 m, and its maximum
water depth is 3 m [27]. At present, the maximum length of Taihu Lake is 68 km, the
average width is 35.7 km, and the total length of the shoreline is more than 393 km. The
rapid economic development of the cities around Taihu Lake has led to the deterioration
of water quality, which has an adverse impact on people’s drinking water. Although the
government has taken some measures to improve water quality, algal blooms are still
frequently observed [28]. Taihu Lake is characterized by varying turbidity due to inputs
from rivers and sediment resuspension [29]. In this study, East Taihu is masked due to
aquatic vegetation coverage.
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Figure 2. Location of Taihu Lake in Eastern China (a) and 11 automatic water quality stations (b).

2.2. Field Data

The turbidity data coincident with satellite overpasses was collected from the daily
measurement data of automatic water quality monitoring stations in Taihu Lake. In this
study, 11 stations distributed throughout the lake were considered (Figure 2). In each station,
turbidity was measured by nephelometry [30]. The unit of measurement is nephelometric
turbidity units (NTU). Specifically, a water sample is collected into the sample pool by
the pump and mixed with a 400 NTU standard turbidity solution. The standard solution
was prepared by mixing C6H12N4, N2H6SO4, and distilled water. A beam of light from an
LED light with a wavelength of 860 nm passes through the sample pool. The intensity of
scattered light is measured by a sensor positioned perpendicular to the emitted light. The
turbidity of the water sample has a certain proportional relationship with the intensity of
scattered light.

2.3. Satellite Data Acquisition and Processing

All available Level-1C Sentinel-2A/B and Level-1T Landsat-8/9 images from 2018
to January 2023 in Taihu Lake were downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/ accessed on 1 February 2023) and the United States Ge-
ological Survey (https://earthexploer.usgs.gov/ accessed on 1 February 2023), respec-
tively(Figure 3). Details of MSI and OLI are given in Table 1. Ultimately, 76 MSI and
42 OLI data scenes with less than 30% cloud cover were obtained. Note that all images
are TOA products. In this study, we tested three mature AC methods: the Case-2 Re-
gional Coast Color (C2RCC) processor, the Dark Spectrum Fitting (DSF) algorithm, and
Rayleigh Correction.
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Table 1. Band setting and SNRs of Sentinel-2A/B MSI and Landsat-8/9 OLI.

Sentinel-2A/B MSI Landsat-8/9 OLI

Center
Wavelength (nm) Resolution (m) Signal-to-Noise

Ratio
Center

Wavelength (nm) Resolution (m) Signal-to-Noise
Ratio

443/442 60 1367 443 30 332
493/492 10 206 482 30 381
560/559 10 235 561 30 256

665 10 218 655/654 30 134
704 20 243

741/740 20 212
783/780 20 220

833 10 213
865/864 20 155 865 30 92

2202/2186 20 165 2201 30 40

The C2RCC processor is based on neural networks and relies on a large database of
simulated water-leaving reflectance and related TOA radiance [31]. We used C2RCC on
the Sentinel Applications Platform (SNAP, version 9.0) software and set the salinity to
12 PSU. The DSF algorithm assumes that the atmosphere is homogeneous and estimates
atmospheric path reflectance from the lowest TOA reflectance of multiple targets in all
bands [32]. This algorithm has been integrated into the ACOLITE software, and the version
we used is 20210802. The outputs of the C2RCC processor and the DSF algorithm were
both Rrs (sr−1). Rayleigh correction has been validated as an alternative AC method
for application in inland waters in various studies [33–35]. Rayleigh correction is also
available on the ACOLITE software. The outputs of the Rayleigh correction were Rayleigh-
corrected reflectance (Rrc, dimensionless) instead of Rrs. After correcting the absorption of
water vapor and ozone as well as Rayleigh scattering, based on the assumption that the
signals in the SWIR are dominated by aerosol signals, all Rrc between visible and NIR are
subtracted by Rrc_swir to get R

′
rc [36]. We call this sample the aerosol correction of Rrc the

Rayleigh-SWIR.

2.4. Satellite Data to In Situ Match-Ups

In general, match-ups between satellite and field data used a time window of
±3 h [37]. The overpass times for MSI and OLI at Taihu Lake are 10:35 a.m. and 10:30 a.m.
Each water quality monitoring station measures turbidity at 4:00 a.m., 12:00 a.m., and
20:00 p.m., respectively. We collected field measurements at 12:00 a.m., which satisfied
a time difference of <3 h. Moreover, we excluded the measurements when the stations
were covered by clouds, shadows, and algae blooms. The value of turbidity greater than
300 NTU was also excluded because high turbidity was rare. Spatial windows (3× 3 pixels)
centered on stations were applied to extract the mean value of images as match-ups. A total
of 193 MSI match-ups and 101 OLI match-ups were obtained to train and validate turbidity
retrieval models. Table 2 and Figure 4 show the descriptive statistics and distributions of
match-ups.

Table 2. Statistics of turbidity from eleven stations matched with satellites. Std denotes the standard
deviation.

Sensor Number
Turbidity (NTU)

Range Mean Std

MSI 193 6–216 50 39
OLI 101 8–208 47 34
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2.5. Retrieval Model Development

Dogliotti et al. [38] constructed a single-band semi-analytical turbidity retrieval algo-
rithm using 645 nm and 895 nm bands. The algorithm is suitable for turbidity retrieval in
the range of 1–1000 Formazin Nephelometric Units (FNU) in coastal and estuarine waters.
Both NTU and FNU use Formazin’s primary standard and can be converted to each other.
However, turbid lakes have more complicated optical properties than coastal and estuarine
waters, resulting in difficulty retrieving turbidity using a single band [39].

In recent years, machine learning has been used to estimate water quality parameters
from multi-bands [40–42]. In this study, we test three machine learning models using
reflectance as inputs: eXtreme Gradient Boosting (XGBoost) [43], support vector regression
(SVR) [44], and random forest (RF) [45]. SVR can solve the non-linear problems in low-
dimensional feature space by seeking a linear function in high-dimensional feature space.
RF establishes multiple decision trees and outputs the average predicted value for each
tree. XGBoost predicts the sum of scores in multiple regression trees [46].

The inputs to the models for MSI and OLI were nine and five spectral bands from
visible to NIR, respectively. We separated all match-ups into two subsets: 70% MSI (n = 135)
and OLI (n = 70) samples were used to train models, and the remaining 30% MSI (n = 58) and
OLI (n = 31) samples were used to test the performance of models. The hyperparameters of
each model were determined by cross-validation grid search in Scikit-Learn of Python.

2.6. Intercomparisons at n-SNO

The similar overpass time of Sentinel-2A/B and Landsat-8/9 at the same location
allows us to assess the consistency of the intercomparisons at n-SNO events [47]. We
performed the consistency assessment for reflectance and turbidity products, and the
reflectance intercomparisons were carried out for the MSI and OLI’s similar spectral bands.
Due to similarities in atmospheric and aquatic conditions, we could choose the optimal
AC method according to the consistency of the image-derived reflectance and address the
input differences in turbidity retrieval. The comparison between synchronous MSI and
OLI image-derived turbidity determines whether they can generate combined turbidity
products in Taihu Lake.

A total of 7 n-SNO events in all of the scenes we acquired. In order to minimize
uncertainties in the intercomparisons, we first generated random points with 1 km intervals
in Taihu Lake, so that each scene has 468 points. Then the MSI data were resampled to
30 m for consistency with the OLI data. The values of reflectance and turbidity were taken
from 3 × 3 spatial windows centered on random points.
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2.7. Performance Metrics

Common metrics such as the coefficient of determination (R2), mean absolution per-
centage error (MAPE), and root mean square error (RMSE) (Equations (1)–(3)) were used to
access the performance of models and the consistency of aquatic products [48].

R2 = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(xi − x)2 , (1)

MAPE =
1
n

n

∑
i=1

|yi − xi|
xi

× 100%, (2)

RMSE =

√
∑n

i=1(yi − xi)
2

n
, (3)

where n is the number of points. For the performance evaluation, xi and yi are the retrieved
values and measured values, respectively; for the consistency analyses, xi and yi are the
MSI and OLI image-derived values, respectively. We also used the median error (ME) and
slope (Equations (4) and (5)) to access consistency in MSI and OLI products due to the
presence of outliers and noise [49].

ME = Median(yi − xi), (4)

Slope =
yi − 1

xi
. (5)

3. Results
3.1. Performance of AC Algorithms

The statistical metrics for intercomparisons of Rrs after DSF and C2RCC as well as R
′
rc

after Rayleigh-SWIR are summarized in Table 3. Since the ranges of reflectance estimated
by the three AC methods are different, RMSE cannot be used as a metric of consistency
assessment but can represent the performance in different bands. With the values of R2,
MAPE, ME, and slope, it is possible to evaluate the performance of each AC method
based on the consistency of reflectance products. Overall, different AC methods performed
differently on various bands, and all AC methods performed worst in NIR bands.

Among the three AC methods, the consistency of R
′
rc derived from MSI and OLI images

by Rayleigh-SWIR performance was better than Rrs derived by DSF and C2RCC, particu-
larly in the band of 865 nm. All the visible and NIR bands of MSI and OLI intercomparisons,
R
′
rc indicate relative consistency (R2 > 0.84, MAPE < 7%, ME < 0.0035, and Slope > 0.92).

Rrs derived by C2RCC presented the worst consistency (average MAPE = 45.76%), possibly
due to C2RCC underestimated Rrs of turbid water.

The scatterplots show good consistency between the MSI-derived R
′
rc through the

Rayleigh-SWIR method and the corresponding OLI-derived values (Figure 5). Most in-
tercomparisons are evenly distributed around line 1:1. However, R

′
rc greater than 0.06 at

865 nm depicted a large deviation, which is possibly related to slight algal blooms. In particu-
lar, R

′
rc (665) and R

′
rc (655) agree to within <6%, which is extremely beneficial for generating

consistent turbidity products, as the red band contributes the most to turbidity retrieval.

Table 3. Statistical metrics for MSI-OLI intercomparisons of reflectance after AC.

DSF

Central Wavelength (nm) 443 492/483 560/561 665/655 865
R2 0.65 0.69 0.49 0.79 0.61

MAPE 20.47% 13.38% 12.37% 20.47% 81.70%
RMSE (sr−1) 0.0046 0.0043 0.0055 0.0054 0.0069
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Table 3. Cont.

DSF

ME (sr−1) 0.0019 0.0014 0.0026 0.0036 0.0022
Slope 1.10 0.98 0.72 0.91 0.86

C2RCC

Central Wavelength (nm) 443 492/483 560/561 665/655 865
R2 0.84 0.83 0.75 0.76 0.77

MAPE 22.58% 27.78% 50.49% 57.43% 70.50%
RMSE (sr−1) 0.0014 0.0021 0.0055 0.0044 0.0010

ME (sr−1) −0.0005 −0.0011 −0.0033 −0.0017 −0.0007
Slope 0.88 0.81 0.55 0.60 0.47

Rayleigh-SWIR

Central Wavelength (nm) 443 492/483 560/561 665/655 865
R2 0.84 0.89 0.90 0.96 0.88

MAPE 4.53% 3.81% 3.19% 5.76% 6.19%
RMSE 0.0056 0.0049 0.0050 0.0056 0.0052

ME −0.0016 0.0009 0.0004 0.0035 −3 × 10−5

Slope 0.92 0.92 0.97 0.95 0.98
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Figure 5. The intercomparisons (n = 3260) of R
′
rc products from MSI and OLI at n-SNO, (a–e) represent

the comparison of five similar bands of MSI and OLI, respectively.

3.2. Performance of Algorithms in Turbidity Retrieval

The mean values of R
′
rc of MSI and OLI bands for turbidity at different values are

shown in Figure 6. Overall, the average R
′
rc was proportional to turbidity, and the signals

from turbidity changes were well captured by MSI- and OLI-derived R
′
rc through the

Rayleigh-SWIR method. Each R
′
rc at MSI and OLI visible bands had significant correlations

with turbidity, and the difference of R
′
rc gradually reduced at the NIR bands. The R

′
rc curve

shape was similar in each turbidity range, and the peak of the curse was at 560 nm.
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Figure 6. Average R
′
rc at MSI (a) and OLI (b) bands in different turbidity ranges.

According to the statistical metrics calculated on the validation data, XGBoost, SVR,
and RF had similar performance for turbidity retrievals, although RF had a slightly worse
performance (Figure 7a–c). Machine learning models outperformed the semi-analytical
algorithm built by Dogliotti et al. (Figure 7d) from R

′
rc, particularly for high turbidity values.

Among them, XGBoost had the best performance for MSI (R2 = 0.92, MAPE = 18.78%,
RMSE = 10.23 NTU), and SVR had the best performance for OLI (R2 = 0.93, MAPE = 16.20%,
RMSE = 9.53 NTU).
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3.3. Comparison of Turbidity Products between MSI and OLI

Examples of turbidity distributions from the same-day MSI and OLI images were
mapped in Figure 8. The range of the color bar was retained consistently for a better
comparison. XGBoost-derived turbidity from MSI R

′
rc exhibited consistent spatial distribu-

tions with SVR-derived turbidity from synchronous OLI R
′
rc in Taihu Lake. MSI-derived

turbidity was highly consistent with OLI-derived turbidity in clean lake water, such as in
the north and east of Taihu Lake. However, MSI-derived turbidity was slightly higher than
OLI-derived turbidity in turbid lake water, such as in the south and west of Taihu Lake.

For all n-SNO of MSI and OLI images, the difference between intercomparisons
of MSI- and OLI-derived turbidity was relatively small (R2 = 0.88, MAPE = 26.48%,
RMSE = 34.45 NTU, ME = 15.7 NTU, Slope = 0.68). The scatterplots (Figure 9) show that
MSI- and OLI-derived turbidity (<75 NTU) were evenly distributed along the 1:1 line.
Despite MSI-derived turbidity being higher than OLI-derived turbidity (>75 NTU), they
still maintain a certain correlation.
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4. Discussion
4.1. Strengths and Limitations of AC

Ideally, in situ Rrs should be used to test the performance of different AC methods.
However, it is difficult to collect sufficient in situ data to test the ability of AC methods to
estimate accurate and consistent reflectance. The Rayleigh-SWIR method outperformed
other methods in deriving consistent reflectance products from MSI and OLI images in
Taihu Lake. The errors of AC generally come from aerosol corrections, while Rrc has
been proven accurate without an aerosol correction [50]. Aerosol correction of Rrc is the
subtraction of the SWIR band from Rrc(λ), which does not change the spectral shape of
R
′
rc. DSF algorithm needs dark pixels to identify aerosol models. For Taihu Lake, located

in the urban agglomeration, insufficient dark pixels may lead to the failure of aerosol
correction [51]. The accuracy of C2RCC is influenced by the input of the model, such
as bio-optical parameters, and several studies have also reported the inadequacy of the
C2RCC algorithm in retrieving Rrs in highly turbid water [52].

However, SWIR signals over water are influenced by nearby land pixels and under-
water vegetation, resulting in negative retrieval of R

′
rc in nearshore and shallow water.

In addition, the subtraction of SWIR from all bands ignores the spatial and spectral vari-
ability of the aerosol, so R

′
rc may retain residual aerosol signals or overcorrect the aerosol

signals [53].

4.2. Sources of Uncertainty

Although the consistency of MSI- and OLI-derived turbidity indicated that MSI and
OLI can combine to generate turbidity time series in Taihu Lake, the difference in the
calibrated results is still 26%. First, the MSI and OLI’s similar bands have different spectral
specifications and radiometric performances [54]. For example, the MSI and OLI red
channels have significant differences in center wavelength and spectral responses, and new
instruments always have a better Signal-to-Noise Ratio than the older ones. Since we did
not calibrate the original TOA reflectance, this instrument-induced deviation is about 1–3%
and will translate to further products [55]. In addition, MSI- and OLI-derived R

′
rc using

the Rayleigh-SWIR method had an average 4.7% difference, which would translate into
retrieval model development and turbidity retrieval.

Machine learning models had good performance for turbidity retrievals from MSI and
OLI in the optically complex Taihu Lake. Although the changes in turbidity are closely
related to spectral bands, the complex water composition of inland water makes turbidity
retrieval challenging. Machine learning algorithms can capture non-linearities between
all bands and turbidity in the presence of residual atmospheric signals [56]. However, the
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applicability of machine learning models depends on the range of input data [57]. MSI
and OLI match-ups are insufficient in high turbidity, which results in uncertainties. In
particular, the performance of the OLI model decreases with the increase in turbidity due
to fewer match-ups. In addition, although the match-ups were collected from MSI and
OLI images in all seasons, the rainy summer climate in the lower reaches of the Yangtze
River made images in the summer insufficient. Finally, precipitation and wind can cause
rapid changes in water quality [58], and the uncertainty between field measurements and
image-derived increased the deviation of turbidity products between MSI and OLI.

4.3. Time-Series Analyses

The annual mean turbidity from MSI and OLI images is shown in Figure 10. MSI
images were resampled to 30 m to compute the mean turbidity with OLI images. The
distribution of turbidity exhibited obvious spatial and interannual changes in Taihu Lake
from 2018 to 2022. Five bays in the north and east of Taihu Lake had lower turbidity, and
the turbidity of the open area in the north and west of Taihu Lake was high (mean turbidity
above 100 NTU). This was mainly due to the resuspension of sediment by wind in open
areas [59]. Among the five bays, the turbidity values of the two eastern bays were the
lowest (mean turbidity below 30 NTU), and the mean turbidity values of the three northern
bays ranged from 50 to 100 NTU. Similar to the results of Yin et al. [27], Secchi disk depth
(Zsd) was low in the open area and high in the five bays, which also confirms the high
correlation between turbidity and Zsd.
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The interannual changes in turbidity in different sub-regions of the lake varied. The
turbidity trend in the open area varied greatly from year to year. The turbidity of the five
bays is basically about 50 NTU. In contrast, turbidity in open areas peaked in 2018 and
2021, with both mean turbidities of 150 NTU. Yin et al. [27] also indicated that Zsd showed
fluctuations over time. We need more available images from past years to summarize
turbidity trends in open areas.

Moreover, the distributions of seasonal mean turbidity were also mapped in Figure 11,
with winter mean turbidity included in the available images for 2023. The distribution of
turbidity exhibited obvious seasonal characteristics in Taihu Lake. Turbidity was highest in
the winter and lowest in the summer. Observations used in statistics for seasonal averages
of turbidity included more than 20 images, indicating that seasonal mean turbidity can
reflect the actual trends of turbidity.

Daily in situ and MSI- and OLI-derived turbidity time series at one of the stations
in Taihu Lake from 2018 to 2023 are illustrated in Figure 12. This station is located in the
center of the lake and has the most complete daily in situ observations. In situ data also
indicated that turbidity in winter was higher than in other seasons at the central lake. MSI-
and OLI-derived turbidity had a consistent temporal trend with in situ turbidity. Although
image-derived turbidity still deviated from in situ turbidity, the combination of MSI and
OLI increased the number of available observations of dynamical inland lakes. In addition,
the time series of the other two stations are illustrated in Figure A1.
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Appendix A 

Figure 12. Time-series of in situ and MSI- and OLI-derived turbidity for one station from 2018 to
2023 in Taihu Lake. The date of (a) is from 1 January 2018 to 30 June 2020 and the date of (b) is from 1
July 2020 to 28 February 2023.

5. Conclusions

In this study, we generated consistent turbidity products in Taihu Lake from 2018 to
2022 using Sentinel-2A/B MSI and Landsat-8/9 OLI. We tested the performance of three
aquatic AC methods to retrieve consistent reflectance products. The R

′
rc derived from

MSI and OLI images by Rayleigh-SWIR were most consistent. Machine learning models
outperformed an existing semi-analytical retrieval algorithm, where XGboost and SVR had
the best performance for MSI and OLI turbidity retrievals, respectively. Machine learning
models were selected to retrieve turbidity from MSI and OLI R

′
rc images. The consistency

of turbidity retrievals was validated with the intercomparisons from the same-day MSI and
OLI images. Finally, we generate the annual and seasonal mean turbidity from all MSI and
OLI images. The time series indicated that MSI and OLI had high potential for combining
to monitor lake water quality.

However, some uncertainties in our study should be resolved in the future. Firstly,
Rayleigh-SWIR is not a perfect AC method; the low signal-to-noise ratios of MSI and OLI
in SWIR bands affect the accuracy of correcting aerosol signals. Methods for estimating
aerosol signals in Rrc need some improvement. Then, we need more MSI and OLI images
of other inland lakes to verify the generality of the process and more in situ turbidity data
to reduce the differences between models in high turbidity.
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2023 in Taihu Lake. (a,b) map a station in the open area of the lake, (c,d) map a station in the bay of
the lake.
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