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Abstract: Ship detection technology has achieved significant progress recently. However, for practical
applications, lightweight ship detection still remains a very challenging problem since small ships
have small relative scales in wide images and are easily missed in the background. To promote the
research and application of small-ship detection, we propose a new remote sensing image dataset
(VRS-SD v2) and provide a fog simulation method that reflects the actual background in remote
sensing ship detection. The experiment results show that the proposed fog simulation is beneficial
in improving the robustness of the model for extreme weather. Further, we propose a lightweight
detector (LMSD-Net) for ship detection. Ablation experiments indicate the improved ELA-C3 module
can efficiently extract features and improve the detection accuracy, and the proposed WGC-PANet can
reduce the model parameters and computation complexity to ensure a lightweight nature. In addition,
we add a Contextual Transformer (CoT) block to improve the localization accuracy and propose
an improved localization loss specialized for tiny-ship prediction. Finally, the overall performance
experiments demonstrate that LMSD-Net is competitive in lightweight ship detection among the
SOTA models. The overall performance achieves 81.3% in AP@50 and could meet the lightweight
and real-time detection requirements.

Keywords: optical remote sensing; small-ship detection; lightweight detection; convolutional neural
network

1. Introduction

Ship detection has gained much attention in the field of marine remote sensing. It
has been widely used in sea area management, maritime intelligent traffic, and military
target reconnaissance [1–4]. In sea area management, ship detection can improve sea area
security, such as assisting in combating illegal smuggling, illegal oil dumping, and illegal
fishing [5,6]. Both maritime intelligent traffic and military target reconnaissance rely on
Automatic Identification System (AIS) and Vessel Traffic System (VTS) to determine the
current position of a ship. Although AIS and VTS integrate multiple technologies such as
Very High Frequency (VHF), Global Positioning System (GPS), and Electronic Chart Display
and Information System (ECDIS) technologies, an essential prerequisite is that the ship
must be equipped with the corresponding transponder. However, ships below the standard
tonnage specified by the International Maritime Organization (IMO) can be unnecessarily
equipped with AIS or VTS, which means the Electronic Charts and GPS will not work.
In addition to tonnage restrictions, some other special-purpose ships often deliberately
turn off their transceivers to avoid radar detection. Therefore, optical image-based remote
sensing detection techniques can provide an effective means in these cases. In addition,
lightweight research for detection is essential to improve efficiency further.
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In recent years, a large number of high-resolution optical remote sensing images (ORSI)
have been collected for ship detection since the optimization of optical sensors and accurate
geometric correction. However, the following challenges remain in ORSI for ship detection:

Large field of view: Due to different parameter settings of imaging sensors and
changes in the flight altitude of the acquisition platform, the target scale changes sharply,
which increases the model burden. In addition, the objects of interest in nearshore remote
sensing images are usually tiny and densely clustered. Rapid low-altitude flight causes
motion blur in dense target areas, posing challenges for detection.

Background interference: In high-resolution images, some environmental conditions,
such as fog and low light, will indirectly amplify the interference of sea clutter, wake waves,
islands, and other false alarms in the detection. Therefore, it is necessary to consider the
impact of complex weather conditions on the image.

Application limitations: Some embedded processors have limited computational
performance and storage space. Reducing the computation and spatial complexity of the
model with guaranteed performance is crucial for lightweight deployment.

To solve the above problems, traditional methods based on supervised learning are
highly dependent on feature descriptors, such as HOG [7], DPM [8], and FourierHOG [9].
For the sparse distribution of small ships on the sea, if feature extraction and calculation are
directly implemented within the global sea area, it will greatly increase memory and time
consumption. Subsequently, some studies [10–13] have added a candidate region extraction
stage, which could significantly improve the detection speed. However, nearshore dense
ships often cause candidate regions to overlap, which is not conducive to feature discrimina-
tion. Therefore, these traditional methods are not very robust for unified marine–nearshore
ship detection.

With the tremendous success of Convolutional Neural Networks (CNNs) in image
classification, CNN has been migrated to object detection frameworks and has played a
significant role. Furthermore, the construction of datasets, such as PASCAL VOC chal-
lenges [14,15] (VOC2007 and VOC2012), ImageNet large-scale visual recognition chal-
lenges [16,17] (ILSVRC2014), and MS-COCO detection challenges [18], has laid a data-
driven foundation for the broad application of CNN in object detection.

In the past few decades, two-stage detectors based on CNN have inherited the tra-
ditional detection approach, which involves extracting candidate regions first and then
discriminating targets, such as SPP-Net [19], R-FCN [20], and Faster R-CNN [21]. Progres-
sively, instead of traditional candidate region extraction methods, related research attempts
to use learnable regional proposal networks (RPNs) and achieve state-of-the-art (SOTA)
performance in terms of accuracy. For instance, Hu [22] proposed a two-stage detector
to improve the accuracy of multi-scale ship targets in complex backgrounds. However,
the higher accuracy comes at the cost of detection speed loss. In contrast, single-stage
detectors have faster detection velocities, such as RetinaNet [23], Centernet [24], and YOLO
series v3–v8 [25–30]. For instance, Wang [31] used Yolov4 for ship inspections. Despite
a large increase in speed, multi-scale detection performance was poor. For this reason,
Ye [32] proposed an adaptive attention fusion mechanism (AAFM) to cope with multi-scale
target detection in remote sensing scenes and achieved a better performance. Xu [33]
proposed a specific model named LMO-YOLO for ship detection. However, for the detec-
tion of small and tiny ship targets, the current accuracy is still low. The low accuracy of
these single-stage detectors is the result of sample imbalance. Subsequently, Zhang [34]
proposed a balanced learning method to solve the problem of imbalance in the target,
scene, and feature pyramid network and classification regression network and achieved
better results. In addition, since being inspired by Visual Transformer in Natural Language
Processing (NLP), some single-stage detectors have shown great potential, such as Swin
Transformer [35,36], Detr [37], and MobileViT [38]. Transformer-based detectors usually use
attention matrices to establish the dependencies of sequence elements, which focuses more
on contextual information. Remote feature interactions in the transformer can compensate
for CNN’s shortcomings. However, high computation complexity and large numbers of
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parameters are not favorable for deployment. In a word, designing a model should take
into account multiple properties such as detection speed, accuracy at multiple scales, and
lightweight nature. Therefore, there is still room for improvement to perfect these aspects
mentioned above.

With the increasing demand for deployment, lightweight detection has become a
necessary evolutionary process. Since the breakthrough of network depth, the vast majority
of existing advanced models are pursuing real-time performance and accuracy and have in-
deed reached a high level. However, to deploy to edge platforms, the detection model must
occupy a small amount of memory and participate in less computation. Therefore, some
studies have designed model scaling to address different device parameter limitations. For
example, Yolov6 [28] has three models with different widths and depths. Two of the three
models are used for lightweight deployment. However, one drawback of model scaling
is that lightweight models reduce network size while significantly reducing performance.
EfficientDet [39] demonstrated in ablation experiments that mixed scaling can reduce the
loss of accuracy. In addition, some studies focus on model compression, which minimizes
model size as much as possible while ensuring performance. Specifically, SqueezeNext [40]
and CondenseNet [41] improved inference speed with parameter pruning and network
optimization. The IGC series [42–44] pointed out that group convolution could help to
reduce the number of parameters. Based on group convolution, ShuffleNetV2 [45] adopted
a channel split for feature reusing. While group convolution shares parameters, it still
retains redundant features, and parameter sharing affects the accuracy of the prediction
box, leading to the missed detection of small targets. It seems to have reached the bottleneck
regarding lightweight and performance improvement. Based on the defects mentioned
above, there is still room for improvement in designing the detection backbone and shared
parameter modes suitable for remote sensing images.

On account of the significant differences in ship scales, it is necessary to design a
multi-layer detection model. Most existing layered detection models are based on Feature
Pyramid Networks [46] (FPNs). Forming the feature pyramid requires multiple downsam-
plings and pooling, which may lead to the loss of tiny targets. For example, a small ship
with a 12 × 12 dimension has only about one pixel after three layers of pooling, which
makes it difficult to distinguish due to its low dimensionality. SSD [47] applied FPN by
multiple downsamplings. The receptive field of the underlying feature map is small, which
makes it difficult for the network to learn the features of the small targets. Yolov3-spp [25]
proposed a spatial pooling pyramid to increase the receptive field of the network, which has
a certain improvement in small-target detection. In fact, according to the detection ranking
of MS-COCO Challenge1, the detection accuracy of small objects is still far lower than
that of large objects. At present, due to differences in resolution, insufficient appearance
information, and limited prior knowledge of ORSI, the current technology is still not ideal
for detecting tiny ships.

We notice that the expansion of network depth facilitates the mining of higher-level
semantic features. High-level semantic features and low-level localization features can
reflect the differences of observers well, which brings more potential room to fuse the
layered features. For efficient fusion, the layered detection models usually employ bidi-
rectional mapping, including top-down paths and bottom-up paths, such as PANet [48],
NAS-FPN [49], BiFPN [39], ASFF [50], and SFAM [51]. Moreover, after feature aggregation,
the number of channels of fused features mostly remains consistent with the original fea-
tures to ensure the width of the network. However, the larger the width of the network, the
better it may not necessarily be. Numerous studies have demonstrated an upper limit to
network width. When the width reaches a certain scale, the performance will not improve
or may even decrease.

We also notice that the design of the detection head is crucial for prediction. The
coupled head that is widely used obtains a unified output for localization and classification
by sharing convolutional layers between two branches. In contrast, decoupled head designs
separate convolutional layers for the localization and classification vectors to obtain more



Remote Sens. 2023, 15, 4358 4 of 26

accurate outputs. FCOS [52] pointed out that the decoupled head can speed up model
convergence and improve detection accuracy but also brings additional parameters and
computational costs. Therefore, the coupled head that shares convolutional layers may
be more in line with the lightweight requirement. But how to compensate for the lost
performance? With the entry of the transformer into the object detection field, THP-
yolov5 [53] treated the transformer as the convolution and utilized the Swin Transformer
encoding block [35] to capture the global feature. However, the fully connected layer and
residual connections are not optimized enough for the parameters. We urgently need
to design a lightweight detection head that combines the advantage of CNN’s inductive
bias and the global receptive field capability of ViT, which would improve the detection
performance of tiny targets.

As mentioned, although the performance of the above models is impressive, existing
frameworks cannot meet the requirements of lightweight and practical remote sensing
images. This paper provides an advanced detection model for marine remote sensing
applications. The main contributions of this article can be summarized as follows:

• We propose a method to generate fog images in remote sensing datasets to simulate
actual background disturbances and compensate for the lack of images with extreme
weather. From the perspective of data augmentation and data driven, fog simulation
indirectly improves the model’s robustness and detection performance.

• Based on the analysis of the difficulties in optical remote sensing, we have designed a
lightweight and layered detection framework (LMSD-Net). Inspired by the detection
paradigm of “backbone–neck–head”, in LMSD-Net, an improved module (ELA-C3) is
proposed for efficient feature extraction. In the neck, we design a weighted fusion con-
nection (WFC-PANet) to compress the network neck and enhance the representation
ability of channel features. In the prediction, we introduce a Contextual Transformer
(CoT) to improve the accuracy of dense targets in complex offshore scenes. During
the training process, we discovered the degradation problem of CIoU in dealing with
small ships and proposed V-CIoU to improve the detection performance of vessels
marked by small boxes.

• Based on the VRS ship dataset [54], we added more nearshore images to construct a
new ship dataset (VRS-SD v2). The dataset covers different nearshore and offshore
scenes, multiple potential disturbances, different target scales, and more dense dis-
tributions of tiny ships. Then, we used the proposed fog simulation to process the
dataset and obtained the dataset for the actual scenes.

The rest of the paper is organized as follows: Section 2 provides a detailed introduc-
tion to the fog simulation and detection framework. In Section 3, we conduct extensive
ablation experiments to demonstrate the innovative and efficient framework, and then,
we demonstrate the detection results of our model on typical datasets. According to the
experiments, Section 4 emphatically discusses the problems solved by the corresponding
methods and the experiment results. The final section summarizes the entire paper and
briefly discusses future research directions.

2. Methods

An advanced and lightweight ship detection framework consists of three main com-
ponents: effective data augmentation, efficient feature extraction and fusion, and accurate
target prediction. Given the detection difficulties and lightweight requirements mentioned
above, these three parts need to be reconsidered. In this section, we have provided a de-
tailed introduction to the methods proposed, including the data augmentation combination
and the lightweight detection framework.

2.1. Data Augmentation–Fog Simulation on Actual Remote Sensing Scenes

Whether at sea or near shore, ships are arbitrary in direction and random in dis-
tribution. Therefore, we selected several common data augmentation methods, such as
cropping, translation, rotation, and random scaling. Then, we adjusted the images’ hue,
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brightness, and saturation values to address photometric distortion and intensity differ-
ences. In addition, we adopted Mosaic [26], which concatenates four images and computes
the activation statistics of multiple images together. It has been proven that Mosaic can
enrich the detection of backgrounds and improve training efficiency. Essentially, the above
data augmentation methods are aimed at achieving more complex representations of the
data. Enriched data reduces the gap between the validation, training, and final test sets, so
that the network can learn the data distribution better.

In optical remote sensing images, the background of ship targets is often complex
and has significant interference with detection. The difficulty of detecting nearshore ships
is related to the complex scene of the shore, while the interference of ship detection at
sea is mainly caused by islands, wake waves, and sea clutter. Considering more actual
scenes, detection work will be carried out under different lighting and weather conditions,
especially extreme weather. However, there are few images of existing extreme weather.
Due to the absence of cloud and fog scenes in the training and validation sets, the detection
performance of the network would be poor. Therefore, simulating the dataset close to the
actual scene is necessary to improve the robustness of the model. Thus, we proposed an
image degradation method to simulate foggy scenes.

According to the optical model and the imaging mechanism in Figure 1, the influence
of fog is modeled as a radiation attenuation function that maps the radiance of a clear scene
to the camera sensor. According to the standard optical model, the degradation formula is
expressed as follows:

D(x) = I(x)t(x) + Latmo(1− t(x)) (1)

where I(x) and D(x) represent the original image intensity and observed fog-simulated
image intensity at pixel x, respectively, Latmo is global atmospheric light, and t(x) is the
transmission transmittance, which depends on the distance from the lens to the scene and
the noise particles in the air. Therefore, the key to simulating fog lies in the estimation of
atmospheric light noise and transmission transmittance.
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Considering the impact of noise on transmission, fog consistently exhibits spatial
randomness and density nonuniformity. Therefore, we established the random diffusion of
regional noise brightness. The input image was divided into different regions Rn×n

i , and
parts of the regions were randomly selected to participate in the diffusion processing. Based
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on the principle of center point diffusion, the diffusion degree at pixels (j, k) is defined
as follows:

C(x) = −0.04
√
(j−m)2 +

(
k− n)2 + 17 (2)

where (m, n) is the central point of the region Rn×n
i . It can be inferred that the closer to the

center point, the higher the diffusion degree value.
Considering the impact of the distance from the camera to the scene on transmission,

unlike common scenes, the top-view angle of remote sensing results in minimal spatial dis-
tance differences between the foreground and background. Strictly speaking, the difference
is preserved and regarded as a weak distance attenuation. In the case of random diffusion
noise, transmission transmittance is defined as distance attenuation:

t(x) = e−βC(x) (3)

where β represents the attenuation factor, which effectively controls the thickness of the fog:
the smaller the attenuation factor, the thicker the fog is. According to the theory of semantic
foggy scene understanding [55], the attenuation factor always obeys β ≥ 2.996× 10−3 m−1.
In this experiment, for convenience, β was limited in set S: {0.01 0.02 0.04 0.06 0.08 0.12 0.16}.

Global atmospheric light is related to lighting and is often set as a relative value. In
this experiment, considering different lighting conditions, global atmospheric light was
randomly selected in set T: {0.8 0.85 0.9 0.95 1}. Finally, the fog simulation was added to
part of the data to improve the generalization performance of the model.

2.2. The Proposed LMSD-Net

Most lightweight frameworks mainly consider factors such as parameter size and
computation complexity. Some models [45,56] achieve less computation complexity but
sacrifice accuracy. Therefore, it is important to design a framework focusing on both
lightweight and high performance. In this section, we proposed a lightweight multi-scale
ship detector network (LMSD-Net) that can simultaneously locate and classify ship targets
in ORSI, especially small-target ships.

2.2.1. Overall Architecture

Based on the classic detection paradigm, the overall architecture consists of three
parts shown in Figure 2. The first part is a CNN backbone, which extracts feature maps of
different layers. The second part is a bidirectional fusion process based on feature pyramids,
and the third part includes a detection head used to predict the categories and bounding
boxes of ships.

In terms of the architecture backbone, we continued the idea of the YOLO series
models, which have proven their strong feature extraction capabilities in detection and
other issues. It is worth noting that, unlike the C3 module (Yolov5), Repvgg Block (Yolov6),
and E-LHAN (Yolov7), we designed a new functional module (ELA-C3 Block). Rethinking
C3 and bottleneck-CSP, we added a branch containing Bottleneck structural units. After
branch expansion, ELA-C3 Block has a more efficient feature extraction ability than C3.

Regarding the architecture neck, we proposed an improved fusion structure with a
weighted-channel network (WFC-PANet). In WFC-PANet, the features of different channels
are given weighted specificity. In addition, we abandoned the principle of equal channels
for feature aggregation but designed half of the convolutional kernels to control the number
of channels. Therefore, the number of channels for fused features was reduced to half of the
original number, greatly reducing the parameters and Floating Point Operations (FLOPs).

In the detection head, a Contextual Transformer encoder (CoT) was added to effectively
locate targets, further improving the detection performance of small ships. Thus, a more
detailed network structure is shown in Table 1.
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Table 1. Information about each layer of the LMSD-Net structure.

The nth Layer From Module Num Output Shape Params
/ Input / [640,640,3] /

0 −1 Convolution 1 [320,320,32] 3520
1 −1 Convolution 1 [160,160,64] 18,560
2 −1 ELA-C3

Block 1 [160,160,64] 18,816
3 −1 Convolution 1 [80,80,128] 73,984
4 −1 ELA-C3

Block 2 [80,80,128] 115,712
5 −1 Convolution 1 [40,40,256] 295,424
6 −1 ELA-C3

Block 3 [40,40,256] 625,152
7 −1 Convolution 1 [20,20,512] 1,180,672
8 −1 ELA-C3

Block 1 [20,20,512] 1,182,720
9 −1 SPPF 1 [20,20,512] 656,896
10 −1 Convolution 1 [20,20,128] 65,792
11 −1 Nearest

Upsample 1 [40,40,128] -
12 −1,6 WFC_Concat_2 1 [40,40,384] 2
13 −1 ELA-C3

Block 1 [40,40,128] 107,264
14 −1 Convolution 1 [40,40,64] 8320
15 −1 Nearest

Upsample 1 [80,80,64] -
16 −1,4 WFC_Concat_2 1 [80,80,192] 2
17 −1 ELA-C3

Block 1 [80,80,64] 27,008
18 −1 Convolution 1 [40,40,64] 36,992
19 −1,14,6 WFC_Concat_3 1 [40,40,384] 3
20 −1 ELA-C3

Block 1 [40,40,128] 107,264
21 −1 Convolution 1 [20,20,128] 147,712
22 −1,10,8 WFC_Concat_3 1 [20,20,768] 3
23 −1 ELA-C3

Block 1 [20,20,256] 427,520
24 17 CoTB 3 [80,80,64] 18,944
25 20 CoTB 3 [40,40,128] 74,240
26 23 CoTB 3 [20,20,256] 293,888
27 24,25,26 Detect 1 / 8118

366 Conv layers 12.8 GFLOPs 5.5× 106 parameters
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Each row in Table 1 represents the forward propagation of the corresponding feature
layer. By executing the corresponding number of modules, the shape of the feature output
is marked in the “Output Shape” and the parameters are recorded in the “Params”. “Num”
represents the number of repetitions. For example, in the sixth row of the table, the features
of the fourth layer of the network will be used as the input of the ELA-C3 module to further
extract the features, the extracted feature scale is 80 × 80 × 128, and the number of process
parameters is 115,712. From the output shape of the 24th–26th rows, the model provides
three scales of feature output, which would serve for multi-scale ship detection. From
the output shape and “Params” of the 17th, 20th, and 23rd rows, the improved feature
fusion part preserves small parameters and channels. The last line summarizes the model’s
convolution layers, total parameters, and computational complexity values.

2.2.2. Efficient Layer Aggregation Block

The backbone and neck focus more on obtaining efficient features, especially in
lightweight models. As shown in Figure 3a,b, C3, as a variant of CSP-ResNeXt, still
retains the CSP architecture and adopts CSP-Bottleneck as the modified unit with fewer
parameters. In lightweight models, sharing current layer weights often achieves efficient
layer aggregation. Based on this idea, we proposed a variant named Efficient Layer Aggre-
gation of C3 (ELA-C3) in Figure 3d. In addition to reducing repetitive gradient learning,
we also analyzed the gradient path. Compared to the Efficient Layer Aggregation Network
(ELAN) [29], ELA-C3 removes the base layer paths with less contribution and assigns
different channel numbers to different layers. For example, in Figure 3d, the number of
channels in the three paths from left to right is c, c/2, and c/2, respectively. In this way,
different layers can learn more various features without damaging the original gradient
path, which is beneficial in enhancing learning ability.
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Figure 3. Evolution and exploration of the ELA-C3 module.

From the perspective of gradient diversion, the base path only performs ordinary
transformations, while the two extended paths use efficient transformations to obtain
extended features. Based on group convolution, ELA-C3 forms a local “extend–transform–
merge” structure. Assume that feature x is obtained from the base path by the CBS operation.
On the one hand, x is exported to participate in the final merger. On the other hand, x
serves as the input for extended path features. In Extension Path 1, x performs an efficient
transformation to obtain ψ(x). Then, ψ(x), as the input of Extension Path 2, participates in an
efficient transformation of c/2 convolution kernels. Finally, the output results are merged
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by concatenating operations. The “split–transform–merge” structure can be expressed
as follows:

Fc = Θ(xc, ψ(x) c
2
, ψ(ψ(x)) c

2
) (4)

where Θ represents the merge operation, and ψ represents the efficient transformation.
Output Fc of the structure has c channels.

In the implementation, we adopted group convolution (group = g) to expand the
channel and cardinality of the computational block. First, we applied the same parameters
and channel multipliers to the two extended paths. Then, we concatenated the tensors of
the three paths together. The number of channels in each group of feature maps will be
the same as that in the base layer. Finally, we added g sets of feature maps to obtain the
complete features. Therefore, ELA-C3 could construct efficient layer aggregation blocks by
group convolution to learn more diverse features.

2.2.3. Lightweight Fusion with Weighted-Channel Concatenation

For the single-stage detector, multi-layer detection is an important method to address
scale differences. As we all know, FPN has inconsistency of features among the different
scales of the target. Specifically, large targets are typically associated with higher-feature
maps, while small targets are typically associated with lower-feature maps. After sampling
and fusion, the high-level feature responsible for large targets has rich semantic information
but fuzzy spatial information. In contrast, the low-level feature responsible for small
targets has an accurate location but less semantic information. This may result in a low
classification accuracy for small targets and an inaccurate positioning for large targets. In
Figure 4b, PANet adds a bottom-up fusion path, which is a “soft fusion” to ensure that
spatial features are mapped to global features. However, not only does it bring more
parameters and computational complexity, but also the loss from sampling is irreparable.
For these issues, we proposed a lightweight fusion with the weighted channel based on
PANet (WFC-PANet).
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Specifically, WFC-PANet adds learnable weights to all the channels in bidirectional
fusion. Since different feature maps have different resolutions before stacking or adding,
their contributions to the fusion are also different. Therefore, we established a feature
competition mechanism based on the contribution to the fused feature map. Once a channel
becomes more important in the fusion of features, it will occupy a greater weight. Then the
weight is expressed by a fast normalization fusion formula:

W = ∑
i

wi
ε + ∑

j
wj

(5)
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where wi > 0 and ε = 0.0001 for stabilizing the value. Then, the number of channels of the
output features is reduced to half of the original features, which avoids the reuse of similar
features and reduces training parameters. Although it sacrifices some of the compelling
features, the cross-layer weighted concatenation basically guarantees the expressiveness of
the fusion.

To illustrate the fusion in Figure 4c, we used the concept of set to describe the features.
As shown in Figure 5a, the entire detection neck is divided into three layers horizontally
and three columns vertically. The available feature sets X, Y, and Z contain three scales of
feature maps with different receptive fields. Then, based on the number of branches, the
fusion includes two specific forms: two-node fusion and multi-node fusion. In Figure 5b,c,
external mapping expands the fusion scales, while internal mapping only increases the
diversity of features. Multi-node fusion adds cross-layer weighted fusion compared to two-
node fusion. Because of more available feature map choices, multi-node fusion will be more
inclined to select efficient features. Therefore, it seems this part of the features is screened
and participates in feature refactoring. Moreover, both of them adopt Formula 5, and the
values of each normalized weight are limited to [0, 1]. As for the layers corresponding
to set Y, two-node weighted fusion is used. For example, the My layer is generated by
the weighted fusion of corresponding Mx and Sy in the X set. As for the feature layers
corresponding to set Z, multi-node weighted fusion is used because of the addition of
cross-layer channels. For example, Mz is generated by weighted splicing of Mx, My, and Lz.
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2.2.4. Contextual Transformer Block for the Detection Head

Discrete convolution operators impose spatial locality variance, which is beneficial for
reflecting local differences. However, the limited acceptance field affects the modeling of
global relationships and makes it less apparent to the remote feature interactions. Inspired
by visual transformers, interactions in pairs of queries and keys can measure the global
attention matrix, which reflects contextual self-attention expression well. Based on CNN,
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we added a lightweight Contextual Transformer (CoT) block before the shared decoupled
head for more accurate classification and localization.

Specifically, as shown in Figure 6, given a ship feature map X ∈ RH×W×C, it can be
transformed into queries, keys, and values, which are defined as follows:

Q = XMq (6)

K = XME
k (7)

V = XMv (8)

where Mq, ME
k , and Mv are the embedding matrices, which transform the sparse image into

a dense matrix. Assuming the central key of the context area is Xcen, the surrounding key
is the region with k × k (k = 3 in Figure 6). Centered around each key in the surrounding
area, the k × k convolution can calculate the contextual information of each key. Similar to
sliding window convolution in CNN, the learned contextual key KStatic ∈ RH×W×C reflects
the static information of the center and surrounding.
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Then, the learned contextual keys and queries are concatenated to synthesize new
keys [KStatic, Q]. By using two consecutive 1 × 1 convolutions to perform self-attention:

Watt = [KStatic, Q]×MSiLu
att ×Matt (9)

where MSiLu
att represents the convolution with SiLU while Matt represents the convolution

without activation. Obviously, the learned attention weight matrix considers the context
keys and queries. In other words, the purpose of mining contextual information is to
improve the self-attention of local regions. Next, Softmax is used to form the attention
weight matrix WSo f tmax

att . Aggregating the value matrix, a dynamic contextual self-attention
weight matrix is calculated and represented as follows:

Kdynamic = V
⊗

WSo f tmax
att (10)

During the forward transmission process, static context KStatic and dynamic context
Kdynamic integrate through the overlay fusion mechanism [57]. The hardware algorithm
implementation is shown in Figure 7.

Essentially, CoT is a self-attention block that combines transformers. Therefore, treat-
ing CoT as a convolution module is feasible. In the ablation experiment, we increased the
number of CoT blocks to obtain the best response.
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2.2.5. Prediction

As mentioned above, three prediction branches are elicited to accurately detect multi-
scale ships. In the output of each branch, the positive sample grids, which are used to
predict the real target, need to be filtered and serve for location prediction. Since the ship
targets are mostly distinctly elongated, the aspect ratio of the label has a positive effect on
the prediction. In addition, we expanded the prediction location to three cell grids to filter
positive samples with a multi-sample label matching strategy [27]. In this way, the labels
are assigned to all the anchors simultaneously during training, thus alleviating the problem
of unbalanced positive and negative samples during training to some extent. Once the
positive samples are identified, the positive sample loss is calculated as the sum of grid
confidence loss, target classification loss, and target bounding box regression loss. The
negative samples only need to calculate the confidence loss.

In the training process, we inherited the Binary Cross-Entropy as the class loss and
confidence loss of the positive and negative samples of the grid. Considering the prediction
output grid (S × S), each cell in the grid generates N bounding boxes, whose center
coordinate is (x, y), prediction confidence is c, and the prediction vector points to the kth
class with prediction value pk. Class loss and confidence loss are defined as follows:

Lclass =
S2

∑
i=0

B

∑
j=0

N

∑
k=0

Z
obj
ij [ p̂kln(pk) + (1− p̂k)ln(1− pk)] (11)

Lobj =
S2

∑
i=0

B

∑
j=1

Z
obj
ij [ĉln(c) + (1− ĉ)ln(1− c)] (12)

where p̂, ĉ are the truth of p, c. Zobj
ij denotes whether the object appears in the bounding box

j predictor in cell i. It is worth noting that the positive sample only contains three grids,
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while the negative sample contains other grids as well as grids from other detection layers.
Due to the labels of the negative samples ĉ = 0, the confidence loss calculation for negative
samples can be optimized approximately as follows:

Lobj =
num(neg)

∑
i=0

B

∑
j=1

Z
obj
ij lim

ĉ→0
[−ĉln(c)− (1− ĉ)ln(1− c)] =

num(neg)

∑
i=0

B

∑
j=1

Z
obj
ij ln(1− c) (13)

For the bounding box regression loss of positive samples, we proposed an improved
version named V-CIoU based on CIoU [58]. First, consider the formula of CIoU:

LCIoU
Bbox = IoU −

(
(x− x̂)2 + (y− ŷ)2

c2 + αv

)
(14)

IoU =

∣∣∣∣∣Area(B)
⋂

Area
(

B̂
)

Area(B)
⋃

Area(B)

∣∣∣∣∣ (15)

v =
4

π2

(
arctan

ŵ
ĥ
− arctan

w
h

)2
(16)

α =
v

(1− IoU) + v
(17)

where B and B̂ represent the areas of the prediction box and the ground-truth box, respec-
tively, (x̂, ŷ, ŵ, ĥ) is the matched truth value of (x, y, w, h), c is the diagonal length of the
smallest closed box covering both boxes, α is the weight parameter, and v is the penalty
representing the aspect ratio’s consistency.

CIoU loss adds the distance offset and aspect ratio of the prediction box to the IoU,
and both of them are beneficial for improving the regression accuracy of the ship. However,
a problem that needs to be considered is that the penalty term v in Formula (16) will fail
when the aspect ratio of the truth and prediction is equal or approximately equal. Especially
for some small-ship targets, the similar aspect ratio results in incomplete convergence. In
this case, we proposed a penalty function based on the variance of the ground truth and the
prediction for each corresponding aspect ratio. This penalty term u is defined as follows:

u =


4

π2 (arctan ŵ
ĥ
− arctan w

h )
2
,

∣∣∣ŵh− wĥ
∣∣∣ ≥ 0.001

8
π2

[(
arctan ŵ

w −
π
4
)2

+
(

arctan ĥ
h −

π
4

)2
]

,
∣∣∣ŵh− wĥ

∣∣∣ < 0.001
(18)

The penalty term v is preserved as a part of the new penalty function. Normally, the
penalty term v can solve the problem of offset. The variance penalty term is activated when
the ratio between the prediction and the ground truth is consistent. Therefore, V-CIoU not
only embodies the advantages of CIoU but also solves the degradation problem, in that
the aspect ratio of the ground truth equals that of the prediction. Once the aspect ratio
of the prediction and ground truth are maintained within a small range, the convergence
behavior reaches its limit, and then the penalty loses efficacy. Finally, the bounding box
regression loss is defined as follows:

LVCIoU
Bbox = IoU −

(
(x− x̂)2 + (y− ŷ)2

c2 + αu

)
(19)

Furthermore, the implementation process is summarized in Algorithm 1.
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Algorithm 1. V-CIoU computation

1: Input: Bounding box of ground truth Bgt =
(

wgt, hgt, xgt, ygt
)

2: Input: Bounding box of prediction Bp = (wp, hp, xp, yp)
3: Output: VCIoU between the ground-truth box and the prediction boxes
4: If

(
Bgt 6= ∅

)
∪ (Bp 6= ∅) do

5: For A and B, find the smallest enclosing convex object C.

6: within C, calculate IoU =

∣∣∣∣ Area(Bp)
⋂

Area(Bgt)
Area(Bp)

⋃
Area(Bgt)

∣∣∣∣.
7: If

∣∣wgthp − wphgt
∣∣ ≤ 0.001:

8: then u = 8
π2

[(
arctan ŵ

w −
π
4
)2

+
(

arctan ĥ
h −

π
4

)2
]

,

9: α = u
(1−IoU)+u ,

10: LBbox = IoU − ( (x−x̂)2+(y−ŷ)2

c2 + αu).
11: else
12: then v = 4

π2 (arctan ŵ
ĥ
− arctan w

h )
2
.

13: else
14: LBbox = 0.

3. Results and Experiments

This section provides a detailed introduction to the dataset and a description of the
evaluation metric. Then, we conduct a large number of experiments to demonstrate the
effectiveness of the framework. On the one hand, we perform ablation experiments for the
proposed data argument and self-designed modules with relevant advanced methods. On
the other hand, we perform a detailed comparison with the current excellent lightweight
detection frameworks. Finally, the detection results using the most advanced methods are
presented, leading to a profound discussion in the next section.

3.1. Dataset

The increase in high-resolution optical images has greatly contributed to the advance-
ment of target detection. Improving the detection performance of small ships relies on
collecting small-target ship datasets. However, existing open data sources still need to be
extended in the diversity of scenes and targets. For example, in HRSC2016 [59], there are
only two or three targets in an image, most of which are large-scale targets. The scenes of
NWPU VHR-10 [60] and the Airbus ship dataset [61] are more singular with the coastal
background. Subsequently, we have proposed the VRS ship dataset [54] (VRS-SD) in our
previous study, which contains various maritime disturbances, such as thin clouds, islands,
sea waves, and wake waves. Therefore, the application of VRS-SD is oriented toward
detection tasks in maritime scenes. In order to meet the unified detection requirements
for nearshore and maritime scenes, we furthermore construct VRS-SD v2, which covers
different nearshore scenes, marine environments, maritime disturbances, target scales, and
dense small-target distributions. The detailed differences among the current datasets are
summarized in Table 2.

Table 2. Comparison of ship datasets.

Dataset Images Class Ship Instances Image Size Source Fog

NWPU VHR-10 800 10 302 / Google Earth ×
HRSC2016 1061 3 2976 300 × 300~1500 × 1900 Google Earth ×

Airbus ship dataset 192,570 2 / 768 × 768 Google Earth ×
MASATI [62] 6212 7 7389 512 × 512 Aircraft ×

FGSD2021 [63] 636 20 5274 157 × 224~6506 × 7789 Google Earth ×
AI-TOD [64] 28,036 8 700,621 / Google Earth

√

VRS-SD 893 6 1162 512 × 512 Google Earth
√

VRS-SD v2 2368 8 4054 512 × 512 Google Earth and Aircraft
√
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According to the statistics in Table 2, most of the existing ship datasets are from Google
Earth and are mostly taken under sunny conditions. Both VRS-SD and VRS-SD v2 are
collected under a variety of weather conditions. Compared with VRS-SD, VRS-SD v2 has
significantly expanded the amounts of images, and the two additional classes are near-shore
ships and river-distribution ships. In addition, to address the problem of insufficient fog
interference background in VRS-SD, we provided more images of such scenes through
fog simulation. Since AI-TOD focuses more on the differences in nearshore target scale, it
usually better reflects the complexity of the scenes. Therefore, in the final validation, we
implemented our method on the AI-TOD dataset.

3.1.1. The Analysis of VRS-SD v2

VRS-SD v2 increases the number of ship targets at different scales. To compare the
targets at different scales, we first refer to the definition of the small target. The small-target
scale has different absolute definitions in different remote sensing datasets. For example,
the MS COCO dataset defines small targets within 32 × 32 pixels. TinyPerson [65] defines
small targets as those with pixel values in the interval [20, 50]. Furthermore, the aerial
image dataset DOTA [66] defines a small target with pixel values in the range of 10–50. It is
difficult to unify the definition of small targets for different datasets, so we introduced a
relative definition of small-target scale. Ref. [67] states that the relative areas of small-target
instances in the same class, the median ratio of the area of the ground truth to the image,
should be limited to between 0.08% and 0.58%. In addition, the ratio of the target bounding
box area to the image area is open-squared to less than a certain value, the more general
value being 0.03. Based on the above considerations, we compared the two datasets at a
finer scale as shown in Table 3. It can be seen that there is a significant increase in tiny ships,
and the number of small targets has increased to varying degrees at the subdivision scales.
Figure 8 counts the relative areas of all ship instances and the number of targets in different
intervals. In addition, Figure 9 shows the distribution of ship positions at different scales,
and VRS-SD v2 has more targets and a denser distribution.

Table 3. Quantitative statistics of multi-scale ships.

Relative Scales Relative Area Rates VRS-SD/pcs VRS-SD v2/pcs

Tiny ship (0, 0.0008) 312 2284

Small ship
(0.0008, 0.0016) 761 943
(0.0016–0.0025) 244 381
(0.0025–0.0058) 300 335

Medium ship (0.0058–0.04) 46 111
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3.1.2. Fog Simulation

VRS-SD v2 includes a few cloud images and fog images. We performed the fog simu-
lation on a certain proportion of images to simulate the real-world detection background.
These images have been fogged at random spatial locations with varying degrees. In
Figure 10, we present some simulation examples of some typical scenes. The fog simulation
in the coastal area represents the real situation. Once the model is trained to resist the
disturbances caused by fog, it can be deployed to industrial equipment, especially those
devices under severe weather conditions.
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3.2. Evaluation Metrics

Similar to the general target detection task, we used precision rate, recall rate, and
average precision to evaluate the performance of the proposed network. By setting a
threshold for the intersection over union (IoU), the prediction results can be filtered and
divided as true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). The formulas for precision, recall, and F1 score are as follows:

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 = 2× Precsion× Recall
Precsion + Recall

(22)
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Furthermore, average precision (AP) calculates the total precision of the recall value
from 0 to 1, that is, AP is the area enclosed by the P-R curve and the coordinate axis. Let r
be the recall rate and P(r) be the accuracy corresponding to the curve. By interpolation, AP
as the line integral is calculated as follows:

AP =
∫ 1

0
P(r)dr =

N

∑
k=1

P(k)∆r(k) (23)

For the lightweight comparison, we use the GFLOPs and parameters, which could
reflect the network complexity and memory usage. Additionally, frames per second (FPS)
is calculated to quantify the detection speed. In consideration of the limitation of the device,
FPS is tested with batch size = 1 or 16 in the experiments.

3.3. Ablation Study

All the experiments were tested and evaluated on a computer with an Intel Core
i7-10900 2.90 GHz CPU, 24 GB memory, and GeForce GTX 3060Ti GPU with 8 GB. In the
preparation phase, the dataset was divided into a training set, a validation set, and a test set
in a ratio of 8:1:1. By k-means clustering, the criteria for the three classes of anchors were
automatically generated based on the ship scale in the specific dataset. During the training
process, we applied the AdamW optimizer and trained 200 epochs to ensure convergence.
For all experiments, the IoU was set to 0.6.

3.3.1. Effect of Fog Simulation

To verify the importance of fog simulation for practical detection work, as shown
in Table 4, we tested the fog simulation on MASATI and VRS-SD v2, which are both the
small-ship dataset. It is worth noting that we set three rates, 0, 50%, and 100%, to test the
effect of fog simulation on the results. The best results of the three rates are highlighted
in red.

Table 4. Fog simulation for data enhancement.

Dataset Train/Val Set With Fog Test Set with Fog Recall Precision F1 AP@0.5 AP@0.5:0.95

MASATI

× × 0.813 0.825 0.82 0.813 0.407
×

√
(100%) 0.609 0.679 0.64 0.587 0.264√

(100%)
√

(100%) 0.738 0.766 0.75 0.758 0.345√
(50%)

√
(50%) 0.731 0.833 0.78 0.783 0.358

VRS-SOD v2

× × 0.771 0.832 0.80 0.817 0.395
×

√
(100%) 0.612 0.718 0.66 0.615 0.283√

(100%)
√

(100%) 0.650 0.744 0.69 0.718 0.32√
(50%)

√
(50%) 0.662 0.848 0.74 0.741 0.342

Taking MASATI as an example, the model can give the best results at AP@0.5 of 0.813
and AP@0.5:0.95 of 0.407 without fog interference. However, when the training set lacks
fog images, the testing achieves the worst results, with AP@0.5 of 0.587 and AP@0.5:0.95 of
0.264. Adding a certain percentage of fog images in the dataset can match the real remote
sensing detection and improve the robustness of the model to weather conditions. On
VRS-SD v2, when the training and test sets are mixed with fog images simultaneously, the
detection results are better than the in case of all fog images, and AP@0.5 and AP@0.5:0.95
reach 0.741 and 0.342. It also provides an experimental basis for obtaining the best ratio of
fog images.

3.3.2. Effect of ELA-C3

ELA-C3 is an improved version of the C3 module. To verify the validity of ELA-C3,
we used C3 as a baseline in LMSD-Net. Additionally, we applied all remaining components
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of LMSD-Net. As shown in Table 5, the model obtains results by replacing the C3 module
in the backbone and neck.

Table 5. Ablation of ELA-C3.

Input Size Backbone
+ ELA-C3

Neck
+ ELA-C3 AP@0.5 AP@0.5:0.95 FPS

bs@16
Params

(M)
GFLOPs

(G)

640 × 640 × × 0.782 0.363 126 6.97 17.3
640 × 640

√
× 0.821 (+3.9%) 0.381 (+1.8%) 204 5.09 12.1

640 × 640 ×
√

0.797 (+1.5%) 0.382 (+1.9%) 161 6.51 16.5
640 × 640

√ √
0.837 (+5.5%) 0.396 (+3.3%) 181 5.5 12.8

When ELA-C3 is added to the backbone or neck, the AP@50 values are 3.9% or 1.5%
higher than the baseline model. In addition, the AP value with ELA-C3 exclusively is 5.5%
higher than that using C3. As a lightweight feature extraction module, ELA-C3 has less
increase of parameters. Therefore, the ELA-C3 module facilitates the efficient acquisition of
rich contextual spatial features to improve the detection performance of ship targets.

3.3.3. Effect of WFC-PANet

In the detection neck, we designed the cross-layer and weighted-channel concatenation
based on PANet. To avoid the influence of ELA-C3, all the following networks uniformly
used the Yolov5s-backbone. Then, we quantified the experimental results of the current
advanced feature fusion methods in Table 6.

Table 6. Comparison of different feature fusion methods in the neck.

Neck Recall Precision AP@0.5 AP@0.5:0.95 FPS
bs@16

Params
(M)

GFLOPs
(G)

PANet 0.811 0.823 0.831 0.41 181 7.02 15.8
BiFPN_Add 0.783 0.789 0.809 0.38 169 9.32 22.9

BiFPN_Concat 0.771 0.844 0.823 0.404 181 7.08 16.0
WFC-PANet(ours) 0.790 0.832 0.817 0.39 208 5.10 12.1

The experiment results show that using WGC-PANet leads to an increase in speed
and a more lightweight model. In addition, there is a small sacrifice in average accuracy
compared with PANet. Nevertheless, the model still maintains good performance and
enough to finish the detection task. Similar to BiFPN, WGC-PANet also mentions a cross-
layer connection. However, the use of adding BiFPN increases the computation complexity
significantly. On the contrary, using Concat guarantees the model’s performance and
reduces the computation complexity. Taken together, the cross-channel and weighted-
channel concatenation adopted by WGC-PANet can maintain the model’s expressiveness
and provide the possibility of lightweight implementation.

3.3.4. Structure Exploration of the Detection Head

The prediction head is crucial for the decoupling of the feature map. Based on the
general structure of LMSD-Net, the comparison results of applying different mainstream
detection heads are presented in Table 7. Further, to explore the effect of the number of CoT
blocks, we embedded different numbers of CoT blocks and obtained the optimal choice
according to the comparison. Note that CoT_x denotes the use of x CoT blocks.
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Table 7. Exploration and comparison of detection heads.

Detection Head Recall Precision AP@0.5 AP@0.5:0.95 FPS
(bs@16)

Params
(M)

GFLOPs
(G)

YOLO head 0.743 0.784 0.793 0.368 208 5.10 12.1
Decoupled head [28] 0.792 0.821 0.800 0.386 188 6.09 13.9

Swin+ YOLO head [53] 0.773 0.804 0.796 0.392 181 5.54 25.7
CoT_1+ YOLO head 0.756 0.837 0.817 0.375 208 4.97 12.1
CoT_2+ YOLO head 0.787 0.821 0.831 0.384 185 5.18 12.5
CoT_3+ YOLO head 0.781 0.847 0.837 0.396 171 5.49 12.8
CoT_4+ YOLO head 0.784 0.850 0.839 0.398 162 5.90 13.2

In the YOLO head, the classification and localization branches are fused to share the
convolutional layers. In the decoupled head, the two branches are convolved separately
to obtain higher accuracy. Therefore, applying the YOLO head has fewer parameters
and computation complexity than the decoupled head but poorer performance. With the
addition of CoT blocks, the detection performs more powerfully. Compared with Swin
Transformer block, CoT_3 obtains less computation complexity as well as higher precision.
In addition, the number of CoT blocks affect the performance. More CoT blocks will bring
a slight increase in parameters and GFLOPs but a decrease in speed. Considering the
performance and hardware consumption, we finally chose CoT_3 in the network.

3.3.5. Validation of Regression Loss Function

According to the analysis of VRS-SD v2 in Table 3, the relative area ratios of tiny and
small targets are primarily of [0,0.0016]. Therefore, the observation will have a similar
aspect ratio between the ground truth and the predicted bounding box, which leads to
the failure of the aspect ratio penalty term of CIoU. To verify the validity of the proposed
variance penalty term for V-CIoU, we designed experiments of regression loss, as shown in
Table 8. We set three different thresholds for the following loss functions in the valid. On
the whole, V-CIoU has the best effect. Compared with CIoU, V-CIoU improves by 2.9% at
AP@75 and 2.2% at AP@50:95. The experiments demonstrated that adding the variance
penalty term makes V-CIoU more adaptable to tiny- and small-ship detection.

Table 8. Validation of the improved V-CIoU.

Regression Loss APval
50 APval

75 APval
50:95

CIoU 0.821 0.309 0.382
DIoU [68] 0.817 0.293 0.371
EIoU [69] 0.796 0.294 0.375
SIoU [70] 0.787 0.318 0.379

Wise-IoU [71] 0.817 0.326 0.378
V-CIoU 0.823 0.338 0.404

3.3.6. Multi-Scale Performance of the Model

Based on the statistics of the dataset, the proposed VRS-SD v2.0 contains ship targets
that are mostly small- and medium-sized, whereas VRS-SD proposed in previous work
contains more large targets. Therefore, we combined the two datasets to explore the model’s
detection performance for different-sized ship targets. Table 9 lists the comparison results
of the lightweight SOTA detectors.
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Table 9. Comparison of detection performance at different scales.

Model Params (M) GFLOPs(G) Size APval APval
S APval

M APval
L

Yolov7-tiny 6.01 13.2 640 0.208 0.211 0.149 0.342
Yolov5s-6.1 7.03 15.9 640 0.376 0.369 0.549 0.581
Yolov6n-3.0 4.63 11.34 640 0.323 0.316 0.513 0.604

Yolov8s 11.1 28.6 640 0.380 0.360 0.595 0.683
LMSD-Net 5.50 12.8 640 0.392 0.372 0.591 0.644

From the results, we see that LMSD-Net is comparable to the latest Yolov6-3.0n in
terms of being lightweight, while LMSD-Net performs better on small targets and medium-
sized targets, with an improvement of 5.6% and 7.8%, respectively. Considering this
enhancement, on the one hand, the small and medium targets are well trained due to
the large number of small and medium samples in the dataset. On the other hand, V-
CIOU specifically solves the problem of the inconsistent aspect ratio of small targets, thus
improving detection accuracy. In addition, the AP for large-ship targets reaches 0.644,
which is lower than Yolov8s by about 3.9%. Nevertheless, the parameters of LMSD-Net are
only half of those of Yolov8s, and the computation is reduced by 45%.

3.4. Overall Detection Performance

To validate the overall detection performance, we first compared the proposed models
with the current lightweight state-of-the-art on the VRS-SD v2. These comparison methods
include lightweight versions of the universal detectors, such as EfficientDet (D0-D3), Yolov7-
tiny, and Yolov8n, and specialized lightweight detectors, such as the Nanodet family.
In addition, we added a variant of Yolov5s called Yolov5-Ghost, which introduces the
lightweight backbone GhostNet into the CSP architecture. For this part of the experiments,
we used the training and validation setup of the ablation study. To ensure great and
fast convergence, we increased the pre-training weights and performed 200 epochs of
training. In addition, we set the batch size = 1 to test the general real-time performance. The
comparison experiments were fair and extensive. We directly trained and tested all the
comparison methods using official open-source codes.

Generally, as shown in Table 10, the proposed method performs best on this small-ship
dataset. In terms of AP@50, LMSD-Net achieves the highest value with 81.3%. Compared
with Yolov8s and Yolov6-3.0-s, which have high average accuracy, LMSD-Net has more
advantages in terms of parameters and computation complexity. Therefore, it can meet
the needs of ship-target detection tasks better. In addition, we observed that parts of the
anchor-free detectors in Table 10, like Yolov6s-3.0 and Yolov8s, performed better than
the Yolov5 series, Yolov4-tiny and Yolov7-tiny, which are anchor-based detectors. Since
tiny targets are more sensitive to IoU than large targets, the anchor-based detectors, such
as Yolov7-tiny and Yolov5n, cannot accurately predict the bounding box. Especially in
AP@50:95, which has a stricter limitation than AP@50, common IoU loss will lead to less
improvement. With the proposed V-CIOU, we could improve the average accuracy and
cope with the tiny-target detection.

In terms of lightweight, the Nanodet series perform the best. However, they are mainly
applied to mobile target detection and are not well adapted to small-ship target detection
in the remote sensing field. Due to the small model input scale, such as 320 × 320 or
416× 416, the feature description capability is limited, which leads to low detection accuracy.
Differently, the model input scale of the EfficientDet series increases with the expansion of
the backbone. Based on DWConv, the scaled model gradually adapts to lightweight but
sacrifices more accuracy and improves a little in speed. In contrast, the accuracy advantage
of LMSD-Net is very obvious and ensures efficient detection performance.
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Table 10. Comparison of the lightweight SOTA performance on VRS-SD v2 (30% foggy images).

Method Backbone Input
Size Recall Precision F1 AP@0.5 AP@0.5:0.95 FPS

(bs@1)
Params

(M)
GFLOPs

(G)

EfficientDet-D0 [39] Efficient-B0 512 0.233 0.766 0.36 0.291 0.125 23 3.83 4.7
EfficientDet-D1 [39] Efficient-B1 640 0.404 0.833 0.54 0.444 0.213 19 6.56 11.5
EfficientDet-D2 [39] Efficient-B2 768 0.458 0.842 0.59 0.561 0.266 16 8.01 20.5
EfficientDet-D3 [39] Efficient-B3 896 0.671 0.780 0.72 0.638 0.300 13 11.90 46.9

Nanodet-m [72] ShuffleNetV2 1.0x 320 0.355 0.879 0.51 0.420 0.162 78 0.94 0.72
Nanodet-plus-m [72] ShuffleNetV2 1.5x 416 0.556 0.656 0.60 0.585 0.278 67 2.44 2.97
Nanodet-EfficientLite [72] EfficientNet-Lite1 416 0.586 0.677 0.63 0.578 0.288 59 4.00 4.06
Nanodet-EfficientLite [72] EfficientNet-Lite2 512 0.635 0.691 0.66 0.596 0.284 48 4.70 7.12

Yolov4-tiny [26] CSPDarknet53-tiny 640 0.576 0.751 0.65 0.683 0.235 130 5.87 16.2
Yolov7-tiny [29] CSP-ELAN 640 0.699 0.891 0.78 0.731 0.282 80 6.01 13.2

Yolox-nano [73] CSPDarknet-C3 640 0.689 0.661 0.67 0.705 0.283 57 0.90 2.5
Yolox-tiny [73] CSPDarknet-C3 640 0.763 0.827 0.79 0.782 0.324 53 5.06 15.4

Yolov5n6 [27] CSPDarknet-C3 640 0.665 0.842 0.74 0.756 0.329 91 1.77 4.2
Yolov5s6 [27] CSPDarknet-C3 640 0.724 0.856 0.78 0.787 0.370 79 7.03 15.9
Yolov5-Ghost [27] CSPDarknet-C3Ghost 640 0.725 0.781 0.75 0.771 0.347 84 4.90 10.6

Yolov6-3.0-nano [74] EfficientRep 640 0.726 0.829 0.77 0.744 0.380 81 4.63 11.34
Yolov6-3.0-s [74] EfficientRep 640 0.743 0.884 0.81 0.789 0.392 73 18.50 45.17

Yolov8n [30] CSPDarknet-C2f 640 0.716 0.877 0.79 0.772 0.345 82 3.1 8.2
Yolov8s [30] CSPDarknet-C2f 640 0.760 0.886 0.82 0.809 0.358 79 11.1 28.6

LMSD-Net(ours) CSPDarknet-
ELA-C3 (ours) 640 0.790 0.824 0.81 0.813 0.384 68 5.50 12.8

Although the speed of LMSD-Net is not the fastest, it is acceptable compared to most
of the advanced detectors mentioned earlier. Its detection speed reaches 68 FPS, which
could meet the real-time requirement (FPS > 30).

Further, in Figure 11, we show the detection results using LMSD-Net on AI-TOD,
MASATI, and VRS-SD v2. It can be observed that our model performs well on all three
datasets with no missed and false detections essentially, which indicates that the model has
a high generalization ability. Despite the large interference caused by clouds and fog to the
ship target, the detection still performs well.
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4. Discussion

In this study, we propose a new ship dataset VRS-SD v2, which adds more small-
and tiny-ship targets located nearshore and in rivers. The dataset covers different open
coast scenes, marine environments, maritime disturbances, target scales, and more dense
distributions. In addition, we propose a new fog simulation method for increasing the
proportion of fog images in the dataset. This method can improve the robustness of
the model in severe weather conditions. We have demonstrated the importance of fog
simulation for actual detection by implementing different proportions of fog simulation on
the dataset in the ablation experiment.

Then, we propose a new lightweight model (LMSD-Net) specifically for ship detection.
In the network, we design the ELA-C3 module for efficient feature extraction. In the feature-
fusion process, we propose a fusion method with compressed channels and weighted
connections to ensure lightweight and low computational complexity. In the detection head,
we introduce a contextual transformer (CoT) block to improve the detection accuracy. In
the prediction process, the variance penalty term is added, and the prediction performance
is improved for the relative scale consistency of the targets.

Furthermore, we validate the effectiveness of each module and the overall detection
performance on two small-ship datasets (VRS-SD v2 and MASATI). The ablation experi-
ments indicate that the ELA-C3 module, CoT block, and V-CIoU are beneficial in improving
accuracy. Meanwhile, WGC-PANet mainly enhances lightweight performance while en-
suring the expressiveness of the model. The overall comparison demonstrates that the
proposed model can reach 81.3% at AP@50 and 38.4% at AP@50:95 in VRS-SD v2, while
with only 5.5M parameters and 12.8 GFLOPs. Among the existing lightweight detection
models, LMSD-Net has better detection capability for small and tiny ships and achieves
SOTA performance. In addition, the detection speed reaches 68 FPS, which could meet the
real-time requirement.

5. Conclusions

The proposed lightweight model presents a feasible solution for remote sensing ship
detection and project deployment. The model performs well in dealing with complex
background disturbances near shore and at sea. Fog simulation has positive implications
for ship detection in bad weather conditions. In the future, reducing the computation
complexity will remain a challenging research task. In addition, we will further improve
our research in weighted-feature fusion and more comprehensive weather simulations.
Inspired by the Transformer, we believe that remote feature interaction will be the key to
improving detection performance in lightweight ship detection.

Author Contributions: Conceptualization, Y.T. and S.Z.; methodology, Y.T.; validation, Y.T. and S.Z.;
investigation, Y.T., F.X. and X.W.; resources, Y.T. and J.L. writing—original draft preparation, Y.T.;
writing—review and editing, F.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant 61905240.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful for anonymous reviewers’ critical comments and
constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 4358 24 of 26

References
1. Zou, H.; He, S.; Wang, Y.; Li, R.; Cheng, F.; Cao, X. Ship detection based on medium-low resolution remote sensing data and

super-resolved feature representation. Remote Sens. Lett. 2022, 13, 323–333. [CrossRef]
2. Cui, D.; Guo, L.; Zhang, Y. Research on the development of ship target detection based on deep learning technology. In

Proceedings of the ACM International Conference on Frontier Computing (FC), Turin, Italy, 17–19 May 2022.
3. Wu, J.; Li, J.; Li, R.; Xi, X. A fast maritime target identification algorithm for offshore ship detection. Appl. Sci. 2022, 12, 4938.

[CrossRef]
4. Yue, T.; Yang, Y.; Niu, J. A Light-weight Ship Detection and Recognition Method Based on YOLOv4. In Proceedings of the 2021

International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China,
26–28 March 2021.

5. Joseph, S.I.T.; Karunakaran, V.; Sujatha, T.; Rai, S.B.E.; Velliangiri, S. Investigation of deep learning methodologies in satellite
image based ship detection. In Proceedings of the International Conference on Sustainable Computing and Data Communication
Systems (ICSCDS), Erode, India, 7–9 April 2022.

6. Ding, J.; Xue, N.; Long, Y.; Xia, G.; Lu, Q. Learning RoI transformer for detecting oriented objects in aerial images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

7. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005.

8. Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable part model. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008.

9. Wu, X.; Hong, D.; Tian, J.; Chanussot, J.; Li, W.; Tao, R. ORSIm Detector: A Novel Object Detection Framework in Optical Remote
Sensing Imagery Using Spatial-Frequency Channel Features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5146–5158. [CrossRef]

10. Shi, Z.; Yu, X.; Jiang, Z.; Li, B. Ship Detection in High-Resolution Optical Imagery Based on Anomaly Detector and Local Shape
Feature. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4511–4523.

11. Tang, J.; Deng, C.; Huang, G.; Zhao, B. Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural
Network and Extreme Learning Machine. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1174–1185. [CrossRef]

12. Zou, Z.; Shi, Z. Ship Detection in Spaceborne Optical Image with SVD Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54,
5832–5845. [CrossRef]

13. Nie, T.; Han, X.; He, B.; Li, X.; Liu, H.; Bi, G. Ship Detection in Panchromatic Optical Remote Sensing Images Based on Visual
Saliency and Multi-Dimensional Feature Description. Remote Sens. 2020, 12, 152. [CrossRef]

14. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

15. Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes
Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

16. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

17. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Miami Beach, FL, USA, 20–25 June 2009.

18. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014.

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

20. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the
Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016.

21. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

22. Hu, J.; Zhi, X.; Jiang, S.; Tang, H. Supervised Multi-Scale Attention-Guided Ship Detection in Optical Remote Sensing Images.
IEEE Trans Geosci Remote Sens. 2022, 60, 1–14. [CrossRef]

23. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 42, 318–327. [CrossRef]

24. Zhou, X.; Wang, D.; Krhenbühl, P. Objects as Points. arXiv 2019, arXiv:1904.07850.
25. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2020, arXiv:1804.02767.
26. Bochkovskiy, A.; Wang, C.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934v1.
27. GitHub: Ultralytics. YOLOv5-v 6.1. 2022. Available online: https://github.com/ultralytics/yolov5 (accessed on 23

December 2022).
28. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M. YOLOv6: A Single-Stage Object Detection Framework

for Industrial Applications. arXiv 2022, arXiv:2209.02976.
29. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.

https://doi.org/10.1080/2150704X.2022.2033343
https://doi.org/10.3390/app12104938
https://doi.org/10.1109/TGRS.2019.2897139
https://doi.org/10.1109/TGRS.2014.2335751
https://doi.org/10.1109/TGRS.2016.2572736
https://doi.org/10.3390/rs12010152
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TPAMI.2015.2389824
https://www.ncbi.nlm.nih.gov/pubmed/26353135
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1109/TGRS.2022.3206306
https://doi.org/10.1109/TPAMI.2018.2858826
https://github.com/ultralytics/yolov5


Remote Sens. 2023, 15, 4358 25 of 26

30. GitHub: Airockchip. YOLOv8. 2023. Available online: https://github.com/airockchip/ultralytics_yolov8. (accessed on 10
February 2023).

31. Wang, B.; Han, B.; Yang, L. Accurate Real-time Ship Target detection Using Yolov4. In Proceedings of the International Conference
on Transportation Information and Safety (ICTIS), Wuhan, China, 27 June 2022.

32. Ye, Y.; Ren, X.; Zhu, B.; Tang, T.; Tan, X.; Gui, Y.; Yao, Q. An Adaptive Attention Fusion Mechanism Convolutional Network for
Object Detection in Remote Sensing Images. Remote Sens. 2022, 14, 516. [CrossRef]

33. Xu, Q.; Li, Y.; Shi, Z. LMO-YOLO: A Ship Detection Model for Low-Resolution Optical Satellite Imagery. IEEE J-STARS 2022, 15,
4117–4131. [CrossRef]

34. Zhang, T.; Zhang, X.; Liu, C.; Shi, J.; Wei, S. Balance learning for ship detection from synthetic aperture radar remote sensing
imagery. ISPRS J. Photogramm. Remote Sens. 2021, 182, 190–207. [CrossRef]

35. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (2021), Montreal, QC, Canada, 10–17
October 2021.

36. Liu, Z.; Hu, H.; Lin, Y.; Yao, Z.; Xie, Z.; Wei, Y.; Ning, J.; Cao, Y.; Zhang, Z.; Dong, L.; et al. Swin Transformer V2: Scaling Up
Capacity and Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022.

37. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv
2020, arXiv:2005.12872.

38. Mehta, S.; Rastegari, M. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer. arXiv 2021,
arXiv:2110.02178.

39. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. arXiv 2020, arXiv:1911.09070.
40. Gholami, A.; Kwon, K.; Wu, B.; Tai, Z.; Yue, X.; Jin, P.; Zhao, S.; Keutzer, K. SqueezeNext: Hardware-Aware Neural Network

Design. arXiv 2018, arXiv:1803.10615.
41. Huang, G.; Liu, S.; Maaten, L.; Weinberger, K.Q. CondenseNet: An Efficient DenseNet using Learned Group Convolutions. arXiv

2017, arXiv:1711.09224.
42. Zhang, T.; Qi, G.; Xiao, B.; Wang, J. Interleaved Group Convolutions for Deep Neural Networks. arXiv 2017, arXiv:1707.02725.
43. Xie, G.; Wang, J.; Zhang, T.; Lai, J.; Hong, R.; Qi, G. IGCV2: Interleaved Structured Sparse Convolutional Neural Networks. arXiv

2018, arXiv:1804.06202.
44. Sun, K.; Li, M.; Liu, D.; Wang, J. IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks. arXiv

2018, arXiv:1806.00178.
45. Ma, N.; Zhang, X.; Zheng, H.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. arXiv 2018,

arXiv:1807.11164.
46. Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.M.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In

Proceedings of the IEEE /CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, GA, USA, 21–26
July 2017.

47. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016.

48. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. arXiv 2018, arXiv:1803.01534.
49. Ghiasi, G.; Lin, T.-Y.; Pang, R.; Le, Q.V. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. arXiv

2019, arXiv:1904.07392.
50. Liu, S.; Huang, D.; Wang, Y. Learning Spatial Fusion for Single-Shot Object Detection. arXiv 2019, arXiv:1911.09516.
51. Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2Det: A Single-Shot Object Detector based on Multi-Level

Feature Pyramid Network. arXiv 2018, arXiv:1811.04533. [CrossRef]
52. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. arXiv 2019, arXiv:1904.01355.
53. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object

Detection on Drone-captured Scenarios. arXiv 2021, arXiv:2108.11539.
54. Tian, Y.; Liu, J.; Zhu, S.; Xu, F.; Bai, G.; Liu, C. Ship Detection in Visible Remote Sensing Image Based on Saliency Extraction and

Modified Channel Features. Remote Sens. 2022, 14, 3347. [CrossRef]
55. Sakaridis, C.; Dai, D.; Gool, L.V. Semantic Foggy Scene Understanding with Synthetic Data. arXiv 2019, arXiv:1708.07819.

[CrossRef]
56. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv

2019, arXiv:1801.04381.
57. Li, Y.; Yao, T.; Pan, Y.; Mei, T. Cot Contextual Transformer Networks for Visual Recognition. arXiv 2021, arXiv:2107.12292.
58. Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for

Object Detection and Instance Segmentation. arXiv 2021, arXiv:2005.03572. [CrossRef] [PubMed]
59. Liu, Z.; Yuan, L.; Weng, L.; Yang, Y. A High Resolution Optical Satellite Image Dataset for Ship Recognition and Some New

Baselines. In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), Porto,
Portugal, 24–26 February 2017.

https://github.com/airockchip/ultralytics_yolov8.
https://doi.org/10.3390/rs14030516
https://doi.org/10.1109/JSTARS.2022.3176141
https://doi.org/10.1016/j.isprsjprs.2021.10.010
https://doi.org/10.1609/aaai.v33i01.33019259
https://doi.org/10.3390/rs14143347
https://doi.org/10.1007/s11263-018-1072-8
https://doi.org/10.1109/TCYB.2021.3095305
https://www.ncbi.nlm.nih.gov/pubmed/34437079


Remote Sens. 2023, 15, 4358 26 of 26

60. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-Class Geospatial Object Detection and Geographic Image Classification Based on
Collection of Part Detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [CrossRef]

61. Al-Saad, M.; Aburaed, N.; Panthakkan, A.; Al Mansoori, S.; Al Ahmad, H.; Marshall, S. Airbus Ship Detection from Satellite
Imagery using Frequency Domain Learning. In Proceedings of the Conference on Image and Signal Processing for Remote
Sensing XXVII, online, Spain, 13–17 September 2021.

62. Gallego, A.J.; Pertusa, A.; Gil, P. Automatic Ship Classification from Optical Aerial Images with Convolutional Neural Networks.
Remote Sens. 2018, 10, 511. [CrossRef]

63. Chen, K.; Wu, M.; Liu, J.; Zhang, C. FGSD: A Dataset for Fine-grained Ship Detection in High Resolution Satellite Images. arXiv
2021, arXiv:2003.06832.

64. Wang, J.; Xu, C.; Yang, W.; Yu, L. A Normalized Gaussian Wasserstein Distance for Tiny Object Detection. arXiv 2021,
arXiv:2110.13389.

65. Yu, X.; Gong, Y.; Jiang, N.; Ye, Q.; Han, Z. Scale Match for Tiny Person Detection. arXiv 2020, arXiv:1912.10664.
66. Xia, G.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-scale Dataset for Object

Detection in Aerial Images. arXiv 2019, arXiv:1711.10398.
67. Chen, C.; Liu, M.; Tuzel, O.; Xiao, J. R-CNN for Small Object Detection. In Proceedings of the 13th Asian Conference on Computer

Vision (ACCV), Taipei, Taiwan, 20–24 November 2016.
68. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.

arXiv 2019, arXiv:1911.08287. [CrossRef]
69. Zhang, Y.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IOU Loss for Accurate Bounding Box Regression. arXiv

2021, arXiv:2101.08158. [CrossRef]
70. Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740.
71. Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023,

arXiv:2301.10051.
72. GitHub: RangiLyu. NonoDet-Plus. 2021. Available online: https://github.com/RangiLyu/nanodet (accessed on 12

February 2023).
73. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
74. Li, C.; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. YOLOv6 v3.0: A Full-Scale Reloading. arXiv 2023,

arXiv:2301.05586.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.isprsjprs.2014.10.002
https://doi.org/10.3390/rs10040511
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1016/j.neucom.2022.07.042
https://github.com/RangiLyu/nanodet

	Introduction 
	Methods 
	Data Augmentation–Fog Simulation on Actual Remote Sensing Scenes 
	The Proposed LMSD-Net 
	Overall Architecture 
	Efficient Layer Aggregation Block 
	Lightweight Fusion with Weighted-Channel Concatenation 
	Contextual Transformer Block for the Detection Head 
	Prediction 


	Results and Experiments 
	Dataset 
	The Analysis of VRS-SD v2 
	Fog Simulation 

	Evaluation Metrics 
	Ablation Study 
	Effect of Fog Simulation 
	Effect of ELA-C3 
	Effect of WFC-PANet 
	Structure Exploration of the Detection Head 
	Validation of Regression Loss Function 
	Multi-Scale Performance of the Model 

	Overall Detection Performance 

	Discussion 
	Conclusions 
	References

