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Abstract: The detection of an infrared small target faces the problems of background interference
and non-obvious target features, which have yet to be efficiently solved. By employing the non-
local self-correlation characteristic of the infrared images, the principle component pursuit (PCP)-
based methods are demonstrated to be applicable to infrared small target detection in a complex
scene. However, existing PCP-based methods heavily depend on the uniform distribution of the
background pixels and are prone to generating a high number of false alarms under strong clutter
situations. In this paper, we propose a group low-rank regularized principle component pursuit
model (GPCP) to solve this problem. First, the local image patches are clustered into several groups
that correspond to different grayscale distributions. These patch groups are regularized with a
group low-rank constraint, enabling an independent recovery of different background regions.
Then, GPCP model integrates the group low-rank components with a global sparse component to
extract small targets from the background. Different singular value thresholds can be exploited for
image groups corresponding to different brightness and grayscale variance, boosting the recovery
of background clutters and also enhancing the detection of small targets. Finally, a customized
optimization approach based on alternating direction method of multipliers is proposed to solve
this model. We set three representative detection scenes, including the ground background, sea
background and sky background for experiment analysis and model comparison. The evaluation
results show the proposed model has superiority in background suppression and achieves better
adaptability for different scenes compared with various state-of-the-art methods.

Keywords: infrared small target detection; principle component pursuit; group low-rank regularization;
infrared patch-image model

1. Introduction

The infrared search system has the merits of working in all weather, all day and at
long ranges, which is applicable to many important fields such as early-warning systems,
aerospace technology, remote sensing [1–3], etc. In the moving process of the infrared target,
it is easy for it to be submerged in high brightness clutter such as clouds, sea-sky-line, etc.
In addition, the search system usually needs to detect long-range targets [4], which means
the target size is very small and the useful signal is very weak. To adapt to these real-
world scenarios, the detection algorithms should be designed to handle the interference
of background clutter and achieve the effective extraction of the small (<9 × 9 pixels) and
weak (<3 SNR) targets.

Over the years, a plethora of small dim target detection algorithms have been
proposed. From the perspective of image characteristic utilization, these algorithms can
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be categorized into three types: target characteristic-based method [5–8], background
characteristic-based method [9–11] and target/background characteristic integration-
based method [12–15]. Generally, the infrared small targets appear to have large gray-
scale values and are prone to distribution in high-frequency areas. These properties are
usually adopted by the target characteristic-based methods for potential target region
extraction, such as the local contrast measure [5,16], local entropy measure [3] and
frequency-domain saliency region segmentation [17]. These methods are adequate for
their relatively uniform background and targets with high brightness. However, due
to the lack of background modeling, the strong edges or background clutters can easily
be detected as false alarms in the target characteristic-based methods. The background
characteristic-based methods can avoid the confusion of the targets and background
interference to some extent, in which the background pixels of adjacent image area
and successive frames are assumed to be spatially consistent. According to this, the
target is detected by removing the predicted background from the original image.
However, background characteristic-based methods are not suitable for handling
complex backgrounds due to the difficulty of background estimation. It has been
extensively shown that using single-target or background information is not effective
for detecting small targets in complex situations.

The infrared patch-image (IPI) model [12] is a representative target and background
integration-based method. By employing the non-local self-correlation of the background,
IPI transfers the small target detection problem to the recovery of a low-rank matrix and
a sparse matrix, which correspond to the background component, and target component
respectively. The target components are regarded as outliers that increase the rank value
of the data matrix and can be efficiently separated by the PCP model. Accurate approxi-
mation of the matrix rank is a major difficulty for the IPI model. Overlarge rank is good
for background interference suppression but is more likely to cause miss detection. On the
contrary, a lower rank will introduce an enormous number of false alarms. Recently, many
works concentrate on the approximation of the matrix ranks. Zhang et al. [18] propose
the modification of the low-rank constraint of IPI to a tighter-rank surrogate— l2,1 norm to
remove the unpredictable background residuals. Zhu et al. use a smooth but nonconvex
surrogate of the rank based on the Log operator [19], which is closer to the rank minimiza-
tion optimization than the nuclear norm. In the NIPPS model [20] and PSTNN model [14],
by using the partial sum of nuclear norms, the matrix and tensor ranks are approximated
by the energy ratio of the principle matrix to adapt to the changeable background. Liu et
al. proposed a non-convex tensor low-rank approximation (NTLA) method to adaptively
assign different weights to different singular values [21]. The above-mentioned methods
focus more on using different surrogates to replace the low-rank constraint. However,
due to the intrinsic diversity of different local image regions, using one single low-rank
constraint is difficult to describe the whole background. For the sake of a more accurate
description model, it is necessary to explore the complexity variations of different local
regions and assign different rank thresholds in reconstruction.

Considering the fact that the infrared image is nonuniform and its complexity varies
spatially, we establish a novel group regularized PCP model, named as GPCP for the
small target detection in complex scenes. The proposed model employs a group low-rank
constraint to replace the previous global low-rank constraint in recovering the background
component, and enforces using different number of principle components for image data
groups corresponding to different complexity and brightness. By minimizing the group
low-rank constraints of the GPCP model, more image details can be reconstructed, so that
the residual errors can be eliminated from the target components. The contributions of this
article can be summarized as follows:

• We analyze the low-rank property of the global data matrix and grouped data matrix,
and find there is a significant difference of principle component number in recovering
the data matrix with different complexity.
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• We propose a group low-rank constraint for background recovery and combine it with
a global sparse regularization term for target recovery, which can remove the residual
errors in the target component efficiently.

• A customized optimization algorithm is adopted to solve the proposed GPCP model,
in which the group low-rank components are decoupled by the ADMM algorithm.

The rest of the sections are organized as follows. In Section 2, some related works
on the small target detection are briefly reviewed. Section 3 introduces the algorithm
flowchart and implementation details of the proposed detection model. Section 4 gives the
experimental results on different background situations to demonstrate the effectiveness of
our proposed method. Section 5 concludes the whole paper and discusses future works.

2. Related Work

We briefly review the related work on the small target detection methods using target
characteristics, background characteristics and integration idea.

2.1. Target Characteristic-Based Method

The target characteristic-based method mainly focuses on the distinction between the
target and its surrounding background. Many representative methods have been proposed
in this research branch, such as the local contrast measure (LCM) [5,22], entropy contrast
measure (ECM) [23,24], sparse representation-based methods [25], and so on. This type of
method utilizes the shape or statistical characteristics of the small target for target detection.
However, due to the similar image property of the small target and the strong background
edges, the background clutters could easily be mistaken for a target. To address the issue
of false detection, relative methods have been proposed to enhance the target intensity
while suppressing the background region, such as the weighted local difference measure
(WLDM) [6], multiscale local homogeneity measure (MLHM) [7], self-regularized weighted
sparse model (SRWS) [26] etc. In the recent studies, saliency features are also utilized to
associate the gray intensity with the entropy [19,27] or frequency domain [3,17], which
have gained better results in small target detection. It is noticeable that these methods
are sensitive to the settings of the target size and window size, which are hard to balance
without prior information.

2.2. Background Characteristic-Based Method

The background characteristic-based method is usually based on the assumption
that the background pixels are highly correlated, and targets are the parts that break this
relationship. So, many background characteristic-based methods study the background
estimation algorithms by using the neighboring pixels [9,11,28]. For example, the differ-
ence of Gaussian (DoG) filter uses the weighted sum of local neighborhood pixels as the
background [29]. To cope with the problem of edge sensitivity, many methods propose
to add the orientation information for background estimation, such as the max-mean and
max-median filters [30], in which the maximum values of the mean or median arrays of
different lines is taken as the background. The above mentioned background characteristic-
based methods are all based on the local estimation model, in addition, the estimation
strategy usually selects the maximum value of different orientations, which is not accu-
rately designed. Aiming at this problem, some researchers propose to adopt the transform
domain information for background suppression [9,31]. In [9], the whole infrared image is
transformed into the frequency domain, and the background component is suppressed by
removing the low frequency component from the original image. However, this type of
method cannot suppress the complex background because the strong edges also belong to
high-frequency subbands.
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2.3. Target/Background Characteristic Integration-Based Method

Recently, the low-rank sparse model, which integrates the target characteristic and
background characteristic by image data decomposition, has achieved considerable advances
in the small target detection area. In [12], Gao et al. presented an infrared patch image (IPI)
model, in which the target component and background component are assumed to be sparse
and low rank, respectively. Considering that equally weighted singular values will restrict
the description ability of low rank nature for the background patches, Zhang et al. proposed
to modify the nuclear norm regularization to a weighted nuclear norm [13], which makes
the model more flexible for complex background. Afterwards, Dai et al. pointed out that
when facing extremely complex background, the low rank assumption of IPI model has a
mismatching problem, which may lead the strong edges to be considered as outliers [20]. To
solve this problem, they adopted the partial sum of singular values to constrain the low-rank
background instead of the nuclear norm. Similar idea has also been mentioned in [14], where
the partial sum minimization constraint of singular values is extended to the patch-tensor
model. In order to transfer the NP-hard problem of PCP model into a non-convex optimization
problem, Zhang et al. proposed to apply schatten q-norm and lp-norm to the small target
detection area, which is named as NOLC model [32]. To enhance the detection accuracy,
in [26], an overlapping edge information is applied to mine the structure information of
background. Multiple frames-based models [33] are also reported for small target detection
in complex scenes. In [34], Aliha et al. built a block-matching patch-tensor model based
on the spatial–temporal domain to extract inter-frame information. Hu et al. further used a
simultaneous sampling in spatial and temporal domains to make full use of the information
between multiple frames [26]. Considering the target’s local continuity in the spatial–temporal
domain, Li et al. [35] proposed a spatial regularized spatial–temporal twist tensor model,
which can reduce the global noise to some extent.

Recently, convolutional neural network (CNN) began to appear in the infrared small
target detection study area. Du et al. [36] proposed a shallow–deep feature-based detection
model, which demonstrates that shallow features are important for small target detection.
Regarding the feature lacking problem, Bai et al. used a cross-connection bidirectional
pyramid network to provide more comprehensive target information [37]. To cope with the
miss detection problem, Liu et al. adopted the transformer to learn the correlation of image
features in a larger range [38]. Among existing deep learning methods, feature learning still
remains challenging due to the small size and non-obvious image features of the infrared
small targets.

3. Proposed Small Target Detection Using GPCP

In this section, we first analyze the low-rank property of the patch-image data matrix,
including the global data matrix, the bright-uniform part, the dark-uniform part and the
cluttered part. Then, a group-regularized principle component pursuit model (GPCP)
is constructed according to the diverse characteristics of the local image parts. Finally,
the sparse component which includes the small target is separated from the complex
background using the GPCP model, as shown in Figure 1. The algorithm steps and results
of the traditional PCP model and the proposed GPCP model are also illustrated in Figure 1.
Next, we will elaborate the details of the proposed small target detection model.

3.1. Low-Rank Property of Image Groups

The existing PCP-based models mainly focus on the low-rank structure of the global
data matrix and ignore the inhomogeneous information among local background regions,
which makes these models not suitable to handle complex scenes. As illustrated in the upper
part of Figure 1, there are many background clutters (labeled by blue boxes) remaining
in the sparse component after the global PCP based decomposition process. It could
also be observed that the residual clutters are mainly distributed in the image parts with
strong edges or big gray level changes. That is to say, such a decomposition model forms
a confusion of the small targets and some background clutters. Since the background
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component is recovered by a low-rank constraint, the key problem is then transferred into
how to determine the rank threshold in the PCP process.
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Figure 1. Illustration of the proposed GPCP model for small target detection.
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Figure 1. Illustration of the proposed GPCP model for small target detection.

To handle the aforementioned issue, we need to have a deeper understanding of the
low-rank characteristics of different background parts. Figure 2 illustrates the eigenvalue
curves of the global data matrix and the grouped local data matrix, which are generated
by the distribution of data. To avoid the influence of matrix dimension on the result of
eigenvalues, the column size of the global data matrix and the grouped data matrix is
down-sampled to keep it the same. The X-axis of Figure 2c represents the number of
principle components, which is defined as “rank threshold” in the optimization process.
Y-axis represents the eigenvalues of data matrix. Here, we set 2 as the boundary of principle
components, which means the eigenvectors whose corresponding eigenvalues are greater
than 2 are regarded as principle components. From Figure 2c, we can see that the principle
component of the global data matrix (red line) is concentrated in the top nine eigenvec-
tors. For the uniform data matrix groups (green and pink lines), the number of principle
components is about seven to eight. By comparison, the threshold value of the cluttered
part (blue line) is 10, which is much larger than the other two uniform parts and is a bit
larger than the global data matrix. This demonstrates that there is a significant difference
on the low-rank characteristics among the bright-uniform part, the dark-uniform part and
the cluttered part, which motivates us to consider whether we can use a group regularized
PCP model to cope with the clutter interference problems in complex situations.
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3.2. Construction of the GPCP Model

PCP is a convex model which aims to recover the low-rank matrix when the data
matrix is corrupted by gross sparse errors [39] and is playing an important role in the recent
patch-image based small target detection methods. Mathematically, it considers the data
matrix D ∈ Rn1×n2 is composed of a low-rank component L and a sparse component S and
solves the following convex optimization problem:

arg min
L,S

∥L∥∗ + λ∥S∥0, s.t.∥D − L − S∥ ≤ ε (1)

To recover L and S, the low-rank component L should be limited to the following
three conditions:

max
i

∥U∗ei∥2 ≤ µr
n1

, max
i

∥V∗ei∥2 ≤ µr
n2

, ∥UV∗∥∞ ≤
√

µr
n1n2

(2)

where L = UΣV∗ =
r
∑

i=1
σiµiv∗i . By arranging an appropriate r, the L and S components can

be efficiently separated after the PCP operation. Yet a unified r is not suitable to handle
the overall data matrix since the image data always corresponds to different complexity.
An extreme example is that the small target is located in the smooth background part,
meanwhile strong edges exist in the other part of the background. When r is set to a
small value, many residual errors will remain in the sparse component; when r is large,
the real target will be regarded as the low-rank component. Therefore, the true reason
causing missed detection and false detection lies in the data structure diversity of different
background parts.

The newly designed GPCP model we consider in this paper assumes the low-rank
component L satisfies a group low-rank structure, which is defined as follows:

rankgroup(L) = ∑
k

µk∥Lk∥∗ (3)

where Lk represents the kth group of the low-rank component, µk is used to balance the
image groups with different data number. In this way, each Lk is considered independent
with each other and will correspond to different shrink thresholds rk for decomposition.
The eigen value curves of the data matrixes in Figure 2 also show that compared with the
global data matrix, the group data matrix has a better property on the low-rank condition of
PCP model. To recover the low-rank components Lk(k = 1, 2, . . . ) and the spare component
S, we need to solve the following GPCP model:

arg min
L,S

∑
k

µk∥Lk∥∗ + λ∥S∥1

s.t.D = L + S + N, L = {L1, . . . Lk, . . .}
(4)

3.3. Small Target Detection Using GPCP

Typically, the small target detection model can be written as follows:

D = T + B + N (5)

where D represents the input image, T, B and N represent the target, background and
noise, respectively.

In this paper, we follow the basic idea of the infrared patch-image model [12] and
denote D as a data matrix, which is composed of column-wise local patches of the input
image. To explore the data structure of the background component, the image patch vectors
with similar property on gray-scale variation should be clustered together. The complexity
and gray level of an image are reflected by the variance value σ and the mean value µ ,
respectively. So, we employ (µ, σ) as the data feature descriptor.
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Firstly, the image data can be divided into a clutter group and a uniform group
according to σ. Then, for the uniform group, the bright part and the dark part also
correspond to different image properties. The dissimilarity degree between two data
samples is calculated by:

d1 = |µ1 − µ1|, d2 = |σ1 − σ1| (6)

According to Equation (6), large d1 and d2 indicate a big difference between two
samples. The k-means cluster algorithm is employed to divide the entire data into three
groups: the bright-uniform part, the dark-uniform part and the cluttered part, which is
shown in Figure 2. According to the previous discussion in Sections 3.1 and 3.2, the image
data in different groups always corresponds to different low-rank structure and should be
regularized separately. So, we propose to use the GPCP model to depict the background
patch-image in complex scenes, which is defined as:

∥B∥g∗ = ∑
k

µk∥Bk∥∗
B = {B1, B2, . . . , Bk}

(7)

where Bk represents the k-th group of the background data, µk is used to balance the image
groups with different data number, which is defined as:

µk =
data number o f group k

total number
(8)

Here, we use the group-regularized nuclear norm ∑
k

µk∥Bk∥∗ to approximate the rank

property of the background component B, instead of ∥B∥∗. So, the whole background is
composed of the recovering of these separated image groups. Generally, the image groups
containing strong edges and clutters will correspond to a large singular threshold, and
the uniform image groups will correspond to a lower one. Compared with the previous
detection method which uses one single low-rank constraint for the whole background
component, the group low rank regularization can better explore the local structure of the
image and lead to a more accurate decomposition result.

In the infrared images, small targets are usually randomly distributed in different
groups. So, to keep the sparsity of the entire target component rather than the group
component, we use a global sparse constraint for the whole target component T, which is
defined as ∥T∥1. Therefore, the group IPI model is defined as follows:

arg min
L,S

∑
k

µk∥Bk∥∗ + λ∥T∥1

s.t.D = B + T + N, B = {B1, B2, . . . , Bk}
(9)

3.4. Optimization Method of the GPCP Model

The objective function defined in Equation (9) is a convex problem which includes
two variables B and T to be solved. It should be noticed that the background component
B in Equation (9) is composed of several local groups and each group is independent of
one another, which has a great difference compared with the traditional PCP model. In
accordance with this complex situation, we adopt the ADMM algorithm to decouple the
group principle component pursuit model into several sub-problems and alternatively
optimize one variable while keeping others fixed. The augmented Lagrangian expression
of Equation (9) can be rewritten as the following form:

Lρ(B, T, F) = ∑
k

µk∥Bk∥∗ +
ρ
2∥D − B − T∥2

F

+λ∥T∥1 + ⟨F, D − B − T⟩
(10)

where F represents the dual vector, ρ > 0 is the penalty parameter. The algorithm flow of
ADMM is summarized in Algorithm 1.
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Algorithm 1 ADMM (Alternating Direction Method of Multipliers) Algorithm for
GPCP model

Input: group number K, regularization parameter λ, penalty parameter ρ, update factor
for ρ: µρ, maximum iteration max_iter, tolerance error tol.
while not converged do

1. Compute group background component Bk using Ukdiag
(

pos
(

σk − 1
ρ

))
VT

k ;
2. Combine K group components B1:K into a global form B;
3. Compute target component T using th 2λ

ρ

(
D − B + F

ρ

)
;

4. Update dual factor F using Ft+1 = Ft + ρt(Tt+1 + Bt+1 − D
)
;

5. Update penalty factor ρ using ρt+1 = µρ × ρt;
6. Set termination condition:
(1) Compute reconstruction error err = ∥T + B − D∥ < tol;
(2) Target component not change ∑

i,j
Tt−1(i, j) = ∑

i,j
Tt(i, j);

(3) Reach the maximum iteration number max_iter.
end while
Output: Sparse coefficient matrix X(k).

(1) Solution of background component B
The objective expression with regard to B can be summarized as:

Lρ(B) = ∑
k

µk∥Bk∥∗ +
ρ

2
∥D − B − T∥2

F + ⟨F, D − B − T⟩ (11)

The group members in B are independent with each other, so the minimization prob-
lem of ρ

2∥D − B − T∥2
F is equal to minimizing ρ

2 ∑
k
∥Dk − Bk − Tk∥2

F, and the minimization

problem of ⟨F, D − B − T⟩ is equal to minimizing ⟨F, Dk − Bk − Tk⟩. According to this,
Equation (10) can also be described as the following grouped summation form:

Lρ(Bk) = ∑
k

µk∥Bk∥∗ + ⟨F, Dk − Bk − T⟩
+ ρ

2 ∑
k
∥Dk − Bk − Tk∥2

F
(12)

For each group, the objective function related to its corresponding background compo-
nent Bk can be rewritten as the separated group form:

Lρ(Bk) = µk∥Bk∥∗ + ⟨F, Dk − Bk − T⟩
+ ρ

2∥Dk − Bk − Tk∥2
F

= µk∥Bk∥∗ +
ρ
2

∥∥∥Bk −
(

Dk − Tk +
F
ρ

)∥∥∥
2

F

(13)

The above problem can be solved by the singular value thresholding algorithm [40],
which is defined as follows:

Bt+1
k = SVD 1

ρ

(
Dk − Tk − F

ρ

)

= Ukdiag
(

pos
(

σk − 1
ρ

))
VT

k

pos
(

σk − 1
ρ

)
=

{
σk − 1

ρ , i f σk >
1
ρ

0, otherwise

(14)

where Uk, Vk and σk are the left eigen-vector, right eigen-vector and singular values of
matrix Dk − Tk − F

ρ , respectively.
(2) Solution of target component
The objective expression with regard to T can be summarized as:
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Lρ(T) = λ∥T∥1 +
ρ
2∥D − B − T∥2

F + ⟨F, Dk − Bk − Tk⟩
B = {B1, . . . Bk, . . .} (15)

Similar to Equation (13), the above expression can be rewritten as the following form:

Lρ(T) = λ∥T∥1 +
ρ

2

∥∥∥∥T −
(

D − B +
F
ρ

)∥∥∥∥
2

F
(16)

According to reference [41], the solution of Equation (16) is given by the soft-thresholding
function:

Tt+1 = th 2λ
ρ

(
D − B + F

ρ

)

ths(W) =





w − s, w > s
w + s, w < −s
0, otherwise

(17)

in which w represents the element of matrix W, Tt+1 represents the updated target compo-
nent in the next iteration.

(3) Update dual factor F and penalty factor ρ
The dual factor F and penalty factor ρ are all updated in a standard way as shown in

the following:
Ft+1 = Ft + ρt(Tt+1 + Bt+1 − D

)

ρt+1 = µρ × ρt (18)

where µρ is the update factor for ρ.

4. Experimental Evaluations
4.1. Experiment Settings
4.1.1. Parameter Settings

In our experiment, the image is divided into 16 × 16 local patches with 10 pixel step
size. The group number is set to 3. The regularization factor λ of the target component is
1/

[√
min(M, N)

]
, where M and N represent the patch size and patch number, respectively.

The penalty factor ρ of the ADMM method is set to 0.001, and the update factor µρ is 1.05.
The maximum iteration of ADMM method is set to 500.

4.1.2. Evaluation Metrics

We adopt three metrics to evaluate the performance of the detection algorithms. The
first one is receiver operating characteristic (ROC) curve, which describes the sensitivity
(or called saliency) of the target after detection operation. The false alarm ratio Fa and
probability of detection Pd are employed to form the horizontal and vertical axis of the
ROC curve, which are separately defined as below:

Pd =
detected target number

real target number
(19)

Fa =
f alsely detected pixel number

total pixel number
(20)

For a randomly selected segmentation threshold, a good detection result should have
a low false alarm ratio, while keeping a high target detection rate.

Another two metrics, signal-to-clutter ratio gain (SCRG) and background suppression
factor (BSF) are used to measure the information change between the input images and



Remote Sens. 2024, 16, 16 10 of 21

output images. SCRG mainly reflects the enhanced capability to the target and BSF focuses
on measuring the suppression effect on the background, which are separately defined as:

SCRG =
SCRGout

SCRGin
, SCR =

|µt − µb|
σb

(21)

BSF =
(σb)in
(σb)out

(22)

where µt and µb represent the mean value of the target part and background part, respec-
tively. σb represents the standard deviation of the background part. Larger SCRG and BSF
scores indicate a better detection performance.

4.1.3. Baseline Algorithms

To evaluate the performance of our proposed detection algorithm, several state-
of-the-art methods are introduced as the comparison group, involving non-convex ten-
sor low-rank approximation method (ASTTV-NTLA) [21], infrared patch image model
(IPI) [12], partial sum of tensor nuclear norm-based detection model (PSTNN) [14], total
variation regularization-based model (TVPCP) [42], reweighted image patch tensor model
(RIPT) [43], non-convex rank approximation minimization joint l1,2 norm-based model
(NRAM) [18], multiscale patch-based contrast measure-based model (MPCM) [44] and
sparse regularization-based spatial–temporal twist tensor (SRSTT) model [35]. Table 1
shows the detailed parameter settings of the compared methods in this paper.

Table 1. Detailed parameter settings for compared methods.

Methods Acronyms Parameter Settings

Non-convex tensor low-rank approximation method ASTTV-NTLA L = 3, H = 6, λtv = 0.005, λs =
H√

max(M,N)∗L
, λ3 = 100

Infrared patch image model IPI Patchsize: 30 × 30, step: 10, λ = 1√
min(m,n)

, ε = 10−7

Partial sum of tensor nuclear norm-based detection model PSTNN Patchsize: 40 × 40, step: 40, λ = 0.6√
max(n1,n2)∗n3

, ε = 10−7

Total variation regularization-based model TVPCP λ1 = 0.005, λ2 = 1√
max(M,N)

, β = 0.025, γ = 1.5

Reweighted image patch tensor model RIPT
Patchsize: 50 × 50, step: 10, λ = L√

min(n1,n2,n3)

L = 1, H = 10, ε = 10−7

Non-convex rank approximation minimization joint l1,2 norm-based model NRAM
Patchsize: 50 × 50, step: 10, γ = 0.002, λ = 1√

max(M,N)

C =

√
min(M,N)

2.5 , µ0 = 3
√

min(M, N), ε = 10−7

Multiscale patch-based contrast measure-based model MPCM Mean filter size: 3 × 3, N = 3, 5, 7, 9

Sparse regularization-based spatial–temporal twist tensor SRSTT L = 30, λ1 = 0.05, λ2 = 0.1, λ3 = 100, ε = 10−7, µ = 0.01

Group-regularized principle component pursuit GPCP Patchsize: 30 × 30, step: 10, groupnum: 3, λ = 1√
min(m,n)

, ε = 10−7

4.1.4. Dataset

The full dataset contains 12 sequences. According to the type of detection scene, we
have manually divided these sequences into 3 categories, including 3 ground-background
sequences, 3 sea-background sequences and 6 sky-background sequences. The frame number,
image size and signal-to-clutter information of each sequence are shown in Table 2.

Representative frames of each detection scene are shown in Figures 3–5. It is noticeable
that the ground-background is the most complex compared with other two situations. The
road surface with high gray-scale level leads to a very strong background edge, which
causes great interference for detecting the real target. For the scene of sea-background,
the warship target usually moves nearby the sea-level line. The clutters caused by the
clouds and lighthouses will also increase the difficulty of small target detection. On the
other hand, the imaging noise is very high in this situation, as shown in the sequence
Sea-1. In the sky-background situation, the target energy is the lowest among these three
situations. Specifically, the average signal-to-clutter ratio of sequence Sky-4 is less than zero,
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which indicates a very challenging task to detect the small target. In other sky-background
sequences, the targets are submerged by the clouds from time to time.

Table 2. Dataset Information.

Sequence
Name

Frame
Number

Image
Size

Average
SCR

Ground
Background

Ground-1 200 256 × 256 2.21 dB
Ground-2 200 256 × 256 3.41 dB
Ground-3 200 256 × 256 5.01 dB

Sea
Background

Sea-1 100 128 × 128 2.29 dB
Sea-2 87 284 × 213 6.32 dB
Sea-3 185 252 × 213 2.28 dB

Sky
Background

Sky-1 60 320 × 240 6.86 dB
Sky-2 67 320 × 240 0.87 dB
Sky-3 400 256 × 172 4.14 dB
Sky-4 200 256 × 208 −2.56 dB
Sky-5 40 128 × 128 2.73 dB
Sky-6 40 256 × 200 2.44 dB
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4.2. Quantitative Comparison

To evaluate the detection performance of the proposed GPCP model, we first report
the ROC curves of 9 infrared small target detection algorithms on the whole dataset, as
shown in Figure 6. It can be observed that the curve of GPCP is the closest to the upper left
corner, which means for any given false alarm rate, the proposed GPCP model achieves the
highest accurate detection rate, and for any given detection rate, the proposed GPCP model
achieves the lowest false alarm rate. The first line in Table 3 also shows the proposed GPCP
model has the highest area under curve (AUC) value in all 9 algorithms, PSTNN is second
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only to our proposed model. That is to say, the proposed GPCP model has a relatively good
detection performance on the whole dataset.
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Representative frames of each detection scene are shown in Figure 3, Figure 4 and 338

Figure 5. It is noticeable that the ground-background is the most complex compared with 339

other two situations. The road surface with high gray-scale level leads to a very strong 340

background edge, which causes great interference for detecting the real target. For the 341

scene of sea-background, the warship target usually moves nearby the sea-level line. The 342

clutters caused by the clouds and lighthouses will also increase the difficulty of small target 343

detection. On the other hand, the imaging noise is very high in this situation, as shown in 344

the sequence Sea-1. In the sky-background situation, the target energy is the lowest among 345

these three situations. Specifically, the average signal-to-clutter ratio of sequence Sky-4 is 346

less than zero, which indicates a very challenging task to detect the small target. In other 347

sky-background sequences, the targets are submerged by the clouds from time to time. 348

Table 2. Dataset Information.

Sequence
Name

Frame
Number

Image
Size

Average
SCR

Ground
Background

Ground-1 200 256× 256 2.21dB
Ground-2 200 256× 256 3.41dB
Ground-3 200 256× 256 5.01dB

Sea
Background

Sea-1 100 128× 128 2.29dB
Sea-2 87 284× 213 6.32dB
Sea-3 185 252× 213 2.28dB

Sky
Background

Sky-1 60 320× 240 6.86dB
Sky-2 67 320× 240 0.87dB
Sky-3 400 256× 172 4.14dB
Sky-4 200 256× 208 -2.56dB
Sky-5 40 128× 128 2.73dB
Sky-6 40 256× 200 2.44dB

4.2. Quantitative Comparison 349

To evaluate the detection performance of the proposed GPCP model, we first report 350

the ROC curves of 9 infrared small target detection algorithms on the whole dataset, as 351

shown in Figure 6(a). It can be observed that the curve of GPCP is the closest to the upper 352

Figure 5. Sea-background sequences. (a) Sky-1 (b) Sky-2 (c) Sky-3 (d) Sky-4 (e) Sky-5 (f) Sky-6. Targets
are marked in red boxes.
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left corner, which means for any given false alarm rate, the proposed GPCP model achieves 353

the highest accurate detection rate, and for any given detection rate, the proposed GPCP 354

model achieves the lowest false alarm rate. The first line in Table 3 also shows the proposed 355

GPCP model has the highest area under curve (AUC) value in all 9 algorithms, PSTNN 356

is second only to our proposed model. That is to say, the proposed GPCP model has a 357

relatively good detection performance on the whole dataset. 358
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Figure 6. ROC curves of the whole dataset and 3 different background categories. (a)All sequences
(b)Ground background (c)Sea background (d)Sky background.

Table 3. The table shows the AUC of 9 small target detection algorithms in the whole dataset and 3
different background categories.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT
All 0.999994 0.7391 0.999992 0.99979 0.9606 0.9485 0.9916 0.9945 0.9147

Ground 0.999999 0.9933 0.999998 0.999993 0.999999 0.9008 0.999999 0.9775 0.90
Sea 1 0.5355 0.999964 1 1 1 0.9785 1 0.8388
Sky 0.999998 0.6072 0.999998 0.9991 0.9132 0.9603 0.9913 0.9995 0.9346

We also report the ROC curves on 3 different background categories: the ground 359

background, the sea background and the sky background, which are illustrated in Figure 360

6(b), Figure 6(c) and Figure 6(d), respectively. Combined with the AUC scores shown 361

in Table 3, we can see that the GPCP curve is the closest to the upper left corner and 362

corresponds to the largest AUC value, which indicates the proposed model has the best 363

detection performance in the ground background. RIPT and IPI are the second and third 364

best algorithms in this situation. For the sea background, most algorithms perform well. 365

As the third line of Table 3 shows, the AUC values of IPI, MPCM, NRAM, GPCP and 366

TVPCP is 1. Yet it is worth noting that the ASTTV-NTLA has a relatively small AUC value 367

in this situation. For the sky background, from Figure 6(d) and the forth line of Table 3, 368

we can see the proposed method and PSTNN have the best detection performance. The 369

AUC values of these two models are the same. The main difference of these two methods 370

Figure 6. ROC curves of the whole dataset and 3 different background categories. (a) All sequences,
(b) ground background, (c) sea background, (d) sky background.

Table 3. The table shows the AUC of 9 small target detection algorithms in the whole dataset and
3 different background categories. For each category, the best results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

All 0.999994 0.7391 0.999992 0.99979 0.9606 0.9485 0.9916 0.9945 0.9147
Ground 0.999999 0.9933 0.999998 0.999993 0.999999 0.9008 0.999999 0.9775 0.90

Sea 1 0.5355 0.999964 1 1 1 0.9785 1 0.8388
Sky 0.999998 0.6072 0.999998 0.9991 0.9132 0.9603 0.9913 0.9995 0.9346
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We also report the ROC curves on 3 different background categories: the ground
background, the sea background and the sky background, which are illustrated in Figure 6b,
Figure 6c and Figure 6d, respectively. Combined with the AUC scores shown in Table 3, we
can see that the GPCP curve is the closest to the upper left corner and corresponds to the
largest AUC value, which indicates the proposed model has the best detection performance
in the ground background. RIPT and IPI are the second- and third-best algorithms in this
situation. For the sea background, most algorithms perform well. As the third line of
Table 3 shows, the AUC values of IPI, MPCM, NRAM, GPCP and TVPCP are 1. Yet it is
worth noting that the ASTTV-NTLA has a relatively small AUC value in this situation. For
the sky background, from Figure 6d and the forth line of Table 3, we can see the proposed
method and PSTNN have the best detection performance. The AUC values of these two
models are the same. The main difference of these two methods lies in the GPCP model
performs better in suppressing false alarms and PSTNN performs better in detection rate.
Figure 6d can prove this point, in the case of lower false-alarm rate, the proposed GPCP
model has a higher accurate detection rate; in the case of a higher detection rate, the PSTNN
achieves a lower false-alarm rate.

To analyze the algorithm performance more specifically, the signal-to-clutter gain
(SCRG) and background suppression factor (BSF) of 9 algorithms on each individual
sequence are also calculated, as shown in Tables 4–6. A good algorithm should achieve
high SCRG and high BSF, which represent the performance on target enhancement and
background clutter suppression, respectively. From Table 4, we can see that our proposed
method achieves the highest SCRG on all three sequences in the ground background. In
Ground−1, the proposed model also achieves the highest BSF value. In Ground−2 and
Ground−3, BSF values of the proposed model are a bit lower than the NRAM and ASTTV-
NTLA, which means the remained background pixel value of our model is a bit higher than
the other two models. Based on the fact that the proposed model has the highest SCRG
values in these two sequences, we can conclude that our model still achieves the largest
contrast between the target and background. Table 5 shows the algorithm performance on
three sequences in the sea background. GPCP model achieves the highest values of SCRG
and BSF values in sequence Sea−1 and Sea−2. ASTTV-NTLA model achieves the highest
values of SCRG and BSF in sequence Sea−3 due to its multi-frame and TV model, but has a
poor performance in Sea−1 and Sea−2. That is because the ASTTV-NTLA model is not
suitable for infrared small target detection with low moving speed. The same experiment
results also appear in Sky−4 and Sky−5. ASTTV-NTLA model misses all the targets in
these two sequences due to the low moving speed. PSTNN also performs well in sequence
Sea−3, especially in the SCRG value. This is due in large part to the usage of structure
tensor. A prior weight representing the corner feature is added to the target component and
makes the extracted target brighter. By comparison, target intensity values of the proposed
model are a little bit lower than PSTNN. However, from Table 3, we can see the AUC values
of the proposed model is higher than PSTNN. In the sky background, the proposed GPCP
model has the largest SCRG and BSF values in sequence Sky−1, Sky−2, Sky−5 and Sky−6.
NRAM and PSTNN achieves the highest SCRG and BSF in Sky−3 and Sky−4, respectively.
From Figure 5, we can see the targets in Sky−3 are relatively large and has a gray variance.
The detection results of NRAM only reserve several pixels in the target center position. By
comparison, the proposed model has more pixels of targets in the detection results and
is more coincide with the real target. For sequence Sky−4, there are some residual pixels
with low values remained in the proposed model compared with PSTNN. The reason lies
that in this sequence, the gray-scale difference of the local background regions is not very
great. Current group strategy which employs the complexity difference for patch grouping
is disabled. Therefore, in sequence Sky−4, GPCP model is almost equal to its baseline IPI.
The experiment results in Table 6 also shows the performance of GPCP model is similar to
IPI model.
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Table 4. The table shows signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF)
of 8 small target detection algorithms on 3 ground-background sequences. For each sequence, the
best results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Ground−1 SCRG 23.80 13.79 3.79 0.81 1.19 2.39 0.95 0.69 5.63
BSF 5402 126.56 9.73 7.13 10.38 18.51 9.45 11.30 10.35

Ground−2 SCRG 0.3038 0.22 0.03 0.004 0.06 0.002 0.13 0.18 0.28
BSF 10.16 8.54 2.64 2.48 4.22 10.54 7.15 3.38 4.35

Ground−3 SCRG 5.55 5.10 3.03 1.44 2.51 4.43 2.48 0.12 5.50
BSF 9.04 9.32 5.45 2.44 6.00 7.56 9.29 2.93 2.34

Table 5. The table shows signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF)
of 8 small target detection algorithms on 3 sea-background sequences. For each sequence, the best
results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Sea−1 SCRG 30,498 0 42.07 943.90 3.82 25.53 4.69 1.38 6099
BSF 15,784 0 124.55 3146 10.06 58.24 9.69 4.89 14,376

Sea−2 SCRG 15,659 0 12,144 16.60 18.36 11,399 13,648 4.89 0.25
BSF 13,438 0 13,438 26.71 41.00 1 13,438 15.63 10,458

Sea−3 SCRG 97.74 2323 554.47 17.28 19.46 34.97 2318 1.15 6.48
BSF 205.78 6461 211.13 14.15 14.46 24.57 1079 2.63 4.18

Table 6. The table shows signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF)
of 9 small target detection algorithms on 6 sky-background sequences. For each sequence, the best
results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Sky−1 SCRG 17.02 1.52 13.91 1.33 12.63 2.49 3.88 0.34 2.34
BSF 17.26 3.56 15.39 1.27 15.08 17.58 11.92 8.91 2.31

Sky−2 SCRG 15.89 13.1 13.23 1.42 4.67 6.83 0.02 0.04 7.92
BSF 20.28 8.67 8.46 1.17 14.18 10.79 8.93 5.91 5.23

Sky−3 SCRG 8.11 4.56 9.39 7.67 7.41 18.57 0.01 0.15 0.98
BSF 10.99 1.16 16.79 10.74 10.42 1066 172.93 19.22 11.66

Sky−4 SCRG 25.46 0 7073 27.23 30.79 4105 28.13 0.17 59.50
BSF 28.55 0 1078 16.19 26.63 1023 20.37 4.95 17.33

Sky−5 SCRG 1991 0 125 0.01 8.16 29.68 8.77 0.69 7.13
BSF 1735 0 95.22 3.80 9.36 38.33 7.68 0.88 32.59

Sky−6 SCRG 15.87 0.006 12.09 13.90 13.66 14.96 6.59 2.19 3.45
BSF 20.76 8.42 8.53 10.63 10.76 17.57 8.79 9.81 2.71

4.3. Qualitative Comparison

To have a more direct and deeper impression on the effect of each method, we select
several representative results as well as the corresponding three-dimensional surface results
from each type of detection scene for illustration. The small target detection task in the
ground background is the most difficult situation. Three representative examples are shown
in Figure 7. The detection for sequence Ground−1 is relatively simple because there is a
large contrast between the target and its surrounding background. The most challenging
factor is the interference caused by the road edge. The proposed GPCP model achieves
the best detection performance in this situation. Meanwhile, from the three-dimensional
surface results, we can see the proposed method gets the best performance on background
suppression among all the 9 algorithms. The detection task for sequence Ground−2 and
Ground−3 is more difficult compared with Ground−1. The original images of these
two sequences show the targets have been basically submerged into the background, in
addition, there are many background clutters with similar appearance to the small dim
targets. In these two sequences, only the proposed GPCP model successfully detects the
target while suppressing the background clutters. Other methods leave many false alarms
in the detection results, as the green box and three-dimensional surfaces show.
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Figure 7. Representative results in the ground background. Targets are labeled by the red box. The
remained background clutters are labeled by the green box.

Figure 7. Representative results in the ground background. (a) Ground−1 (b) Ground−2
(c) Ground−3. Targets are labeled by the red box. The remained background clutters are labeled by
the green box.

Figure 8 illustrates the detection results in the scene of sea background, in which the
most challenging factor lies in the background interference caused by the lighthouse and
water grass shelter. In sequence Sea−1, it can be seen that the ASTTV-NTLA, IPI, MPCM
and PSTNN models have a poor detection performance, where the gray-scale value of the
lighthouse outline is even larger than the real target after detection. For the RIPT method,
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the imaging noise has a certain impact on the detection performance, in which many false
alarms are remained in the background part. By comparison, the NRAM, TVPCP and the
proposed methods are good at suppressing the strong background edges as well as the
imaging noise. In sequence Sea−3, the gray value of the water grass is larger than the target,
in addition, both of these two parts have sharp forms in appearance, making the small
target hard to be distinguished from the background. In the detection results of SRSTT
and TVPCP methods, there are many residual clutters remaining in the background, as the
green boxes show. By comparison, the PSTNN, RIPT, NRAM and the proposed methods
achieve satisfactory results.
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Figure 8. Representative results in the sea background. Targets are labeled by the red box. The
remained background clutters are labeled by the green box.

Figure 8. Representative results in the sea background. (a) Sea−1 (b) Sea−3. Targets are labeled by
the red box. The remained background clutters are labeled by the green box.

Three representative detection results in the scene of sky background are shown
in Figure 9. The target in sequence Sky-2 has a very low contrast compared with the
background. In this situation, the ASTTV-NTLA and TVPCP methods fail to suppress the
background noise and cannot find the real target. By comparison, the NRAM, PSTNN, RIPT,
SRSTT and the proposed GPCP model achieve a better performance on target enhancement.
We can see that the decomposition results of these four methods all correspond to a low level
background noise. Sequence Sky-5 shows the small target detection results of 9 methods
in the case of bright heavy cloud. There are many strong edges in the background part,
especially in the top and right side of the image. As shown in Figure 9, the detection
results of the IPI, MPCM, PSTNN, RIPT, Tophat and TVPCP methods remain having
many background clutters, which are easily to confuse with the real small target. Only
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the NRAM and the proposed GPCP methods can extract the target while suppressing the
clutters simultaneously. The IPI, PSTNN, RIPT and NRAM models are all based on the
PCP theory and carry out a global low-rank decomposition to remove the background
clutters. By comparison, the proposed group low-rank and sparse decomposition model
has a significant effect to cope with the situation with strong background clutters.
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Figure 9. Representative results in the sky background. Targets are labeled by the red box. The
remained background clutters are labeled by the green box.

Figure 9. Representative results in the sky background. (a) Sky−2 (b) Sky−3 (c) Sky−5. Targets are
labeled by the red box. The remained background clutters are labeled by the green box.

4.4. Influence of Grouping Criteria on Our Method

As mentioned above, the proposed model needs to divide the full image into several
groups for image decomposition. In this part, an ablation experiment is carried out to
discuss the effectiveness of the grouping criteria of the customized group low-rank strategy.
The proposed model takes both of the gray-scale level and the clutter level into consid-
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eration and divides the data matrix into three groups. By comparison, the first contrast
experiment is designed to only use the gray-scale information and divide the data matrix
into a bright part and a dark part, which is named as GPCP−Gray. The second contrast
experiment employs the variance information and divides the data matrix into a uniform
part and a cluttered part, which is named as GPCP−Var. The IPI model, which decomposes
the entire image data into a low-rank component and a sparse component plays as the
baseline method. The ROC curves of these four experiments are shown in Figure 10.

In this experiment, the GPCP−Var model has the worst performance, especially in the
sky background situation. By comparison, the GPCP−Gray model has a slight decline in
the ROC curves compared with the proposed GPCP model, while performs better than
the global regularized low rank and sparse decomposition model (IPI). This suggests
that dividing the data matrix into two parts with different brightness level has a positive
influence on background suppression in the PCP process. In addition, from the ROC results
of the GPCP−Gray model and the proposed GPCP model, we can see that extracting the
cluttered image data and decomposing this part independently can further improve the
detection performance.
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Figure 10. ROC curves of the overall dataset and 3 different background categories. (a)Overall
(b)Ground background (c)Sea background (d)Sky background.
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Figure 10. ROC curves of the overall dataset and 3 different background categories. (a) Overall
(b) ground background (c) sea background (d) sky background.

4.5. Computation Complexity Analysis

The computation complexity of each comparison model is shown in Table 7. Sup-
pose the image size is M × N and the patch image size is m × n. The computation cost
is O(L3MN). The major time-consuming part is saliency map calculation, in each scale,
the computation cost is O(L2MN). The total cost in all scales is O(L3MN). For the
patch-based models, including IPI, NRAM and the proposed GPCP model, its computa-
tion complexity mainly comes from the SVD decomposition. For an m × n patch matrix,
the computation complexity of SVD is O(mn2). For the patch-tensor models, including
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RIPT, PSTNN, ASTTV-NTLA and SRSTT, the main time-consuming part is the SVD de-
composition progress in the frequency domain. For a tensor size with n1 × n2 × n3, the
computation complexity of SVD is O(n1n2n3 log(n1n2n3)), the computation complexity of
FFT is O(n1n2

2[(n3 + 1)/2]). They are faster than the SVD decomposition of patch-based
models, which are calculated in the spatial domain. The TVPCP model is a little time
consuming due to the matrix inversion calculation. It is worth noting that the proposed
GPCP model is faster than its baseline IPI model. From the grouping criteria, we can see
that n1 + n2 + n3 = n. Based on the fact that n2

1 + n2
2 + n2

3 < n2, the computation cost of
GPCP is lower than IPI. In our experiments, for a 256 × 256 image, GPCP needs 5.9 s to
obtain the detection result. By comparison, IPI needs 11.9s. The speed increases doubly.

Table 7. The table shows the computation complexity of 9 small target detection algorithms.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Complexity O(m(n2
1 + n2

2 + n2
3)) O(MNL log(MNL))

O(n1n2n3 log(n1n2n3))
+O(n1n2

2 [(n3 + 1)/2])
O(MN2 + N4) O(mn2) O(mn2) O(n1n2n3(n1n2 + n2n3 + n1n3)) O(L3 MN) O(Ln1(n

2
2 + n3 log((n2 + 1)/2)))

5. Conclusions

In this paper, a novel group regularized low-rank and sparse decomposition model
is proposed for infrared small dim target detection. The traditional decomposition-based
models are usually sensitive to strong edges and background clutters due to the ignorance
of data structure diversity. The proposed method is able to solve this problem by using a
customized group low-rank strategy. Firstly, it exploits different singular value thresholds
for the low-rank decomposition of image groups corresponding to different complexity.
Then, the newly designed group low-rank regularization is integrated with the sparse
constraint for background and target separation, in which more prior information related
to data structure can be utilized in the decomposition process. Experimental results on
3 different detection scenes, which includes 12 sequences, have shown the priority of the
proposed in terms of probability of detection, false alarm rates, target enhancement and
background suppression factors.

There also exist some issues worth considering. For example, we use the brightness
and gray-scale variance to divide patches into groups, other strategies such as image
feature-based methods can be further considered for patch grouping. This method is also
time consuming, especially in the background solving process, other background modeling
methods need to be explored in the future work.
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