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Abstract: Ship detection finds extensive applications in fisheries management, maritime rescue,
and surveillance. However, detecting nearshore targets in SAR images is challenging due to land
scattering interference and non-axisymmetric ship shapes. Existing SAR ship detection models
struggle to adapt to oriented ship detection in complex nearshore environments. To address this, we
propose an oriented-reppoints target detection scheme guided by scattering points in SAR images.
Our method deeply integrates SAR image target scattering characteristics and designs an adaptive
sample selection scheme guided by target scattering points. This incorporates scattering position
features into the sample quality measurement scheme, providing the network with a higher-quality
set of proposed reppoints. We also introduce a novel supervised guidance paradigm that uses
target scattering points to guide the initialization of reppoints, mitigating the influence of land
scattering interference on the initial reppoints quality. This achieves adaptive feature learning,
enhancing the quality of the initial reppoints set and the performance of object detection. Our
method has been extensively tested on the SSDD and HRSID datasets, where we achieved mAP
scores of 89.8% and 80.8%, respectively. These scores represent significant improvements over the
baseline methods, demonstrating the effectiveness and robustness of our approach. Additionally,
our method exhibits strong anti-interference capabilities in nearshore detection and has achieved
state-of-the-art performance.

Keywords: ship detection; reppoints; adaptive sample selection; guided learning; synthetic aperture
radar (SAR); scattering point

1. Introduction

Currently, radar application scenarios are continuously expanding, with various radar
systems emerging and advancing rapidly [1]. Synthetic aperture radar (SAR) functions as an
active microwave imaging system, impervious to natural conditions such as illumination,
clouds, and weather. Consequently, it boasts the capability for all-weather, day-and-
night observation of the Earth’s surface, establishing itself as a primary tool for current
maritime applications [2]. Ship detection, a main direction in the maritime domain [3],
holds a critical role in monitoring maritime transportation, managing ports, and overseeing
maritime zones [4]. In recent years, more and more SAR satellites have been successfully
launched [5–7], with continuous advancements in collaborative observation techniques [8].
The improvement of data quality [9], the further diversity of imaging scenarios, and the
continuous establishment and upgrading of SAR datasets [10,11] have greatly promoted
the development of intelligent technology for the interpretation of SAR images [12].

Among traditional algorithms, CFAR [13] stands out as one of the most widely used
detection methods, relying on manually crafted features. This method entails modeling
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cluttered backgrounds by setting the background threshold to a predetermined level, thus
identifying abnormal pixel points that deviate from the background distribution. Various
CFAR-based detection algorithms have emerged by employing different background-
modeling models [14–17]. However, it is still susceptible to interference from complex
environments, and its nearshore environment detection performance is low.

Due to advancements in deep learning algorithms, numerous CNN-based object de-
tection techniques tailored to natural scenes have been applied in SAR target detection [18].
These algorithms leverage the robust feature extraction and representation capabilities
inherent in CNNs [19], exhibiting superior performance in detection when compared to
traditional methods such as CFAR [20]. However, a significant limitation arises from the
fact that most of these detection networks are designed based on horizontal bounding
boxes, commonly used in natural scenes. Traditional horizontal bounding boxes exhibit
overlap in nearshore ship detection, introducing interference from land areas beyond the
target region and hindering the extraction of detailed target features. Consequently, this
challenge limits the network’s ability to effectively capture a target’s fine-grained structural
texture features [21]. In contrast, oriented bounding boxes avoid these issues.

In reference to the previously mentioned concern, numerous algorithms centered
around oriented object detection have been introduced. These algorithms are predomi-
nantly categorized into two main types: two-stage algorithms employing anchor boxes and
single-stage algorithms without anchor boxes.

The first type of anchor box detection algorithm based on the rotated box (RBOX)
often oversamples anchor boxes with a specified aspect ratio and generates a large number
of anchor boxes. On the one hand, it greatly increases the number of parameters and the
computational complexity. On the other hand, the anchor frame with artificially fixed
proportions is difficult to adapt to multi-scale and multi-directional ship targets. At the
same time, when distinguishing between positive and negative samples through inter-
section over union (IoU), it will further aggravate the problem of the imbalance between
positive and negative samples and the insufficiency of positive samples. Accordingly, the
recall rate of the model will be reduced, and problems such as category skew and network
degradation will occur, which make it difficult to achieve the network’s generalization
ability. The second type of detection algorithm improves the representation of bounding
boxes by implementing a combined strategy of initializing anchor points and fine-tuning
anchor points. The model scale and computational complexity are reduced. However, due
to the lack of a target position prior, there is a lack of effective guidance when performing
feature learning and initializing anchor points, and strong land scattering points in complex
nearshore environments further interfere with the generation of initialized anchor points,
resulting in lower learning sample quality and poor network detection performance.

In response to the aforementioned challenges, we propose a directional anchor-free
detection network guided by significant scattering features in SAR images. Firstly, we
adopt a lightweight single-stage reppoints detection architecture, which generates target
boxes through reppoints and exhibits stronger adaptability and higher detection granularity
for nearshore directional targets. Secondly, by comprehensively considering the imaging
mechanism of SAR and the physical characteristics of strong scatterers such as ships, we
integrate SAR image scattering properties for the first time. We extract strong scattering
points from SAR images and design an adaptive sample selection scheme guided by these
scattering points to select high-quality samples for network training. Additionally, we
design a supervision guidance mechanism that utilizes target scattering points to guide the
initialization of reppoints, thus achieving adaptive feature learning. The main contributions
of our work can be summarized as follows:

1. A reppoints-based object detection network deeply fused with SAR scattering charac-
teristics is proposed, which leverages the profound integration of SAR image scatter-
ing properties to guide the network for high-quality learning, enabling fine-grained
nearshore detection.
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2. To address the issue of low sample quality, this study introduces an innovative adap-
tive sample selection scheme known as SPG-ASS (Scattering-Point-Guided Adaptive
Sample Selection). The method integrates the positional features of strong scattering
points on ships to enhance the overall quality of samples. By extracting scattering
points and clustering their positions into the optimal number of clusters, the method
measures the similarity between the scattering point clusters and the set of sample
points using the cosine similarity metric to achieve the best match. This, in turn,
determines the quality score of the sample points. Finally, the adaptive selection of
high-quality samples is achieved using the TOP K algorithm. This method further
improves the quality of reppoints.

3. To reduce land scattering interference and further improve the quality of initial-
ized reppoints, a novel reppoints supervision guidance paradigm is proposed. This
paradigm aligns target scattering points with initialized reppoints at the point level by
employing an intermediary framework. Using the KLD (Kullback–Leibler Divergence)
loss, it integrates the structural and positional attributes of scattering point clusters
into the supervised learning process of initialized reppoints. During the training
phase, this paradigm effectively guides the reppoints to extract the semantic features
of key regions in targets.

2. Related Works
2.1. Deep Learning-Based Object Detection

Object detection, as one of the fundamental visual tasks in deep learning, has seen
the emergence of numerous algorithms with the advancements in deep learning. These
algorithms can mainly be categorized into two classes: two-stage methods using anchor
boxes and single-stage detectors without anchor boxes.

Two-stage methods using anchor boxes: Candidate regions are generated in the first
stage, followed by the mapping of these regions to a fixed size in the second stage for
classification and bounding box regression. For instance, R-CNN [22] utilizes selective
search algorithms to produce candidate regions and then employs convolutional operations
to obtain bounding boxes and their respective classes. SPP-Net [23] addresses the draw-
backs of repeated convolutions and fixed output sizes. Fast R-CNN [24], building upon
the aforementioned methods, utilizes ROI (Region of Interest) pooling to extract target
features, sharing the tasks of bounding box regression and classification, thereby achieving
end-to-end training. Faster R-CNN [25] replaces the selective search algorithm with an RPN
(Region Proposal Network) to generate candidate boxes, significantly reducing algorithmic
complexity. FPN [26] introduces a pyramid structure to leverage information from various
scales, considerably enhancing the performance of object detection tasks.

Single-stage detectors without anchor boxes: These detectors do not rely on com-
plex anchor box designs and accomplish object detection in a single stage. For example,
YOLO-V1 [27] divides the image into a grid and predicts bounding boxes and confidence
for all objects within each grid cell in one go. SSD [28] efficiently detects objects of various
scales and aspect ratios by introducing multi-scale feature extraction and the Default Boxes
mechanism. RetinaNet [29] addresses the issue of imbalanced positive and negative sam-
ples through the design of focal loss. CenterNet [30] models objects as the center points of
bounding boxes, where the detector finds the center point through keypoint estimation and
regresses other attributes of the target. Reppoints [31], considering the limited granularity
in existing feature learning, utilizes a set of representative points to adaptively learn key
semantic positions in the image, thereby achieving classification and regression.
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2.2. Oriented Object Detection

Traditional horizontal bounding boxes often lack the capability to capture target
orientation information and are prone to background interference, especially in intricate
environments. Consequently, oriented object detection has emerged as a pivotal research
area. For instance, ROI Transformer [32] employs spatial transformations of Regions of
Interest, learning transformation parameters supervised by annotated directional bounding
boxes. Oriented-RCNN [33] adjusts the regression parameters of the Region Proposal
Network (RPN) to six, directly generating oriented proposals for corresponding targets.
Utilizing KLD [34] to construct the Gaussian representation of oriented bounding boxes, it
redesigns rotation regression losses, dynamically adjusting parameter gradients for object
alignment. G-Rep [35] devises a unified Gaussian representation to construct Gaussian
distributions for both OBBs and PointSets, accompanied by a Gaussian regression loss
to further enhance object detection performance. Oriented Reppoints [36] utilizes an
adaptive point learning methodology to capture the geometric information of arbitrary
orientation instances and formulate schemes for adaptive point quality assessment and
sample allocation.

Various oriented bounding box (OBB) detection algorithms have found applications
in SAR ship detection. For instance, Zhang et al. [37] proposed a Rotated Region Proposal
Network to generate multi-directional proposals with ship azimuth information, thereby
enhancing the performance of multi-angle target detection. Yang et al. [38] introduced
R-RetinaNet, which utilizes scale calibration methods to contrast scale distributions. They
leveraged a task-level Feature Pyramid Network to fuse features, alleviating conflicts
between different targets. Additionally, an adaptive IOU threshold training method was
introduced to address imbalance issues. Yue et al. [39] proposed a method for detecting
oriented ships in synthetic aperture radar (SAR) images, which improved the accuracy of
detecting small oriented ships by fusing high-resolution feature maps and dynamically
mining rotated positive samples (DRPSM). Sun et al. [40] proposed the SPAN, which
integrates scattering characteristics for ship detection and classification. This addresses the
weak detection performance caused by the lack of SAR features in conventional detectors.
Zhang et al. [2] proposed an object detection network based on scatter-point-guided region
proposal, combining SAR image scattering characteristics to guide an RPN in generating
crucial proposals. They incorporated supervised contrastive learning to mitigate category
differences, thereby enhancing the target detection performance.

2.3. Sample Assignment for Object Detection

Sample allocation plays a crucial role in the performance of object detection. Various
sample allocation methods have been proposed, such as Faster R-CNN [25], SSD [28], and
RetinaNet [29], which employ IOU for positive sample selection, relying on manually
designed thresholds. ATSS dynamically adjusts thresholds based on the statistical features
of sample groups. OTA [41] extends the consideration to ambiguous sample allocation
(one-to-many) by transforming sample allocation into a dynamic programming problem.
Furthermore, PAA [42] adapts sample allocation in a probabilistic manner. APAA [36]
addresses the limitations of IOU in directional scenes by proposing an adaptive sample
point set allocation scheme based on a comprehensive evaluation of orientation, classifica-
tion, localization, and pixel-wise correlation. Although the above algorithms have proven
their effectiveness in the field of optical images, in the field of SAR, we still need to further
explore methods tailored to the characteristics of SAR images.

3. Materials and Methods
3.1. Overview of Model Structure

Figure 1 illustrates an overview of our proposed method. Our method can be mainly
divided into four parts. The first part is the FPN backbone network, the second part is
scattering point extraction and matching evaluation, the third part is adaptive sample
selection, and the fourth part is reppoints generation of shared headers. This method starts
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with inputting the SAR image, which enters two feature extraction channels at the same
time. One channel is the scattering point extraction branch based on corner points, and a
strong scattering point set is obtained and adaptive clustering processing is performed to
obtain several point clusters. The other channel is the deep semantic feature extraction part
based on FPN, which extracts high-level features and then sends them to the shared headers.
Through this two-stage operation, initialized reppoints and finely corrected reppoints are
obtained. In the training phase, the initialized reppoints are sent to the adaptive sample
selection part to evaluate the point set quality using matched and aligned scattering point
clusters so as to select high-quality samples for learning. In addition, in order to improve
the quality of the initialized reppoints, guided learning is performed through the SPG
learning part. In the testing phase, the oriented detection results are directly generated by
the finely corrected reppoints through the conversion function.
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Figure 1. The model structure It consists of the FPN backbone network, scattering point extraction
and matching evaluation, adaptive sample selection, and shared header for reppoints generation.
Additionally, Ls.c indicates the spatial constraint loss, Lloc indicates the localization loss, and Ls.Init

indicates the SPG learning loss.

3.2. Scattering-Point-Guided Adaptive Sample Selection (SPG-ASS)
3.2.1. Extraction of Scattering Points and Clustering

Ships usually have metal shells composed of a large number of strong scattering
structures, such as dihedral angles, trihedral angles, etc., which, in turn, result in the strong
scattering phenomena of ships in SAR images when combined with the unique imaging
mechanism of the SAR system. These strong scattering points often contain the structure
and location characteristics of the ship itself. For this reason, we use the Harris corner
detector to extract corner points. In order to reduce the interference of land scattering, the
corner point threshold is set to 0.2, and a part of the low-quality corner point responses are
filtered. In order to better capture the global ship scattering characteristics, the maximum
number of corner points is set to 100. In order to better capture the local characteristics of
the ship, the minimum Euclidean distance is set to 10. The obtained scattering point set
is Rsp{(xi, yi)}N

i=1. In order to better realize the guiding role of the SAR scattering point
set, cluster processing [43] is performed on the point set, with K ∈ [2, 8], and the silhouette
coefficient is used as the evaluation metric for the cluster quality. By iteratively looping
through this process, the optimal cluster number K is determined, and its clustering effect
is shown in Figure 2.
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(a) (b) (c)

(d) (e) (f)

Figure 2. The extracted scattering points(red color) and their clustered results(different colors).
(a–c) The extracted scattering points from the ships. (d–f) The scattering points after clustering.

Afterward, based on the allocation strategy, they are assigned to the corresponding
initialized reppoints for quality evaluation.

3.2.2. Feature Matching and Adaptive Sample Selection

We improve the quality metric for adaptive sample reppoints, which is different from
APAA [36], and we introduce a scattering position metric in the quality assessment to more
comprehensively measure the quality of the sample reppoints and provide higher-quality
samples for model training.

The extracted set of scattering points is Rsp{(xi, yi)}N
i=1, which is clustered to obtain

a number of clusters. The number of clusters is obtained by measuring the optimal sil-
houette coefficient of the clusters; the scattering cluster center point set is C{(xi, yi)}K

i=1,
where K denotes the optimal number of clusters. The point set of sample reppoints is
R = {S1, S2, S3, . . . , Sm}, where Si = {(xj, yj)}9

j=1, and m denotes the generation of m sam-
ples. We use cosine similarity as the similarity measure between point set clusters and
initialized reppoints, thereby achieving matching and assessment between scattering cluster
center points and initialized reppoints. The average cosine similarity between the scattering
cluster center points and the sample reppoints can be expressed as Eik:

Eik =
1
N

9

∑
j=1

(cos < eij, e∗k >) (1)

where N = 9 indicates that each sample’s reppoints consists of nine points. eij represents
the vector denoting each point within every sample’s reppoints, while e∗k denotes the
vector representing the scattering cluster center points. By traversing all scattering cluster
center points, we obtain the cosine similarity matrix E between sample reppoints and the
scattering cluster center points:
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E =


(E1,1) (E1,2) . . . (E1,n)
(E2,1) (E2,2) . . . (E2,n)

...
...

. . .
...

(Em,1) (Em,2) . . . (Em,n)

 (2)

By computing the average cosine similarity between the extracted scattering cluster
center points and the sample reppoints, we obtain the similarity matrix E ∈ Rm×n. Taking
the maximum along the dimension of n, we derive the optimal match between the samples
and the scattering cluster center points, along with their corresponding cosine similarity,
denoted as follows:

max
n

(E) =


max(E1,1, E1,2, . . . , E1,n)
max(E2,1, E2,2, . . . , E2,n)

...
max(Em,1, Em,2, . . . , Em,n)

 (3)

In order to facilitate integration with other quality scores, the corresponding cosine
distance is obtained based on the cosine similarity, thereby generating the quality score
Qsp ∈ Rm.

Qsp = 1 − max
n

(E) (4)

In summary, the score Qsp, measured by the scattering position, is obtained, and then
our quality evaluation part can be divided into the following:

Qunion = Qcls + µ1Qsp + µ2Qloc + µ2Qori (5)

Among these measures, Qsp denotes the similarity measure for scattering positions,
while Qloc represents the assessment of the spatial positioning quality, computed through
the positioning loss converted by GIoU [44]. Qori employs the Chamfer distance [45] to
gauge directional disparities, whereas Qcls utilizes FocalLoss [29] to evaluate the correlation
in category quality. A dynamic TOP K sample selection scheme is devised based on their
quality assessment scores. Quality score lists are generated during different iterations, and
these scores are arranged in ascending order. Additionally, a random sampling rate σ is set
to adaptively adjust the number of positive samples, denoted by k .

k = σ × Nt (6)

where Nt represents the total number of generated samples, and the initial default setting
for σ is 0.2. Subsequently, during the training phase, the top k samples with the highest
quality assessment scores are selected as positive samples for training. Considering the
practical application scenarios of SAR target detection, we restrict the utilization of this
approach solely to the training phase, aiming to reduce the computational load during the
detection phase.

3.3. Scattering-Point-Guided Reppoints Dynamic Learning (SPG Learning)

Ship misdetection tends to happen in nearshore scenarios due to the presence of land
scattering interference, which results in the poor generation of initial reppoints. Addi-
tionally, some outliers appear in the adaptive learning stage of key semantic features for
reppoints, which further reduces the performance of ship detection.

We add supervisory information based on scattering point location priors during the
initialization point generation stage, thereby guiding reppoints to learn features from key
semantic parts of the target. This reduces the land scattering interference and makes the
extracted features more accurate and complete.
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Specifically, scattering points play a critical role in representing ship features within
SAR images. Once we perform positive sample selection using SPG-ASS, we acquire the
corresponding positive sample set of reppoints and assign ground truth (GT) boxes to them.
Subsequently, we utilize these GT boxes to identify matching clusters of scattering points
positioned accordingly. This alignment process ensures a cohesive match between scattering
points and sample reppoints, thereby consolidating more of the inherent structural and
positional features of targets into the supervised information. Consequently, this offers
valuable guidance for initializing reppoints, facilitating a more effective learning process
regarding the key semantic features of the target. Ultimately, this procedure significantly
elevates the quality of the initialized point set. The learning process is depicted in Figure 3.

Initial  Reppoints GT-RBOX Scattered  Points

Select Points Assigning Box

GMM GMM

𝓝𝒕(𝒙𝒊|𝝁, 𝜮)𝓝𝒑 (𝒙𝒊|𝝁, 𝜮)

𝑫𝒌𝒍(𝓝𝒑|𝓝𝒕)

𝑳𝒐𝒔𝒔

Figure 3. SPG learning. After alignment via GT bounding boxes, Gaussian distribution is employed
to fit the scattering points and initialize reppoints, followed by computing the KLD loss, achieving
supervised-guided learning.

After initialization, the reppoints are generated as R = {S1, S2, S3, . . . , Sm}, where
Si = {(xj, yj)}9

j=1. To better achieve the adaptive learning of the target’s crucial seman-
tic parts by initializing reppoints, we utilize Kullback–Leibler Divergence (KLD) [34] as
the regression loss for supervised optimization. Specifically, Gaussian distributions are
employed to individually model the scattering point clusters and the reppoints generated
during initialization. Subsequently, the KLD loss is computed based on the Gaussian distri-
butions between these two sets of points. This enables the dynamic adaptive adjustment
of gradients for each parameter based on the loss between the two point sets. Such an
approach is advantageous for facilitating the adaptive collaborative optimization of the
initialized reppoints and, consequently, enabling the learning of key semantic features of
the target. The computation of the Gaussian distribution of the point set is as follows:

N (xi|µ, Σ) =
1

2π
√

det(Σ)
exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
(7)

where µ represents the mean value, and Σ represents the covariance matrix. The calculation
of KLD for the Gaussian distribution of point sets is as follows:

DKL(Np∥Nt) =
1
2

(
(µp − µt)

TΣ−1
t (µp − µt) + Tr(Σ−1

t Σp) + ln
(
|Σt|
|Σp|

))
− 1 (8)
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where Np and Nt represent the Gaussian distributions of the initialized reppoints and
the corresponding position scattering point cluster, respectively. Consequently, the loss
between the two sets of points is obtained as follows:

Ls.Init = 1 − 1
2 + f (D)

(9)

where f (·) denotes a non-linear function applied to distances, in this case using sqrt(D).
The overall loss function for the entire training process is as follows:

Ltotal = Lcls + αLs1 + βLs2 + γLs.Init (10)

where α, β, and γ represent balancing weighting coefficients, and Ls1 and Ls2, respectively,
represent the spatial localization losses during the initialization stage and the fine-tuning
stage. The spatial localization loss comprises two components: positioning loss [44] and
spatial constraint loss [36]. Additionally, Ls.Init indicates the guidance loss of SPG learning.

4. Results and Discussion
4.1. Dataset and Its Evaluation Metrics

We conducted experiments on the SSDD [46] and HRSID datasets [10]. The SSDD
dataset consists of 1160 images, with 928 images used for training and 232 images (including
46 nearshore images and 186 offshore images) used for testing. These images are sourced
from RADARSAT-2, TerraSAR-X, and Sentinel-1, with resolutions ranging from 1 m to 15 m
and with the C and X bands. The HRSID dataset comprises 5604 images, with 65% used for
training and 35% for testing. The image slice resolutions in this dataset range from 0.5 m to
3 m. All images were resized to 800 × 800 pixels, and the data augmentation approach
exclusively employs random flipping to enhance the sample set.

In our experiments, we used mAP (mean Average Precision) to evaluate the perfor-
mance of the network. Its expression is as follows:

mAP =
1
K

K

∑
j=1

∫ 1

0
precision(recall) d(recall) (11)

Besides mAP, we also utilized Recall as another important metric to reflect the perfor-
mance of our method. Its expression is as follows:

Recall =
NTP

NTP + NFN
(12)

where NTP represents the number of true positives, and NFN represents the number of
false negatives.

4.2. The Details of the Experiment

The entire experiment was implemented within the mmrotate codebase. The total
number of training epochs was 50, and the SGD optimizer was used with a learning rate
of 0.0025, a momentum parameter of 0.9, and a weight decay of 0.0001. Learning rate
adjustments were made using a stepwise strategy with adjustment nodes at (38, 40, 42, 44,
46, 48). All training and testing experiments in this paper were conducted on the Ubuntu
18.04 operating system. As for hardware specifications, the experiments were performed
using an Intel i5-13490F CPU (Intel, Santa Clara, CA, USA) and an NVIDIA RTX 4080 GPU
(NVIDIA, Santa Clara, CA, USA).
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4.3. Comparison with State-of-the-Art Methods

In order to validate the effectiveness of our SPG oriented-reppoints method, we
compared our method with ten other state-of-the-art directional target detection algorithms
on a unified SSDD dataset; their mAP and Recall values were computed for nearshore
scenarios, offshore scenarios, and hybrid scenarios, as shown in Table 1.

Table 1. Comparison with state-of-the-art methods (SSDD).

Method Backbone
mAP Recall

Params (M) Flops (GFLOPs)
Nearshore Offshore Total Nearshore Offshore Total

Oriented-rcnn R-50-FPN 0.794 0.906 0.902 0.847 0.963 0.934 41.13 198.53
Rotated-faster-rcnn R-50-FPN 0.776 0.904 0.896 0.824 0.963 0.929 41.12 198.40

Roi-trans R-50-FPN 0.703 0.903 0.893 0.779 0.943 0.902 55.03 200.41
Rotated-retinanet R-50-FPN 0.629 0.904 0.864 0.763 0.945 0.900 36.13 209.58

Gliding-vertex R-50-FPN 0.703 0.903 0.892 0.763 0.935 0.893 41.13 198.40
Fcos R-50-FPN 0.668 0.904 0.810 0.740 0.938 0.889 31.89 206.20

S2anet R-50-FPN 0.680 0.897 0.804 0.786 0.928 0.893 38.54 196.21
Kld R-50-FPN 0.693 0.904 0.892 0.771 0.955 0.910 36.13 229.95

R3det R-50-FPN 0.691 0.906 0.890 0.740 0.965 0.910 41.58 328.70
Oriented reppoints

(baseline) R-50-FPN 0.747 0.904 0.895 0.863 0.965 0.940 36.60 171.70

Our method R-50-FPN 0.780 0.904 0.898 0.885 0.963 0.944 36.60 171.70

The compared methods include (1) two-stage object detectors based on anchor boxes:
oriented-rcnn [33], Roi-Transformer [32], and Rotated-faster-rcnn [25], Gliding-vertex [47];
(2) anchor-free object detectors: Fcos [48] and oriented reppoints (baseline) [36]; (3) single-
stage detectors based on anchor points: Rotated-retinanet [29], S2anet [49], Kld [34], and
R3det [50]. Ultimately, our method achieved 78% mAP and 88.5% Recall in nearshore
scenes and 89.8% mAP and 94.4% Recall in hybrid scenes, surpassing all methods except
oriented-rcnn. Particularly in nearshore scenes, in terms of mAP, our method significantly
outperforms other anchor-free algorithms and some anchor-based methods. Further-
more, compared to our baseline method (oriented reppoints), our method demonstrated
a 3.3% mAP and 2.2% Recall improvement in nearshore scenes and a 0.26% mAP and
0.4% Recall improvement in mixed scenes. This validates the effectiveness of our method
over the baseline.

The ship detection capabilities of these methods for the nearshore scenario are directly
exhibited in Figure 4. As shown in the figure, our algorithm can detect ships in complex
nearshore environments, while other methods exhibit varying degrees of false positives
and misses. In Figure 4b–g, the targets on land were mistakenly detected as ships. In
Figure 4c,e, the clutter on the sea surface was mistakenly detected as a ship. In Figure 4e,g,
the nearshore ship was missed.

Simultaneously, we considered the practical application scenarios of the models and
compared their parameter sizes and computational complexities. As illustrated in Figure 5,
our method’s model parameter size constitutes 88.98% of that of oriented-rcnn, while its
computational complexity represents 86% of oriented-rcnn’s. However, the difference in
detection accuracy between our method and oriented-rcnn is merely 1.4%. To some extent,
our method achieves comparable precision to oriented-rcnn while possessing a smaller
parameter size and reduced computational overhead. Moreover, in contrast to the baseline
method, our approach significantly enhances model performance without increasing the
model’s parameters or computational complexity. This reinforces the practical superiority
of our method in detection scenarios.

Furthermore, to further analyze the performance of our algorithm, we conducted tests
on the HRSID dataset. The results are shown in Table 2. Our method achieved an improve-
ment of 3.6% in nearshore environments and 4.5% in mixed scenarios compared to the
baseline. Multiple metrics reached the state-of-the-art (SOTA) level, further demonstrating
the effectiveness and robustness of our method.
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(a) (c)(b) (d)

(e) (g)(f) (h)

Figure 4. A comparison of methods for nearshore detection. The red, yellow, and green circles
represent false positives, misses, and correct detections, respectively. (a) Ground truth. (b) Fcos.
(c) R3det. (d) Oriented-rcnn. (e) Rotated-retinanet. (f) Roi-trans. (g) S2anet. (h) Our method.
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Figure 5. Model parameters and their flops against mAP,the red star represents the performance of
our method. (a) Model parameters against mAP. (b) Model flops against mAP.

Table 2. Comparison with state-of-the-art methods (Hrsid).

Method Backbone
mAP Recall

Params (M) Flops (GFLOPs)
Nearshore Offshore Total Nearshore Offshore Total

Oriented-rcnn R-50-FPN 0.543 0.905 0.781 0.670 0.957 0.830 41.13 198.53
Rotated-faster-rcnn R-50-FPN 0.523 0.901 0.774 0.639 0.955 0.815 41.12 198.40

Roi-trans R-50-FPN 0.521 0.906 0.774 0.668 0.953 0.827 55.03 200.41
Rotated-retinanet R-50-FPN 0.481 0.903 0.689 0.632 0.945 0.812 36.13 209.58

Gliding-vertex R-50-FPN 0.509 0.903 0.709 0.628 0.934 0.799 41.13 198.40
Fcos R-50-FPN 0.383 0.903 0.696 0.544 0.954 0.772 31.89 206.20

S2anet R-50-FPN 0.493 0.905 0.759 0.645 0.949 0.814 38.54 196.21
Kld R-50-FPN 0.506 0.904 0.776 0.771 0.969 0.844 36.13 229.95

R3det R-50-FPN 0.463 0.904 0.708 0.605 0.935 0.789 41.58 328.70
Oriented reppoints

(baseline) R-50-FPN 0.532 0.905 0.763 0.669 0.955 0.840 36.60 171.70

Our method R-50-FPN 0.568 0.906 0.808 0.810 0.963 0.869 36.60 171.70
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4.4. Ablation Experiments

In this section, to analyze the effectiveness of various proposed components within
our method, we employed the original oriented-reppoints method as a baseline and evalu-
ated its performance first. Subsequently, we conducted a series of ablation experiments
and compared their results. To ensure the reliability of these experimental outcomes, all
experiments were conducted under identical conditions and with identical settings.

We incorporated two parts into the baseline method to study their impacts separately:
adaptive sample selection guided by scattering points (SPG-ASS) and adaptive reppoints
learning guided by scattering points (SPG learning). The experimental results are presented
in Table 3. When solely incorporating SPG-ASS, the mAP is increased by 1.3%, and the
network’s detection Recall is increased by 1.5%, benefiting from the exclusivity of high-
quality samples in the network training and learning processes. When solely incorporating
the SPG learning part, the mAP and Recall for nearshore detection are improved by
1.6% and 0.2%, respectively. As indicated in row IV of Table 3, when both components
were integrated into our network, it exhibited greater performance improvements. The
mAP and Recall for nearshore detection are increased by 3.3% and 2.2%, respectively.
Additionally, these components were applied during the training phase of our network,
without increasing the computational load during the testing phase.

Table 3. Ablation experiments.

SPG-ASS SPG Learning Map (Nearshore)
↑

Recall (Nearshore)
↑

I 0.747 0.863
II ✓ 0.760 0.878
III ✓ 0.763 0.865
IV ✓ ✓ 0.780 0.885

4.4.1. SPG-ASS

Given the utilization of an anchor-free mechanism within our network architecture,
the acquisition of high-quality samples stands as a pivotal factor in effectively detecting
intricate nearshore targets. We introduced SPG-ASS into the baseline model. By incorpo-
rating scattering point positional information, during the training phase, we can select
higher-quality samples for learning, thereby avoiding issues of model degradation caused
by low-quality samples. In Figure 6a, due to the lack of scattering point position informa-
tion of the target with the adaptive sampling scheme, the correlation between the sample’s
classification confidence and localization score (IoU) is low. Moreover, a considerable
number of samples are concentrated in regions with both lower classification confidence
and lower localization scores, indicating low sample quality overall.
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Figure 6. The impact of SPG-ASS on the correlation between the classification confidence and
localization score of oriented reppoints. (a) Without SPG-ASS. (b) With SPG-ASS.
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In contrast, as depicted in Figure 6b, by incorporating the scattering position information,
the localization quality scores and classification confidence of the samples are significantly
increased compared to Figure 6a without this integration. This approach has led to the
selection of numerous high-quality samples exhibiting higher classification confidence and
localization scores. This substantiates the effectiveness of our method in selecting high-quality
samples. In addition, we conducted a comparative analysis in nearshore environments using
both the baseline method and the improved approach with SPG-ASS.

As depicted in Figure 7b,e, it is evident that the baseline method is prone to false
positives and false negatives in nearshore detection. Conversely, the detection outcomes of
the improved approach, as illustrated in Figure 7c,f, exhibit a significant decrease in false
negatives and the absence of false positives. This further corroborates the effectiveness of our
SPG-ASS component.

(a) (b) (c)

(d) (e) (f)

Figure 7. Nearshore detection comparison. (a,d) Ground truth. (b,e) Without SPG-ASS. (c,f) With SPG-
ASS. The red, yellow, and green represent false positives, misses, and correct detections, respectively.

4.4.2. SPG Learning

To further explore the impact of SPG learning, we independently incorporated it into
the baseline task. As indicated in Table 3, by employing SPG learning techniques, the
adaptive feature learning capability of the initial reppoints is focused on the semantic
features at critical target locations so as to mitigate the impact of land-based scattering
interference. Furthermore, to further illustrate the effectiveness of our approach, we
visualized the features of the backbone network.

As shown in Figure 8b,e, in the baseline task, the network is more sensitive to land
scattering, making it difficult for adaptive points to learn the key semantic features of
the target itself in nearshore detection. However, after applying adaptive point learning
guided by scattering points, the results in Figure 8c,f show that land scattering interference
is suppressed. The scattering-guided initialization points move toward the key semantic
areas of the ship, enabling the network to highlight the significance of the target itself
while reducing attention to land regions. This improves the robustness and accuracy
of nearshore ship detection. Furthermore, we conducted tests on both the baseline and
improved methods with SPG learning in nearshore environments. The results are shown in
Figure 9. False detections and missed detections occur with the baseline. Meanwhile, the
detection results generated by the improved method are consistent with the ground-truth
bounding boxes. This further validates the effectiveness of the SPG learning component.
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ship|0.78

result

(a) (b) (c)

ship|0.67

ship|0.61

result

(d) (e) (f)

Figure 8. Visualization of the confidence heatmaps,the gradient from blue to red represents the
increasing level of attention focus. (a,d) Ground truth. (b,e) Without SPG learning. (c,f) With
SPG learning.

(a) (b) (c)

(d) (e) (f)

Figure 9. Nearshore detection comparison. (a,d) Ground truth. (b,e) Without SPG learning. (c,f) With
SPG learning. The red circles indicate false detections, green circles indicate correct detections,while
the yellow circles indicate missed detections.

4.4.3. SPG Oriented Reppoints Detection

In addition, we simultaneously incorporated the two proposed modules into the
baseline network. The detection results are shown in Figure 10. Figure 10a–c represent the
ground truth, while Figure 10d–f illustrate the detection results of our proposed method.
As depicted in Figure 10, our approach achieves the precise detection of objects in various
scenes, such as offshore and nearshore, by adapting reppoints transformations. This
demonstrates the effectiveness of our approach.
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(a) (b) (c)
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ship|0.87

result

(d)
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ship|0.83
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result

(e)

ship|0.80

ship|0.73

ship|0.73
ship|0.51

result

(f)

Figure 10. The detection results of our proposed method. (a–c) Ground truth in the SAR image.
(d–f) The detection results from our proposed method.

4.5. Qualitative Evaluation

Additionally, to assess the generalization performance of our method, a SAR image
captured in the vicinity of the Zhoushan port area was chosen for ship detection, with the
specific details outlined in Table 4.

Table 4. Details of SAR images.

Satellite Center (Longitude/Latitude) Scene Date (UTC) Imaging Mode Resolution Band Polarization

Sentinel-1 122.147°/29.369° 12 May 2019 09:53:10.579856 IW 13.957 m C VH

We selected three representative areas within the image for analysis, as illustrated in
Figure 11. Area 1 comprises a mixed scene of nearshore and offshore areas, while area
2 depicts an offshore scene, and area 3 portrays a nearshore scene. The oriented_rcnn
method, having the best mAP value on the SSDD dataset, was chosen for comparison with
the proposed method. The left three subplots Figure 11A–C showcase the detection results
obtained using the oriented_rcnn method. In contrast, the right three subplots Figure 11D–F
display the detection outcomes achieved by our proposed method. In subplot A, there are
likely to be false and missed detections in the nearshore area when using oriented_rcnn.
However, our method, as depicted in subplot D, not only effectively detects nearshore
ships but also avoids false positives in the strong scattering areas on land. This also shows
that our method has better ability to resist land scattering interference.

From subplot B in Figure 11, it is evident that there were some missed detections during
offshore detection. However, our proposed method, as depicted in subplot E, presents more
comprehensive detection results, with a significantly reduced rate of missed detections.
Additionally, in nearshore scenarios, such as the area illustrated in Figure 11, there exists
prominent strong scattering areas on land, closely adjacent to the ships, significantly
increasing the difficulty of ship detection. The detection results of oriented_rcnn, as shown
in subplot C, exhibit both missed detections in nearshore areas and false positives on
land. In contrast, our method’s detection results, displayed in subplot F, identify all ship
targets in that area without producing false detections on land targets. Overall, our method
demonstrates superior detection and generalization performance in practical scenarios.
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D
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Figure 11. Ship detection results of Sentinel-1 SAR image. Areas 1, 2, and 3 represent mixed scenes,
offshore scenes, and nearshore scenes, respectively. Subplots (A–C) are the detection results of
oriented_rcnn for the three areas, and subplots (D–F) are the detection results of our method. Red
circles indicate false detections, and yellow circles indicate missed detections.

4.6. Discussion

The experimental results on the SSDD and HRSID datasets validate the effectiveness
of our proposed method. On the SSDD dataset, our method outperformed the baseline
by 3.2% and performed comparably to oriented-rcnn in nearshore environments, achiev-
ing a suboptimal level. To further verify the method’s generalization and reliability, we
conducted a comparative study on the HRSID dataset, which is larger in scale, richer in
imaging modes, and more complex in nearshore environments. The results show that our
proposed method outperformed the baseline by 3.6% and achieved the state-of-the-art
level on this dataset. Additionally, we observed performance fluctuations on different
datasets, mainly due to differences in dataset characteristics. The HRSID dataset has a more
complex nearshore environment with diverse slice characteristics, and the detection results
in these complex scenarios also reflect the robustness and generalization of our method.
Our method benefits from the anchor-free detection framework guided by scattering points,
which provides higher granularity for recognizing ships in complex nearshore environ-
ments and has higher perceptual adaptability for detecting directional ships. Moreover,
the SPG learning mechanism can better learn the features of nearshore ships, reduce false
alarms on land, achieve feature focusing, and thus achieve higher detection accuracy. We
also conducted ablation experiments to explore the roles of various parts of the proposed
method. However, this method currently has some shortcomings. For example, both the
adaptive sample selection scheme and the adaptive learning part rely on the extraction of
scattering points from the target. If the area occupied by ships is limited or the scattering
from ships is weak, resulting in fewer or no corner points being extracted, the method
may fail. In the future, we plan to redesign the scattering point extraction part and in-
troduce more efficient and advanced network structures for scattering feature extraction
and fusion.
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5. Conclusions

In summary, we propose an anchor-free detection scheme based on oriented reppoints
guided by the scattering characteristics of SAR images. This scheme addresses the chal-
lenges of detecting oriented ships in complex nearshore environments. Initially, considering
the scattering mechanism of metal-made ships, the strong points, such as corner points, are
extracted as positional prior information. Then, we use the positional information of scat-
tering points for adaptive sample selection, enabling the superior selection of high-quality
sample points during the training phase and thus avoiding model degradation caused by
low-quality samples. Furthermore, we enhance the reppoints quality in the initializing
phase by a novel supervised guidance paradigm, allowing the network to learn more
refined representations of the electromagnetic features of ships, consequently reducing
land scattering interference in complex nearshore environments. Our method offers new
insights into the integration of scattering features and demonstrates effectiveness in various
environments, especially in nearshore scenes with significant land interference. On the
SSDD dataset, our method achieves an mAP of 78% for nearshore detection, which is a
3.3% improvement over the baseline. To further validate the robustness of our method, we
tested it on the HRSID dataset, where it achieves an mAP of 56.8% for nearshore detection,
a 3.6% improvement over the baseline, reaching the state-of-the-art (SOTA) level compared
to other methods. In the future, we will try to extend this methodology to other application
scenarios so as to improve other object detection tasks with SAR images.
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