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Abstract: Efficiently removing clouds from remote sensing imagery presents a significant challenge,
yet it is crucial for a variety of applications. This paper introduces a novel sparse function, named the
tri-fiber-wise sparse function, meticulously engineered for the targeted tasks of cloud detection and
removal. This function is adept at capturing cloud characteristics across three dimensions, leveraging
the sparsity of mode-1, -2, and -3 fibers simultaneously to achieve precise cloud detection. By incor-
porating the concept of tensor multi-rank, which describes the global correlation, we have developed
a tri-fiber-wise sparse-based model that excels in both detecting and eliminating clouds from images.
Furthermore, to ensure that the cloud-free information accurately matches the corresponding areas
in the observed data, we have enhanced our model with an extended box-constraint strategy. The
experiments showcase the notable success of the proposed method in cloud removal. This highlights
its potential and utility in enhancing the accuracy of remote sensing imagery.

Keywords: cloud removal; sparse; low rank; box constraint

1. Introduction

Remote sensing technology has been widely employed across various fields, including
for unmixing [1,2], fusion [3–6], and classification [7]. However, these images often suffer
from inevitable cloud contamination, resulting in significant information loss and con-
straining the further analysis of remote sensing data [8,9]. Consequently, advancing cloud
removal techniques is critical for enhancing the practical utility of remote sensing images.

Mathematically, multitemporal images contaminated by clouds can be represented
by a tensor O ∈ Ra×b×d×t (a and b denote the spatial dimension, d represents the spectral
dimension, and t is the time dimension); the clean image component is represented by U ,
the cloud component is denoted by C, and the model noise is signified by E . Then, the
degradation process is formulated as follows:

O = U + C + E . (1)

Numerous cloud removal techniques have been developed by researchers [10,11].
These methods are generally classified into two main approaches depending on whether a
cloud mask is available, offering distinct strategies for addressing the challenge of cloud
removal.

The first approach is called the nonblind method. It uses a given cloud mask as
prior knowledge to reconstruct information obscured by clouds. Traditional methods for
addressing this problem are spatial-based methods, which only utilize the interrelations
between pixels across the spatial dimension [12–15]. To more effectively harness the corre-
lations across spectral bands, researchers [16,17] have developed spectral-based methods
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aimed at improving the reconstruction of missing data. However, the above methods
always fail to produce promising reconstruction results if the remote sensing imagery is
obscured by thick clouds. Methods that take advantage of multiple images have been
developed, which are classified as either multitemporal [18–22] or multisource [23,24]
methods. Wang et al. [20] proposed a method for scene reconstruction that employs a
robust matrix completion technique through temporal contiguity. Then, they presented
an efficient algorithm based on the augmented Lagrangian method (ALM) with inexact
proximal gradients (IPGs) to address optimization problems. Zhang et al. [21] proposed a
cloud and shadow removal technique based on the learning of spatial–temporal patches.
Li et al. [23] developed an innovative cloud removal methodology employing a CMD
network that incorporates optical and SAR imagery. Gao et al. [24] utilized a generative
adversarial network to fuse optical and SAR images in order to reconstruct information
obscured by clouds. To effectively leverage image prior knowledge, hybrid methods have
been proposed to exploit two or all aspects of an image’s spatial, spectral, and temporal
features. For instance, Chen et al. [25] proposed a Spatially and Temporally Weighted
Regression (STWR) method that fully leverages cloud-free information from input Land-
sat scenes. Melgani [26] introduced contextual multiple linear and nonlinear prediction
models. These models assume that the image’s spectral and spatial characteristics remain
relatively consistent across the image sequence. While nonblind methods are effective in
cloud removal, their heavy reliance on cloud masks somewhat limits their applicability in
comprehensively addressing cloud removal challenges.

The second approach, known as the blind method, removes clouds without providing
a cloud mask. Wen et al. [27] utilized a technique known as Robust Principal Component
Analysis (RPCA) to initially identify cloud cover, followed by reconstructing the missing
information using discriminant RPCA to eliminate thick clouds. Chen et al. [28] proposed
TVLRSDC, which means total-variation plus low-rank sparsity decomposition. A deep
residual neural network model created by Meraner et al. [29] focused on the effective
removal of clouds from multispectral satellite images from Sentinel-2. By integrating SAR
and optical data through a fusion process, the synergistic characteristics of both imaging
systems were exploited to provide guidance for image reconstruction. Wang et al. [30]
developed an unsupervised domain factorization network aimed at eliminating thick
clouds from multitemporal remote sensing images. These blind removal methods always
perform cloud detection and removal separately and independently, which usually changes
information for cloud-free regions.

In order to remove clouds better, it is necessary to study prior knowledge about the
clouds. It is widely recognized that cloud components can be effectively characterized by
sparse functions. Recently, the adoption of element-wise sparse functions, such as the l1-
norm, has become prevalent [27,28,31] owing to their concise form and convexity. However,
an element-wise sparse function ignores the correlations across the spectrum. Therefore,
investigating an appropriate sparse function to characterize the cloud properties becomes
crucial. Recently, Ji et al. [32] introduced a model that combines box-constrained low-rank
and group sparse techniques, with the specific purpose of detecting and removing clouds.
This approach defines cloud properties using group sparsity in the spectral dimension.
Nonetheless, it falls short of fully exploring the characteristics of the cloud component.

To further refine the sparsity representation of the cloud component, we introduce the
tri-fiber-wise sparse (TriSps) function. This function utilizes the sparsity of mode-1, -2, and -
3 fibers to capture more cloud information. Our development of TriSps is inspired by the
inherent structural sparsity of cloud components. Specifically, when each tube is considered
as a whole, the fibers exhibit sparse characteristics, termed fiber-wise sparsity. In Figure 1a,
an image affected by cloud cover is illustrated, and Figure 1b shows the corresponding
cloud imagery. In Figure 1c–e, histograms of the l2-norms of mode-1, -2, and -3 fibers
extracted from the cloud component are depicted. It is evident from Figure 1c–e that the
majority of l2-norm values for mode-1, -2, and -3 fibers are zero, indicating significant
sparsity. Additionally, we incorporate the global prior of image components, characterized
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by multi-rank. Leveraging the proposed sparse function and global low rank, we devised a
novel cloud removal model and take advantage of a proximal alternating minimization
(PAM)-based approach [33] to efficiently solve the proposed model.
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Figure 1. (a) Observed cloud-contaminated image, (b) cloud component, (c–e) mode-1, -2, and -3
fiber-wise sparsity, i.e., the l2-norms of mode-1, -2, and -3 fibers from (b), respectively.

The contributions of this paper are threefold:

• To leverage the inherent structural sparsity of cloud components, we propose the
TriSps function specifically for cloud removal purposes. Unlike element-wise and
tube-wise sparsity, the TriSps function is designed to capture the properties of clouds
in three-dimensional directions more effectively.

• Building upon the TriSps function, we propose a novel cloud removal model that
simultaneously estimates both the image and cloud aspects.

• We devised an effective algorithm based on PAM to tackle our method. Experiments
with synthetic and real datasets highlight the proposed method’s prowess in cloud
removal, outperforming other advanced methods currently available in the field.

This paper unfolds as follows. Section 2 introduces fundamental notations and defini-
tions essential for understanding. In Section 3, we introduce a tri-fiber-wise sparse function
to characterize the cloud component’s properties. Furthermore, we have devised a method
for detecting and removing clouds. In Section 4, we validate the effectiveness of our method
through synthetic and real experiments. Lastly, Section 5 provides some conclusions.

2. Notations and Preliminaries

We present key notations and definitions [34] that are fundamental in our study. The pri-
mary notations employed in this paper are outlined in Table 1 for clarity and reference.
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Table 1. Notation description.

Notations Interpretations

a, a, A, A scalar, vector, matrix, tensor

Tr(A) trace of A ∈ Rn×n, with Tr(A) = ∑n
i=1 aii

∥A∥F ∥A∥F :=
√

∑h,w,d,t |ah,w,d,t|2

∥A∥∗ ∥A∥∗ := Tr(
√

AT A)

A(k) unfolding of A in its kth mode.

Ai
(k) ith mode-k fiber of A

Ar rth frontal slice of A

A = X ×3 Q Ai
(3) = QX i

(3)
T (·) reshaping of fourth-order tensor into third-order tensor

D(·) difference operator in fourth mode

Furthermore, some definitions are presented below.

Definition 1 (Tensor mode-n product [35]). Given a tensor A ∈ RR1×R2×···×RN and a matrix
U ∈ RJ×RN , the mode-n product of A by U is defined as

A×n U = Foldn(U A(n)). (2)

In this context, A(n) ∈ RRN×∏d ̸=n Rd stands for the matricization of tensor A in the nth mode, while
Foldn(·) represents the operator that, in the nth mode, reshapes the matrix back into a tensor form.

Definition 2 (TNN [36]). The tensor nuclear norm of tensor A ∈ RR1×R2×R3 is characterized
as follows:

∥A∥TNN =
I3

∑
k=1

∥Zk∥∗. (3)

Here, Zk represents the kth frontal slice obtained from the Fourier-transformed tensor Z = A×3
QR3 .

Based on the TNN, the tensor completion model can be written as follows:

min
A

∥A∥TNN, s.t. AΩ = BΩ, (4)

where BΩ signifies the tensor obtained by copying entries from A corresponding to the index set Ω
while setting all other entries to zero.

3. The Proposed Method

In this section, we present our proposed sparse function, TriSps. Utilizing the TriSps
function as a foundation, we introduce a cloud removal model that combines tensor multi-
rank. Then, we devise a PAM algorithm to solve the proposed model.

3.1. The Tri-Fiber-Wise Sparse Function

Existing sparse functions, such as element-wise and tube-wise sparsity, fail to fully
exploit the correlations across the spectrum when it comes to cloud properties in remotely
sensed images. To overcome this deficiency, we introduce a novel sparse function designed
to efficiently capture cloud characteristics across three dimensions. The presence of clouds
in contaminated remotely sensed images is relatively sparse compared to the entire image,
as shown in Figure 1b. This observation implies that the cloud component exhibits fiber-
wise sparsity, aligning with the fundamental nature of clouds. Figure 1 shows the sparsity
within a cloud-contaminated image, where Figure 1c–e particularly highlight that most
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of the l2-norms of mode-n (n = 1, 2, 3) fibers derived from the cloud component are zero.
In other words, the mode-1, -2, and -3 fibers of the cloud component exhibit clear fiber-wise
sparsity. This realization allows us to simultaneously consider the sparsity across mode-1,
-2, and -3 fibers rather than focusing on a single fiber’s sparsity. Leveraging this insight, we
introduce the tri-fiber-wise sparse (TriSps) function. This novel function adeptly captures
the sparse structures of mode-1, -2, and -3 fibers simultaneously. Utilizing the TriSps
function, we can more thoroughly characterize cloud properties and significantly enhance
the accuracy of cloud detection in remotely sensed imagery. Mathematically, the TriSps
function of C is defined as

Jλ(C) =
3

∑
n=1

λnSn(C), (5)

with
Sn(C) = ∑

i

∥∥∥C i
(n)

∥∥∥
2
, (6)

where λn(n = 1, 2, 3) denotes the positive weights, and C i
(n) denotes the ith column of

mode-n unfolding C(n), i.e., the ith mode-n fiber of C.

Remark 1. 1. Equation (6) characterizes the sparsity of mode-n (n = 1, 2, 3) fibers, since it is the
approximation of the following l0-quasi-norm of C with respect to mode-n fibers:

∥C∥ f 0
n
= #

{
i|C i

(n) ̸= 0
}

, (7)

which is to indicate the number of mode-n fibers that are non-zero. Therefore, the proposed TriSps
function in Equation (5) can sufficiently take advantage of the sparsity property of the cloud
component.

2. The proposed TriSps function reduces to the sparse function proposed by Ji et al. [32] if the
weights are λ1 = λ2 = 0 and λ3 = 1, which means that the function only considers the sparsity
along the tubes. Different from the sparse function in [32], our proposed TriSps function is more
general and can capture the properties of clouds in three-dimensional directions.

3.2. Proposed Model

The multitemporal images have high correlations among mode-1, -2, and -3 fibers.
The tensor rank function [37,38] serves as an effective tool for characterizing the global cor-
relation of image components U , adeptly capturing the inherent low-rank characteristics of
images. In our study, we employ a multi-rank regularization function for U . We transform
U into a third tensor and establish the regularization function as described below.

∥U∥TNN =
dt

∑
r=1

∥Xr∥∗, (8)

where Xr represents the rth frontal slice of X . That is, X = T (U )×3 QT , where T (U )
restructures U into a third-order tensor, and Q satisfies QTQ = I (I denotes the iden-
tity matrix).

Additionally, we observe that the images exhibit similarity during adjacent temporal
periods, which can be described by

∥D(U )∥2
F =

∥∥∥DU (4)

∥∥∥2

F
. (9)

Here, D(·) represents a difference operator, D represents a difference matrix, and U (4)
is the unfolding of U in its fourth mode.
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Using the proposed TriSps function and the prior knowledge of the image component,
we propose the following cloud removal model:

min
C,X ,QT Q=I,
U= fbc(O,C,Ũ )

Jλ(C) +
dt

∑
r=1

∥Xr∥∗ +
γ

2

∥∥∥DU (4)

∥∥∥2

F
,

s.t., T (U ) = X ×3 Q,O = U + C.

(10)

The first term in the objective function represents the prior knowledge derived from
the cloud component C, while the last two terms encapsulate the prior knowledge from the
image component U . λ and γ denote positive regularization parameters. U = fbc(O,C, Ũ )
represents a box constraint designed to preserve cloud-free details within the image com-
ponent, ensuring it remains consistent with the observed data. The adoption of the box-
constraint strategy is motivated by the need to maintain the integrity of the cloud-free
portions in U . Without this constraint, these portions may differ from those in the observed
data, leading to a decrease in the quality of the reconstruction. Thus, they need the assis-
tance of some strategies to improve the reconstruction quality of the cloud-free part. In this
paper, we use the following box-constraint strategy and extend it to the proposed model.
The box-constraint function is determined by U = fbc(O,C, Ũ ), whose ith mode-3 fiber is

U i
(3) =

Oi
(3), if avg(C i

(3)) < ϵ,

Ũ i
(3), otherwise,

(11)

where ϵ ≥ 0 is a given thresholding value, and avg(x) denotes the average value of vector x.

3.3. Optimization Algorithm

This subsection outlines the development of the PAM algorithm [33], crafted to address
our proposed model. To facilitate this, we integrate auxiliary variables M = X , N = C,
S = C and reformulate the model (10) as

min
C,X ,N ,QT Q=I,

S ,M,U= fbc(O,C,Ũ )

dt

∑
r=1

∥Mr∥∗ + λ1 ∑
i

∥∥∥N i
(1)

∥∥∥
2
+ λ2 ∑

i

∥∥∥S i
(2)

∥∥∥
2
+ λ3 ∑

i

∥∥∥C i
(3)

∥∥∥
2
+

γ

2

∥∥∥DU (4)

∥∥∥2

F
,

s.t., T (U ) = X ×3 Q,O = U + C,M = X ,N = C,S = C,

(12)

where Mr denotes the frontal slice of M corresponding to index r.
The aforementioned constrained problem can be reformulated as follows:

min
C,X ,N ,QT Q=I,

S ,M,U= fbc(O,C,Ũ )

dt

∑
r=1

∥Mr∥∗ + λ1 ∑
i

∥∥∥N i
(1)

∥∥∥
2
+ λ2 ∑

i

∥∥∥S i
(2)

∥∥∥
2
+ λ3 ∑

i

∥∥∥C i
(3)

∥∥∥
2

+
γ

2

∥∥∥DU (4)

∥∥∥2

F
+

η1

2
∥T (U )−X ×3 Q∥2

F +
η2

2
∥M−X ∥2

F

+
η3

2
∥O −U − C∥2

F +
η4

2
∥N − C∥2

F +
η5

2
∥S − C∥2

F,

where ηi > 0 (i = 1, . . . , 5) represents penalty parameters.
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The aforementioned objective function refers to g(U ,C,X ,M, Q,N ,S). Within the
PAM-based algorithm framework, we iteratively update individual variables in an alternat-
ing fashion:

U s+1 = arg min
U= fbc(O,Cs ,Ũ )

g(U ,Cs,X s,Ms, Qs,N s,S s) +
µ

2
∥U −U s∥2

F,

Cs+1 = arg min
C

g(U s+1,C,X s,Ms, Qs,N s,S s) +
µ

2
∥C − Cs∥2

F,

X s+1 = arg min
X

g(U s+1,Cs+1,X ,Ms, Qs,N s,S s) +
µ

2
∥X −X s∥2

F,

Ms+1 = arg min
M

g(U s+1,Cs+1,X s+1,M, Qs,N s,S s) +
µ

2
∥M−Ms∥2

F,

Qs+1 = arg min
QT Q=I

g(U s+1,Cs+1,X s+1,Ms+1, Q,N s,S s) +
µ

2
∥Q − Qs∥2

F,

N s+1 = arg min
N

g(U s+1,Cs+1,X s+1,Ms+1, Qs+1,N ,S s) +
µ

2
∥N −N s∥2

F,

S s+1 = arg min
S

g(U s+1,Cs+1,X s+1,Ms+1, Qs+1,N s+1,S) +
µ

2
∥S − S s∥2

F.

(13)

Here, the superscript notation s signifies the outcome obtained after the sth iteration.
µ represents a proximal parameter. Subsequently, each variable can be updated according
to the following procedure.

• Updating the U -subproblem

The U -subproblem is

min
U= fbc(O,C,Ũ )

η1

2
∥T (U )−X s ×3 Qs∥2

F +
γ

2

∥∥∥DU (4)

∥∥∥2

F
+

η3

2
∥O −U − Cs∥2

F +
µ

2
∥U −U s∥2

F.

T (·), as a reversible reshape operator, allows for the rephrasing of the aforementioned
equation.

min
U= fbc(O,C,Ũ )

η1

2

∥∥∥U(4) − T −1(X s ×3 Qs)(4)

∥∥∥2

F
+

γ

2

∥∥∥DU(4)

∥∥∥2

F

+
η3

2

∥∥∥O(4) − U(4) − Cs
(4)

∥∥∥2

F
+

µ

2

∥∥∥U(4) − Us
(4)

∥∥∥2

F
.

(14)

Here, the third tensor is reformatted to its initial four-dimensional form using the in-
verse operator T −1(·), which is applied to transform the tensor from Ra×b×dt → Ra×b×d×t.
Clearly, U has the following solution:

Us+1
(4) =

(
(η1 + η3 + µ)I + γDTD

)−1(
η1T −1(X s ×3 Qs)(4) + η3

(
O(4) − Cs

(4)

)
+ µUs

(4)

)
.

In this formulation, I ∈ Rt×t represents the identity matrix. Incorporating the box
constraint, we obtain the image component, as detailed below:

Ũ s+1
= Fold4(Us+1

(4) ). (15)

In this context, the matrix is reformatted into a tensor by the operator Fold(4)(·).
The image component U is computed by the box-constraint function U = fbc(O,C, Ũ ).

• Updating the X -subproblem
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The X -subproblem is written as

min
X

η1

2

∥∥∥T (U s+1)−X ×3 Qs
∥∥∥2

F
+

η2

2
∥Ms −X ∥2

F +
µ

2
∥X −X s∥2

F. (16)

Equation (16) yields a closed-form solution, which is given by

X s+1 =
η1T (U s+1)×3 (Qs)T + η2Ms + µX s

η1 + η2 + µ
. (17)

• Updating the C-subproblem

The subproblem C is outlined below.

min
C

λ3 ∑
i

∥∥∥C i
(3)

∥∥∥
2
+

η3

2
∥O −U − C∥2

F +
η4

2
∥N − C∥2

F +
η5

2
∥S − C∥2

F +
µ

2
∥C − Cs∥2

F.

By integrating the last four parts, the presented problem can be equivalently rewritten
as follows:

min
C

λ3 ∑
i

∥∥∥C i
(3)

∥∥∥
2
+

δ + µ

2
∥C −Q∥2

F,

with Q = η3(O−U )+η4N+η5S+µCs

δ+µ and δ = ∑5
i=3 ηi. Subsequently, the C-subproblem can be

dissected into the following constituent subproblems:

min
C ∑

i

(
λ3

∥∥∥C i
(3)

∥∥∥
2
+

γ + µ

2

∥∥∥C i
(3) −Qi

(3)

∥∥∥2

F

)
,

where Qi
(3) is the tube of Q.

Then, the solution of the tube C i
(3) is given by

(Cs+1)i
(3) = max(

∥∥∥Qi
(3)

∥∥∥
2
− λ3

γ + µ
, 0)

Qi
(3)∥∥∥Qi
(3)

∥∥∥
2

, (18)

where we define 0
0 = 1.

• Updating the M-subproblem

The M-subproblem is

min
M

dt

∑
r=1

∥Mr∥∗ +
η2

2

∥∥∥M−X s+1
∥∥∥2

F
+

µ

2
∥M−Ms∥2

F.

By including the two final terms, the aforementioned issue can be transformed into
the following equivalent form:

min
M

dt

∑
r=1

(
∥Mr∥∗ +

η2 + µ

2
∥Mr − Rr∥2

F

)
,

where Rr denotes the frontal slice of R = η2X s+1+µMs

η2+µ corresponding to index r. As a re-
sult, the M-subproblem can be effectively addressed through the following dt subproblems:

min
Mr

∥Mr∥∗ +
η2 + µ

2
∥Mr − Rr∥2

F, r = 1, . . . , dt. (19)
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Each subproblem’s (19) solution can be achieved through the implementation of a
singular value thresholding (SVT) operator, specifically

Ms+1
r = SVT(Rr, 1

η2+µ ) = Udiag(max(σi −
1

η2 + µ
, 0))V T . (20)

In this context, σi represents the ith singular value on Σ. The matrix Rr undergoes
singular value decomposition to yield the matrices U,Σ, and V T .

• Updating the N -subproblem

The N -subproblem is

min
N

λ1 ∑
i

∥∥∥N i
(1)

∥∥∥
2
+

η4

2
∥N − C∥2

F +
µ

2
∥N −N s∥2

F.

By including the two final terms, the aforementioned issue can be written as

min
N

λ1 ∑
i

∥∥∥N i
(1)

∥∥∥
2
+

η4 + µ

2
∥N −F∥2

F,

where F = η4C+µN s

η4+µ . Next, the aforementioned subproblem can be divided into the
following subproblems:

min
N ∑

i

(
λ1

∥∥∥N i
(1)

∥∥∥
2
+

η4 + µ

2

∥∥∥N i
(1) −F i

(1)

∥∥∥2

F

)
.

Then, the solution of the tube of N i
(1) can be obtained:

(N s+1)i
(1) = max

(∥∥∥F i
(1)

∥∥∥
2
− λ1

η4 + µ
, 0
) F i

(1)∥∥∥F i
(1)

∥∥∥
2

. (21)

• Updating the S-subproblem

The S-subproblem is

min
S

λ2 ∑
i

∥∥∥S i
(2)

∥∥∥
2
+

η5

2
∥S − C∥2

F +
µ

2
∥S − S s∥2

F.

Similarly to solving the N -subproblem, we incorporate the last two terms:

min
S

λ2 ∑
i

∥∥∥S i
(2)

∥∥∥
2
+

η5 + µ

2
∥S −B∥2

F,

where B = η5C+µS s

η5+µ . The aforementioned subproblem can be divided into the follow-
ing subproblems:

min
S ∑

i

(
λ2

∥∥∥S i
(2)

∥∥∥
2
+

η5

2

∥∥∥S i
(2) − (Cs+1)i

(2)

∥∥∥2

F
+

µ

2

∥∥∥S i
(2) − (S s)i

(2)

∥∥∥2

F

)
.

Then, the solution of the tube of S i
(2) can be obtained:

(S s+1)i
(2) = max

(∥∥∥Bi
(2)

∥∥∥
2
− λ2

η5 + µ
, 0
) Bi

(2)∥∥∥Bi
(2)

∥∥∥
2

. (22)

• Updating the Q-subproblem

The Q-subproblem is
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min
QT Q=I

η1

2

∥∥∥T (U s+1)−X s+1 ×3 Q
∥∥∥2

F
+

µ

2
∥Q − Qs∥2

F.

The problem can be addressed by solving the following formulation:

min
QT Q=I

η1

2

∥∥∥T (U s+1)−X s+1 ×3 Q
∥∥∥2

F
+

µ

2
∥Q − Qs∥2

F

= min
QT Q=I

η1

2

∥∥∥∥(T (U s+1)
)
(3)

− QXs+1
(3)

∥∥∥∥2

F
+

µ

2
∥Q − Qs∥2

F

= min
QT Q=I

η1

2
Tr

{[(
T (U s+1)

)
(3)

− QXs+1
(3)

]T[(
T (U s+1)

)
(3)

− QXs+1
(3)

]}
+

µ

2
Tr
[
(Q − Qs)T(Q − Qs)

]
= max

QT Q=I
Tr
(

η1

(
T (U s+1)

)
(3)

(Xs+1
(3) )

T + µQs
)

QT .

Here, Tr(·) signifies the trace of a matrix.
This subproblem yields a closed-form solution, which is given by

Qs+1 = ÛV̂ T . (23)

where ÛΣ̂V̂ T = SVD
(

η1

(
T (U s+1)

)
(3)

(Xs+1
(3) )

T + µQs
)

.

We outline the algorithm for cloud detection and removal in Algorithm 1.

Algorithm 1 Tri-fiber-wise sparse collaborative low-rank prior knowledge algorithm.

Input: Multitemporal images contaminated by clouds O and the parameters λ1, λ2, λ3,
ηi(i = 1, . . . , 5), and γ.

1: for s = 1 to maxiter do
2: Update U s+1 by (15);
3: Update X s+1 via (17);
4: Update Cs+1 via (18);
5: Update N s+1 via (21);
6: Update S s+1 via (22);
7: for i = 1 to dt do
8: Update Ms+1

r via (20);
9: end for

10: Update Qs+1 via (23);
11: Check for the convergence. If satisfied, then stop.
12: end for
Output: Image component U .

4. Experiments

In this section, the advantages of our method in cloud detection and removal are inves-
tigated. We evaluated the effectiveness of the sparse function against the TNN [37], ALM-
IPG [20], TVLRSDC [28], and BC-SLRpGS [32] methods. The algorithm was stopped when∥∥∥U s+1 −U s

∥∥∥
F

∥U s∥F
< tol and

∥∥∥Cs+1 − Cs
∥∥∥

F
∥Cs∥F

< tol,

or the number of iterations exceeded maxiter = 2000. The initial values were set to U 0 = 0,
C0 = 0, M0 = 0, S0 = 0, X 0 = 0, N 0 = 0, Q0 = 0, and µ = 0.01. We set tol = 10−5 and
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maxiter = 2000. The experiments were run on Windows 10 and MATLAB (R2017b). This
computer has an Intel Core i7-9700K CPU @ 3.60 GHz with 16 GB of RAM.

4.1. Synthetic Experiments

Initially, we employed multitemporal remote sensing images to showcase the effi-
ciency of our proposed technique in restoring information hidden by cloud cover. We
generated four simulated datasets—Munich, Picardie, France, and Beijing—by extracting
data from the Sentinel-2 (https://earthexplorer.usgs.gov) and Landsat-8 (https://theia.cnes.
fr/atdistrib/rocket/#/home) (accessed on 21 April 2024) collections. The details of these
datasets are comprehensively outlined in Table 2 and visually represented in Figures 2–5.
We refer to the ground sampling distance as GSD. Various types of cloud masks were
applied to these multitemporal images to augment the complexity of the task.

Table 2. Multitemporal remote sensing images for synthetic experiments.

Data Image Size Spectral Temporal GSD Source

Munich 512 × 512 3 4 30 m Landsat-8
Picardie 500 × 500 6 3 20 m Sentinel-2
Beijing 256 × 256 6 4 20 m Sentinel-2
France 400 × 400 7 3 30 m Landsat-8

(a) Jan. 2015 (b) Mar. 2015 (c) Apr. 2015 (d) Aug. 2015

Figure 2. Munich dataset taken by Landsat-8.

(a) 24 Mar. 2021 (b) 01 Mar. 2021 (c) 24 Feb. 2021

Figure 3. Picardie dataset taken by Sentinel-2.

(a) Dec. 2015 (b) Mar. 2016 (c) Aug. 2016 (d) Sep. 2016

Figure 4. Beijing dataset taken by Sentinel-2.

https://earthexplorer.usgs.gov
https://theia.cnes.fr/atdistrib/rocket/#/home
https://theia.cnes.fr/atdistrib/rocket/#/home
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(a) 13 Jun. 2019 (b) 21 May. 2020 (c) 03 Apr. 2020

Figure 5. France dataset taken by Landsat-8.

To rigorously assess the effectiveness of the proposed method, we employ three quanti-
tative metrics, mean PSNR, mean CC [39], and mean SSIM [40], as established benchmarks
for this type of analysis. Superior performance is indicated by higher values across these
metrics. In Table 3, we provide a comprehensive quantitative comparison of our method
against established methods like TNN, ALM-IPG, TVLRSDC, and BC-SLRpGS. The highest
values of PSNR, CC, and SSIM are indicated in bold for clear distinction. Our method
consistently surpasses the comparative methods in PSNR across all datasets. Regarding
SSIM, our method displays a slight disadvantage compared to the BC-SLRpGS method in
the Munich dataset and to the ALM-IPG method in the Picardie dataset, highlighting areas
for further improvement.

Table 3. Quantitative metrics for simulated data. Highest values are emphasized in bold.

Dataset Index
Method

Observed TNN ALM-IPG TVLRSDC BC-SLRpGS Proposed

Munich
PSNR 4.29 26.66 23.26 26.23 27.81 29.6
SSIM 0.4769 0.8344 0.8462 0.8385 0.8506 0.8496
CC 0.154 0.8897 0.841 0.8545 0.9013 0.9184

Picardie
PSNR 4.56 42.89 43.49 37.33 43.35 44.06
SSIM 0.543 0.987 0.9924 0.9493 0.9899 0.9918
CC 0.0904 0.9397 0.9509 0.7558 0.9421 0.9514

Beijing
PSNR 5.84 36.71 38.34 36.14 38.88 39.58
SSIM 0.6182 0.9379 0.9608 0.949 0.9622 0.9638
CC 0.0196 0.9384 0.9646 0.9287 0.9689 0.9729

France
PSNR 6.28 28.31 28.32 27.09 29.56 30.14
SSIM 0.6224 0.7947 0.8001 0.8049 0.8488 0.8536
CC 0.2398 0.9603 0.9582 0.9194 0.9661 0.9697

To provide a more intuitive comparison of the methods’ performance, we detail the
cloud removal results in Figures 6–9. These figures include zoomed-in patches and corre-
sponding residual images for a more nuanced comparison. Our method and BC-SLRpGS
successfully reconstructed most cloud information in the Munich dataset, whereas other
methods introduced distortions in image details. In the Picardie dataset, the TVLRSDC
method was unable to adequately reconstruct cloud regions, in contrast to TNN, ALM-
IPG, BC-SLRpGS, and our proposed method, which yielded satisfactory results. Notably,
the TNN and ALM-IPG methods necessitate a predefined cloud mask, potentially incorpo-
rating additional information into the reconstruction process. Our method produced darker
residual images, as seen at the bottom of Figures 6 and 7, signifying a closer similarity to
cloud-free images and, thus, more effective cloud removal.
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Original Observed TNN ALM-IPG TVLRSDC BC-SLRpGS Proposed

Figure 6. The outcomes of cloud removal using various methods on the Munich dataset. The
corresponding zoomed-in patches accompanying each image are depicted at the bottom.

Original Observed TNN ALM-IPG TVLRSDC BC-SLRpGS Proposed

Figure 7. The outcomes of cloud removal using various methods on the Picardie dataset. The
corresponding zoomed-in patches accompanying each image are depicted at the bottom.

The exceptional performance of our method can be attributed to our effective utiliza-
tion of the sparse structure of mode-1, -2, and -3 fibers. For the Beijing dataset, our method,
along with ALM-IPG and BC-SLRpGS, achieved promising outcomes, outperforming TNN
and TVLRSDC methods, which were visually inferior. The zoomed-in views in Figure 8
further substantiate our method’s clarity and precision in reconstructing more detailed
and clearer images compared to other methods. For the France dataset, as illustrated
in Figure 9, all tested methods failed to achieve promising results, primarily due to the
dataset’s intricate details that defy reconstruction through global correlations. Nonetheless,
our method yielded notably clearer outcomes compared to the others and demonstrated
superior accuracy in cloud mask detection relative to BC-SLRpGS.
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Original Observed TNN ALM-IPG TVLRSDC BC-SLRpGS Proposed

Figure 8. The outcomes of cloud removal using various methods on the Beijing dataset. The corre-
sponding zoomed-in patches accompanying each image are depicted at the bottom.

Original Observed TNN ALM-IPG TVLRSDC BC-SLRpGS Proposed

Figure 9. The outcomes of cloud removal using various methods on the France dataset. The corre-
sponding zoomed-in patches accompanying each image are depicted at the bottom.



Remote Sens. 2024, 16, 1518 15 of 18

4.2. Real Experiments

Two real datasets, namely, the Eura and Morocco data, as outlined in Table 4 and
visualized in Figures 10 and 11, were used to assess the efficacy of our method. The recon-
structed results for the Eura and Morocco datasets using various methods are depicted
in Figures 12 and 13, respectively. From Figure 12, it is evident that the TNN, ALM-IPG,
and TVLRSDC methods are unsuccessful in effectively removing the clouds and reconstruct-
ing cloud information. Conversely, both BC-SLRpGS and the proposed method exhibit
similar performance in this aspect. From the zoomed-in figures presented in Figure 12,
it is evident that our method delivers smoother results and captures a greater amount of
detail in comparison to the BC-SLRpGS method. As shown by the visual comparisons in
Figure 13, our method demonstrates enhanced performance compared to the other meth-
ods. From temporal node 1 in Figure 13, the proposed method effectively eliminates the
cloud, while the result of TVLRSDC still exhibits some discrete clouds. Furthermore, as
displayed in the zoomed-in figure in Figure 13, our method produces a clearer reconstruc-
tion result than the other compared methods. From temporal node 2 in Figure 13, we find
that the proposed method removes the cloud areas well and can preserve the cloud-free
areas, whereas the TNN and ALM-IPG methods change the cloud-free information after the
reconstruction process. In conclusion, the proposed method outperforms other methods in
terms of both quantitative metrics and visual quality.

Table 4. Multitemporal remote sensing images for real experiments.

Data Image Size Spectral Temporal GSD Source

Eure 400 × 400 4 4 10 m Sentinel-2
Morocco 600 × 600 4 4 10 m Sentinel-2

(a) Aug. 2017 (b) May. 2017 (c) Jan. 2017 (d) Oct. 2016

Figure 10. Eure dataset taken by Sentinel-2.

(a) 22 Aug. 2020 (b) 27 Aug. 2020 (c) 17 Aug. 2020 (d) 01 Sep. 2020

Figure 11. Morocco dataset taken by Sentinel-2.
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Observed TNN ALM-IPG TVLRSDC BC-SLRpGS Proposed

Figure 12. The outcomes of cloud removal using various methods on the Eure dataset. The second
row in each image represents the zoomed-in details associated with the images above.

Observed TNN ALM-IPG TVLRSDC BC-SLRpGS Proposed

Figure 13. The outcomes of cloud removal using various methods on the Morocco dataset. The
second row in each image represents the zoomed-in details associated with the images above.

5. Conclusions

We have introduced a novel tri-fiber-wise sparse function to characterize the cloud
component. By leveraging sparse prior information, our method excels at detecting clouds
and effectively reconstructing contaminated values, providing robust results. Moreover,
we described the global prior of the image component by tensor multi-rank. Utilizing the
introduced novel sparse and low-rank functions, we have developed a cloud removal model
that incorporates a box-constrained strategy. This model not only effectively detects clouds
but also simultaneously estimates missing information. The experiments demonstrate the
superior effectiveness of the proposed method to other cloud removal techniques.
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