
Citation: Gao, G.; Chen, Y.; Feng, Z.;

Zhang, C.; Duan, D.; Li, H.; Zhang, X.

R-LRBPNet: A Lightweight SAR

Image Oriented Ship Detection and

Classification Method. Remote Sens.

2024, 16, 1533. https://doi.org/

10.3390/rs16091533

Academic Editor: Piotr Samczynski

Received: 1 March 2024

Revised: 1 April 2024

Accepted: 8 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

R-LRBPNet: A Lightweight SAR Image Oriented Ship Detection
and Classification Method
Gui Gao 1, Yuhao Chen 1,*, Zhuo Feng 1, Chuan Zhang 1, Dingfeng Duan 1, Hengchao Li 1 and Xi Zhang 2

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,
Chengdu 611756, China; dellar@126.com (G.G.); 2021212036@my.swjtu.edu.cn (Z.F.);
zhang_chuan@my.swjtu.edu.cn (C.Z.); dingfengduan@swjtu.edu.cn (D.D.); lihengchao_78@163.com (H.L.)

2 Laboratory of Marine Physics and Remote Sensing, First Institute of Oceanography, Ministry of Natural
Resources, Qingdao 266061, China; xi.zhang@fio.org.cn

* Correspondence: 2021201333@my.swjtu.edu.cn

Abstract: Synthetic Aperture Radar (SAR) has the advantage of continuous observation throughout
the day and in all weather conditions, and is used in a wide range of military and civil applications.
Among these, the detection of ships at sea is an important research topic. Ships in SAR images are
characterized by dense alignment, an arbitrary orientation and multiple scales. The existing detection
algorithms are unable to solve these problems effectively. To address these issues, A YOLOV8-based
oriented ship detection and classification method using SAR imaging with lightweight receptor field
feature convolution, bottleneck transformers and a probabilistic intersection-over-union network (R-
LRBPNet) is proposed in this paper. First, a CSP bottleneck with two bottleneck transformer (C2fBT)
modules based on bottleneck transformers is proposed; this is an improved feature fusion module
that integrates the global spatial features of bottleneck transformers and the rich channel features of
C2f. This effectively reduces the negative impact of densely arranged scenarios. Second, we propose
an angle decoupling module. This module uses probabilistic intersection-over-union (ProbIoU) and
distribution focal loss (DFL) methods to compute the rotated intersection-over-union (RIoU), which
effectively alleviates the problem of angle regression and the imbalance between angle regression
and other regression tasks. Third, the lightweight receptive field feature convolution (LRFConv) is
designed to replace the conventional convolution in the neck. This module can dynamically adjust
the receptive field according to the target scale and calculate the feature pixel weights based on the
input feature map. Through this module, the network can efficiently extract details and important
information about ships to improve the classification performance of the ship. We conducted extensive
experiments on the complex scene SAR dataset SRSDD and SSDD+. The experimental results show
that R-LRBPNet has only 6.8 MB of model memory, which can achieve 78.2% detection accuracy,
64.2% recall, a 70.51 F1-Score and 71.85% mAP on the SRSDD dataset.

Keywords: Synthetic Aperture Radar (SAR); ship detection and classification; complex scenes; multi-
head self-attention; probabilistic intersection-over-union (ProbIoU); light weight; decoupled header

1. Introduction

Synthetic Aperture Radar (SAR) is an active remote sensing imaging technology that
uses radar signals and signal processing techniques to acquire surface images [1,2]. SAR
has the characteristics of being influenced little by the weather and light conditions, being
able to strongly penetrate hidden targets and being able to perform all-weather work. As a
result, the detection of ships at sea using SAR imagery has been widely studied.

In maritime monitoring, ship detection and classification are very important tasks.
Accurate positioning and identification make it easier for relevant departments to carry
out proper planning and resource allocation in terms of the military, transportation and
maintenance of order. However, the cloudy and rainy weather at sea and the characteristics
of SAR imagery make the detection and classification of ships using SAR images a major
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challenge. At present, there are many methods of ship detection for SAR imagery that
aim to meet this challenge. Traditional ship detection methods mainly include CFAR [3],
template matching, and trailing edge detection. These methods are based on manually
designed features for ship detection in SAR images with limited robustness. For example,
the Constant False Alarm Rate (CFAR) estimates the statistical data of background clutter,
adaptively calculates the detection threshold and maintains a constant false alarm probabil-
ity. However, its disadvantage is that the determination of the detection threshold depends
on the distribution of sea clutter. The template matching and trailing edge detection [4,5]
algorithm is too complex and has poor stability, which is not suitable for wide application.

Convolutional Neural Network (CNN)-based methods have shown great potential in
computer vision tasks in recent years [6–13]. Therefore, in order to improve the stability
of SAR ship detection methods in complex scenes, deep learning methods have gradually
become the focus of SAR image detection research. The YOLO [6,11] series of one-stage
detection algorithms are widely used in SAR image detection due to their high speed
and accuracy. For example, Sun et al. [14] proposed a YOLO framework that fuses a new
bi-directional feature fusion module (bi-DFM) for detecting ships in high-resolution SAR
imagery. A SAR ship detector called DB-YOLO [15] was proposed by Zhu et al. The
network enhances information fusion by improving the cross-stage submodule to achieve
the accurate detection of small targets. Guo et al. [16] proposed a SAR ship detection method
based on YOLOX, which was verified by a large number of experimental results in order
to effectively and accurately detect ships in cruise. In summary, since most of the objects
in SAR images are characterized by a dense arrangement, an arbitrary angle and multiple
scales, this brings three major challenges to SAR image ship detection and classification
based on the YOLO method. Although there has been much research on CNN-based SAR
ship detection and classification, we still need to solve the following challenges.

(1) The first challenge is the difficulty of detecting densely arranged ship targets. The
distribution of ships in complex scenarios, especially in-shore scenarios, is not random and
they tend to be highly concentrated in certain areas. Vaswani et al. [17] confirmed that
multi-head self-attention (MHSA) captures relationships between targets. Naseer et al. [18]
demonstrated that MHSA is also effective in reducing the interference of background noise
and some occlusions. Therefore, modelling each part of the image and the relationships
between them using attentional mechanisms is crucial for ship detection. Zhu et al. [19]
introduced MHSA into the backbone network and detection head of YOLO. Li et al. [20]
designed an MHSA that makes full use of contextual information. Aravind et al. [21]
proposed a new bottleneck module by replacing the 3 × 3 convolution with an MHSA
module. The cross-stage partial (CSP) bottleneck transformer module was proposed by
Feng et al. [22] to model the relationships between vehicles in UAV images. Yu et al. [23]
proposed a transformer module in the backbone network to improve the performance of
detectors in sonar images. However, most of these detectors do not take into account the
spatial distribution characteristics of ships.

(2) The second challenge is the rotated bounding box. The orientation of the ship
leads us to the need to predict angle information. There are three methods commonly used
to define a rotated bounding box, namely the opencv definition method, the long-edge
definition method and the ordered quadrilateral definition method. Figure 1 illustrates the
definition details. The opencv method and the long-edge method are both five-parameter
(x, y, w, h, θ) definition methods, where (x, y) are the coordinates of the centre and (w, h) are
the length and width of the rotated bounding box. The difference is that the angle θ in the
opencv method is the acute angle made by the box with the x-axis, and this side of the box is
denoted as w, and the other side is denoted as h, so that the angle is expressed in the range
[−90, 0). The angle θ in the long-side method is the angle made by the long side h of the box
with the x-axis, so the angle is expressed in the range [−90, 90). The ordered quadrilateral
definition method (x1, y1, x2, y2, x3, y3, x4, y4) takes the leftmost point as the starting point
and orders the other points counterclockwise. The periodicity of angular (PoA) and the
exchangeability of edges (EoE) can lead to angle predictions outside of our defined range.
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As a result, a large loss value is generated, triggering the boundary discontinuity problem,
which affects training. These different methods share the same boundary problem. Since
targets with large aspect ratios, such as ships, are very sensitive to changes in angle, it is
of great interest to study the boundary problem. Figure 2 shows the boundary problem
for the opencv method and the long-edge method. The ideal angle regression path in the
opencv method is a counter-clockwise rotation from the blue box to the red box. However,
there are two problems with PoA and EoE in the opencv-based approach due to the
definition of w, h , and θ. These two problems can lead to very high losses following this
regression. Therefore, the model is only regressed in a clockwise direction. This regression
method definitely increases the difficulty of the regression. The long-edge method can
also be affected by PoA, resulting in a sudden increase in the loss value. To solve these
problems, Yang et al. [24] proposed the Circular Label Smoothing (CSL) method, which
turns angles into 180 categories for training. CSL was then further developed into the
Densely Coded Label (DCL) method [25]. The DCL method mainly improves the number
of prediction layers and the performance in square-like target detection. However, at the
same time, the authors also point out that converting angles to classifications leads to
an increase in theoretical errors and the number of model parameters. Subsequently, the
Gaussian Wasserstein Distance (GWD) method was proposed by Yang et al. [26]. This
method converts the rotating bounding box into a two-dimensional Gaussian distribution
and uses the GWD to calculate the distance between the two Gaussian distributions. The
authors use this distance value to reflect the similarity between two rotating bounding
boxes, thus solving the problem of the Rotating Intersection-over-Unions (RIoU) not being
differentiable. Yang et al. [26] proposed the use of Kullback–Leibler Divergence (KLD)
instead of GWD to calculate the distance. Unlike Smooth L1 Loss and GWD Loss, KLD Loss
is scale invariant and its center is not slightly displaced, allowing high-precision rotation
detection. M. Llerena et al. [27] proposed a new loss function, the Probabilistic Intersection-
over-Union (ProbIoU) loss function, which uses the Hellinger distance to measure the
similarity of targets. Yang et al. [28] proposed the Kalman Filtering Intersection-over-
Unions (KFIoU), which uses the idea of Gaussian multiplication to solve the problem of
inconsistency between the metric and the loss function. Calculating the RIoU between two
rotating bounding boxes has become the most important problem in rotation ship detection.
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Figure 1. Three methods of defining a rotating bounding box. (a) The opencv definition method;
(b) the long–edge definition method; (c) the ordered quadrilateral definition method. where a–d in
different colours represent the coordinates of the four corner points of the horizontal and rotating
bounding boxes, respectively.
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(3) The third challenge is that there are still few methods to solve the problem of
simultaneous SAR ship detection and SAR ship classification. Zhang et al. [29] proposed a
polarization fusion network with geometric feature embedding (PFGFE-Net) to alleviate
the problem of polarization, insufficient utilization and traditional feature abandonment.
Zhang et al. [30] proposed a multitask learning framework. The framework achieves better
deep-feature extraction by integrating the dense convolutional networks. Zhang et al. [31]
proposed a pyramid network with dual-polarization feature fusion for ship classification
in SAR images. The network uses the attention mechanism to balance the features and
performs dual-polarization feature fusion to effectively improve the ship classification
performance. Zhang et al. [32] incorporated the traditional histogram of oriented gradient
(HOG) feature into the ship classification network. The method fully exploits the potential
of mature handcrafted features and global self-attention mechanisms, and achieves excel-
lent results on the OpenSARShip dataset. All of these networks achieve the classification of
SAR ships, but do not enable SAR ship detection. Part of the reason for this phenomenon is
that SAR images contain a large amount of complex background information and multi-
scale feature targets, making ship detection and classification extremely difficult. Another
reason is the lack of a suitable dataset. Most of the existing research methods are based
on ship detection datasets such as SSDD [33], AirSARship [34], HRSID [35] and LS-SSDD-
v1.0 [36]. These datasets have limitations in terms of data quality and target labelling.
The development of ship detection and classification is hampered by these conditions.
Lei et al. [37] published a high-resolution SAR ship detection dataset (SRSDD). The dataset
contains six categories of ships in complex scenarios and can be used for rotating target
detection and category detection. Jiang et al. [38] proposed a feature extraction module,
a feature context aggregation module, and a multi-scale feature fusion module. These
modules improve the detection of small objects in complex backgrounds via the fusion of
multi-scale features and contextual information mining, and have achieved good perfor-
mance on the SRSDD. Zhang et al. [39] proposed a YOLOV5s-based ship detection method
for SAR images. This network attempts to incorporate frequency domain information into
the channel attention mechanism to improve the detection and classification performance.
Shao et al. [40] proposed RBFA-Net for the rotational detection and classification of ships
in SAR images. Although the above methods have made some progress in integrating ship
detection and classification research, there is still room for improvement in terms of model
performance and model size.

In order to address the above problems, a YOLOV8-based oriented ship detection and
classification method for SAR images is proposed with lightweight receptor field feature
convolution, bottleneck transformers and probabilistic intersection-over-union network
(R-LRBPNet). The main objective of the network is to achieve the accurate detection
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and classification of ships while keeping the network lightweight. Firstly, our proposed
C2fBT module is able to better extract integrated channel and global spatial features.
Secondly, the R-LRBPNet presents an angle-decoupling module. In R-LRBPNet, the input
feature maps are tuned for regression and classification tasks, respectively. The fast and
accurate regression of angles is achieved using the ProbIoU + Distribution Focal Loss
(DFL) [41] approach at the decoupling head. Finally, in the feature fusion stage, our
proposed lightweight receptor field feature convolution (LRFConv) is used to improve
the sensitivity of the network to multi-scale targets and its ability to discriminate between
complex and detailed information, thus improving the network’s ability to classify ships.

The main contributions are as follows:

• A feature fusion module C2FBT is proposed. The module uses global spatial infor-
mation to alleviate the problem of difficult detection due to the high density of ships.
R-LRBPNet is proposed for SAR ship detection and classification.

• A separate angle-decoupling head and ProbIoU + DFL angle loss function are pro-
posed. The model is effective in achieving accurate angle regression and reducing the
imbalance between the angle regression task and other tasks.

• The LRFConv is proposed in R-LRBPNet. This module improves the network’s sensi-
tivity to multi-scale targets and its ability to extract important detailed information.

• A large number of experiments on the SRSDD dataset show that our R-LRBPNet is
able to accurately detect and classify ships compared to 13 other networks.

The remainder of this paper is organized as follows. In Section 2, we propose the
overall framework of the model and introduce the methodology. The experiments are
described in Section 3. In Section 4, we analyze the results of the comparison experiment
and ablation experiment. Finally, Section 5 summarizes the paper.

2. Proposed Methods
2.1. Overview of the Proposed Model
2.1.1. Model Structure

The R-LRBPNet is designed on the basis of YOLOV8n. Its network structure is shown
in Figure 3. The model structure is mainly divided into three parts: the backbone, neck and
decoupling head.
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• Backbone

The original backbone consisted of five convolutional modules, four C2f modules and a
Spatial Pyramid Pooling—Fast (SPPF) module. The C2f block adopts a multi-gradient path
strategy to diversify the depth of the model and improve its ability to perceive and learn
from different features. In our network, in order to enhance the feature extraction capability
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of the backbone network, we have designed a new C2fBT module based on a transformer
to replace the original C2f module. There have been relevant experiments proving [42]
that the encoder part of the transformer only needs to handle high-level semantic features.
The last layer of the backbone network has a feature map with a smaller size. Therefore,
we add C2fBT to the last layer of the backbone. The following ablation experiments with
C2fBT demonstrate that the module improves performance while reducing the number of
model parameters.

• Neck

A path aggregation network (PAN) and feature pyramid network (FPN) constitute
the neck. The original neck consists of four C2f modules, two convolutional modules, two
upsampling and four Concat modules. The first C2f module in the neck is replaced with
C2fBT and the first two convolution modules are replaced with our LRFConv. LRFConv
is used to enhance the ability of the feature fusion phase network to extract the complex
and detailed information contained in the feature maps and to adaptively extract the focal
features of multi-scale targets. The reason for designing this structure will be given in the
ablation experiments.

• Head

The R-LRBPNet proposes an angle prediction branch in order to solve the multi-
angle problem of ship detection. Most current rotating frame detection models predict
(x, y, w, h, θ) directly in a regression branch. There is experimental [43] evidence that
the features required to predict θ are different from those required to predict (x, y, w, h).
Therefore, we design a decoupled angle prediction head to predict θ. The decoupled head
consists of two convolution layers and is very light. The structure of the decoupling head
is shown in Figure 3.

2.1.2. Algorithmic Process

We first feed the image into the backbone network and extract the main features
through the backbone network. The neck structure then uses the PAN to deliver the
high-level semantic information to the low-level feature map and uses the FPN module to
transfer the low-level feature information to the high-level feature map. The feature maps
are then fed into the detection head to provide the required information for the different
stages of the classification and regression tasks. Multi-task loss is calculated in the training
phase. For angle branching, the loss is calculated using ProbIoU + DFL. During testing,
non-maximization suppression (NMS) is used to build the detection predictions.

2.2. C2fBT

It is well known that the distribution of ships in SAR images is not regular, especially in
in-shore contexts where ships are often densely arranged. In its high-level semantic feature
map, some feature pixels represent ship location and category information, some represent
important environmental information related to these ships, and some are irrelevant.
The MHSA is a deep learning model based on a self-attention mechanism. It is able
to automatically capture the dependencies between sequences when processing input
sequences, leading to a better understanding of the contextual information and improved
model performance. By applying MHSA to high-level semantic feature maps, the potential
spatial relationships between different pixel features can be efficiently computed.

The self-attention mechanism is a core component of MHSA. The self-attention mecha-
nism assigns weights to each element in an input sequence by computing the relevance of
a query, key and value. Specifically, given an input sequence, it is mapped to the query, key
and value vector space, then the associativity distribution is obtained by calculating the
inner product of the query with all the keys, and then the associativity is multiplied and
summed with the value vector to obtain the final self-attentive representation.

In order to improve the network’s spatial feature extraction capability in high-resolution
SAR images of complex scenes, in this paper, a new global spatial information attention
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module (C2fBT) is designed; this is inspired by the C2f structure and MHSA in BotNet
[BOT], and is obtained by integrating the MHSA into C2f. The C2fBT structure and the BoT
structure are shown in Figures 4a and 4b, respectively.
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C2fBT is a hybrid model that uses convolution and MHSA. The structure computes
queries Q, keys K, values V and their positional parameters by three 1 × 1 convolutions.
The formulae are as follows:

Qh = XWq
h , Kh = XWk

h , Vh = XWv
h (1)

where Wq
h , Wk

h , and Wv
h are linear transformations of the input matrix X to Q, K, and V.

The output of the head Oh can be expressed as follows:

Oh = Softmax

QhKT
h + SH

h + SW
h√

dh
k

Vh, (2)

where SH
h , SW

h ∈ RHW×HW are the logarithmic matrices of the relative positions along the
height and width dimensions, and dh

k is the dimension of keys in head h. The relative
position matrix SH

h [i, j] and SW
h [i, j] are defined as follows:

SH
h [i, j] = qT

i rH
jy−iy (3)

SW
h [i, j] = qT

i rW
jx−ix

(4)

where qi is the i-th row of queries Q, and rH
jy−iy and qT

i rW
jx−ix

are relative positional embed-
dings for height and width.

Overall, the C2fBT structure we have designed not only enriches the input information
of the Concat operation, but also uses the global attention mechanism to process and
aggregate the information contained in the convolutionally captured feature maps.
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2.3. Decoupled Angle Prediction Head and ProbIoU Loss

There are relevant experiments [44] demonstrating the existence of an imbalance
between the two tasks of classification and regression. However, we hypothesize that
even in the same regression task, there is still a task imbalance. Therefore, to validate this
hypothesis, this module designed two different regression branches to regress (x, y, w, h)
and θ, respectively. The ablation experiments proved the effectiveness of the structure
we designed.

The main difference between horizontal bounding box (HBB) and oriented bounding
box (OBB) detection is that the computation of RIOU in OBB is not microscopic, resulting
in the network not being trained. Therefore, achieving the accurate regression of the angle
becomes the most important problem in rotation detection. The CSL and DCL method
is widely used in current YOLO-based angle prediction methods due to its structural
simplicity. However, the disadvantage of CSL and DCL is that it suffers from theoretical
errors, as well as an increase in the number of model parameters and computational
complexity. To address this current problem, ProbIoU is used to approximate the RioU
between two rotated bounding boxes.

The Bhattacharyya Coefficient (BC) is used in ProbIoU to calculate the degree of
overlap between the Gaussian distributions of the two rotated bounding boxes, and the BC
between the two probability density functions p(x) and q(x) is defined as follows:

BC(p, q) =
∫

R2

√
p(x)q(x)dx (5)

where BC(p, q) ∈ [0, 1]. This coefficient measures the degree of overlap between two
distributions. The value of BC(p, q) is 1 only if the two distributions are identical. The
Bhattacharyya distance (BD) is defined to calculate the degree of similarity between two
Gaussian distributions:

BD(p, q) =−lnBC(p, q) (6)

Equation (6) provides an estimate of the similarity between p, q. BC and BD are
inversely related. We assume that the Gaussian distributions of the two rotated bounding
boxes are p ∼ N (µ1, Σ1), q ∼ N (µ2, Σ2):

µ1 =

(
x1

y1

)
, Σ1 =

[
a1 c1
c1 b1

]
, µ2 =

(
x2

y2

)
, Σ2 =

[
a2 c2
c2 b2

]
(7)

We can then obtain a closed-form expression for BD given by the following:

BD =
1
8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1
2

ln
(

detΣ√
detΣ1detΣ2

)
, Σ =

1
2
(Σ1 + Σ2) (8)

Then, µ1 and µ2 are brought into the above equation, and BD is disassembled to obtain
B1 and B2:

B1 =
1
4
(a1 + a2)

(
y1 − y2)

2 + (b1 + b2)
(
x1 − x2)

2 + 2(c1 + c2)(x2 − x1)(y1 − y2)

(a1 + a2)(b1 + b2)− (c1 + c2)2 (9)

B2 =
1
2

ln

 (a1 + a2)(b1 + b2)−
(
c1 + c2)

2

4
√(

a1b1 − c2
1
)(

a2b2 − c2
2
)

 (10)

where BD = B1 + B2, BC = e−BD . B1 and B2 can be controlled by different hyperparameters
to control their weight sizes. However, BD does not satisfy the triangle inequality, so it
cannot be used to represent the true distance. The Hellinger distance has been used as an
alternative to BD to compute the true distance metric:

HD(p, q) =
√

1 − Bc(p, q) (11)
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where 0 ≤ HD(p, q) ≤ 1. This method allows the distance metric to be converted into a
function of the Gaussian distribution parameters for ease of calculation. The Gaussian
Bounding Boxes (GBBs) regressed by a network are defined as p = (x1, y1, a1, b1, c1) and
the ground truth bounding box is defined as q = (x2, y2, a2, b2, c2). The loss function of
ProbIoU should be as follows:

L1(p, q) = HD(p, q) = 1 − ProbIoU(p, q) ∈ [0, 1] (12)

L2(p, q) = BD(p, q) = −ln
(

1 −L2
1(p, q)

)
∈ [0, ∞] (13)

where a large distance between two Gaussian distributions in L1(p, q) can lead to the prob-
lem of too-slow convergence during network training. L2(p, q) is not a good representation
of the relationship with the IoU. Therefore, our training pattern is to train first with L2(p, q)
and then with L1(p, q) as the distance gets closer.

But there is another problem with using ProbIoU Loss as the regression loss. To
compute ProbIoU Loss, the rotated bounding box is converted to a GBB. If the rotated
bounding box is approximately square, the direction of the GBB is inherited from the ellipse,
making it impossible to determine the direction of the rotating bounding box. The DFL
Loss function is used to solve this problem. Specifically, the DFL discretizes the angle using
a predetermined even interval δ, which is subjected to an integration operation to obtain
the predicted angle value θ:

θ = Σ90
i=0 piiδ (14)

where pi denotes the probability of the angle falling in each interval.

2.4. Lightweight Receptive Field Feature Convolution

The LRFConv module is designed to improve the ability to extract detailed and com-
plex information from SAR images. The module is designed based on RFAConv [45]. The
distinguishing feature of traditional convolutional operations is the use of a convolutional
kernel with shared parameters to extract features. Shared parameters cause the convolu-
tion to process each pixel equally, without taking into account the different importances
of each pixel. We therefore replace some of the traditional convolution operations with
LRFConv. This structure adjusts the weights of feature pixels within different sensory fields
to highlight the details and complex information needed for important ship classification.
The LRFConv structure is shown in Figure 5.
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In LRFConv, the introduction of Receptive-Field Attention (RFA) allows the network to
focus on the importance of features within different receptive fields and prioritize features
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in the receptive field space. The implementation of this attention mechanism is based on
two main parts: the extraction of the receptive field space features and the generation of the
attention graph. The first part concerns the generation of the attention map. The process
is as follows: first, an average pooling operation is performed on the input feature map
to preserve the global information in the feature map and to aggregate the information
from all receptive fields. Second, a deep convolution [46] is performed on the feature map
to facilitate the interaction of information within each receptive field. Then, the weights
of each pixel feature within the receptive fields are adjusted using the SoftMax function
to generate its corresponding attention weight map for each receptive field feature map.
The second part is the generation of the receptive field spatial feature maps. The receptive
field spatial feature is specifically designed for convolutional kernels and is dynamically
generated based on the kernel size. The map is obtained by transforming the original
feature map through non-overlapping sliding windows. Each sliding window represents
a receptive field slider whose size can be dynamically adjusted according to the size of
the convolutional kernel. In this way, the network is able to generate receptive field
spatial features of the appropriate size according to the size of the convolution kernel. We
obtain the receptive field spatial feature map by performing a series of 3 × 3 convolution
operations on the input feature map. Finally, the feature maps with rich receptive field
information are fused with the obtained weighted feature maps. Different weights are
assigned to each receptive field location and feature channel using the receptive field weight
matrix to highlight important detailed features. And the size of the output feature map is
adjusted to obtain the final output.

In LRFConv, the introduction of Receptive-Field Attention (RFA) allows the network to
focus on the importance of features within different receptive fields and prioritize features
in the receptive field space. The implementation of this attention mechanism is based on
two main parts: the extraction of the receptive field space features and the generation of the
attention graph. The first part concerns the generation of the attention map. The process
is as follows: first, an average pooling operation is performed on the input feature map
to preserve the global information in the feature map and to aggregate the information
from all receptive fields. Second, a deep convolution [46] is performed on the feature map
to facilitate the interaction of information within each receptive field. Then, the weights
of each pixel feature within the receptive fields are adjusted using the SoftMax function
to generate its corresponding attention weight map for each receptive field feature map.
The second part is the generation of the receptive field spatial feature maps. The receptive
field spatial feature is specifically designed for convolutional kernels and is dynamically
generated based on the kernel size. The map is obtained by transforming the original
feature map through non-overlapping sliding windows. Each sliding window represents
a receptive field slider whose size can be dynamically adjusted according to the size of
the convolutional kernel. In this way, the network is able to generate receptive field
spatial features of the appropriate size according to the size of the convolution kernel. We
obtain the receptive field spatial feature map by performing a series of 3 × 3 convolution
operations on the input feature map. Finally, the feature maps with rich receptive field
information are fused with the obtained weighted feature maps. Different weights are
assigned to each receptive field location and feature channel using the receptive field weight
matrix to highlight important detailed features. And the size of the output feature map is
adjusted to obtain the final output.

The LRFConv calculation can be expressed as follows:

F = So f tmax
(

DW1×1(AvgPool( fx))
)
× ReLU

(
Norm

(
gk×k( fx)

))
= Ar f × Fr f (15)

where gx×x represents a grouping convolution of size x × x, DW represents the DWConv, k
represents the convolution kernel size, fx represents the input feature map, Ar f represents
the pixel feature weight map, Fr f represents a map of spatial features in the receptive field
and F represents the final output.
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Overall, our LRFconv has two advantages. First, it can dynamically adjust the size
of the receptive field according to the size of the convolutional kernel and generate the
corresponding spatial feature maps of the receptive field. For example, a large receptive
field is generated for large ships such as cargo ships and oil tankers to capture global
features, and a small receptive field is generated for small-scale fishing ships to capture
local detail information. Second, it can assign different weights to each receptive field
location and feature channel, and use this method to obtain the required detailed features.
These advantages can help our network to achieve accurate ship classification.

3. Experiments
3.1. Datasets

We chose to perform our ship detection and classification experiments on the SRSDD-
v1.0 dataset. All raw SAR images in this dataset are from the GF-3 satellite at 1 m resolution
in SL mode, and the original 30 panoramic images are cropped to 666 images containing
2884 ships at 1024 × 1024, with rotated bounding box labels. In the SRSDD, in-shore scenes
accounted for 63.1% and off-shore scenes accounted for 36.9%. The number of images
containing land was 420, including 2275 ships. The number of images containing only
sea is 246, with 609 ships. In total, the dataset contains six different categories, including
container ships, fishing ships, bulk cargo ships (cell-container ships), ore–oil ships, dredger
ships and law enforcement ships. The dataset also suffers from certain category imbalance
problems, which can lead to higher requirements for the detection algorithms. The exact
distribution of the data is shown in Figures 6 and 7.
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The SSDD+ dataset is composed of 1160 SAR images containing 2456 ship targets,
all of which are rotationally labelled in the SSDD+ dataset. The images are derived from
multi-scale ship slices from the RADARSAT-2, TerraSAR-X and Sentinel-1 satellites, with
image resolutions ranging from 1 m to 15 m. The SSDD+ dataset is divided into training
and validation sets according to an 8:2 ratio. We chose the SSDD+ dataset to verify the
generalization of R-LRBPNet.
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3.2. Experimental Details

The experimental environment was the pytorch 1.8.0 deep learning framework based
on python3.9, the test and validation environment was the ubuntu18.04 system, and the
model performance evaluation was performed on 8 GB NVIDIA GeForce RTX 3070 GPUs
with CUDA11.4 and CUDNN accelerated training. To ensure the fairness of the experiments,
the comparison experiments were performed using the MMRotate [47] toolbox.

In this paper, the stochastic gradient descent (SGD) optimizer is used for training. The
image input size is set to 1024 × 1024 for the SRSDD dataset and 512 × 512 for the SSDD+
dataset. The network has the same parameters except for the input image resolution. The
network batch size is 8, the epoch is 500, the learning rate is 0.01, and the momentum and
weight decay rates are 0.0005 and 0.8, respectively. The detection IOU threshold is set to 0.5
for the test, and all other parameters are adopted as default.

3.3. Evaluation Metrics

To validate the model performance, we used Precision, Recall, the mean average preci-
sion (mAP), F1score and model size as evaluation metrics to evaluate different models in
our experiments. The Recall, Precision and average precision are defined as follows:

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

AP =
∫ 1

0
P(R)dR (18)

mAP =
1
k

k

∑
i=1

APi (19)

where TP stands for true positives and indicates the number of samples correctly classified
as positive samples, TP stands for false positives and indicates the number of samples incor-
rectly classified as positive samples, FN stands for false negatives and indicates the number
of samples incorrectly classified as negative samples and P(R) is the precision–recall curve.
Precision and recall are both reflected in the F1score, with the following equation:

F1score = 2 × Precision × Recall
Precision + Recall

(20)
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Finally, the model size is used to measure the complexity of the algorithm.

4. Results
4.1. Ablation Studies

In this section, we present the results of the ablation experiments carried out on
SRSDD-v1.0 and evaluate our improvement.

4.1.1. Effect of C2fBT

Tables 1 and 2 show the ablation study results on C2fBT. We designed four struc-
tures for comparison, namely a Vision Transformer [48] integrated on C2f, a Bottleneck
Transformer integrated on C2f, and a Vision Transformer integrated on cross-stage partial
bottleneck-based YOLOV5 and C2f. We replaced the last C2f module in the backbone
network with each of the above modules. Except for the C2f part, the networks used in the
experiment were exactly the same. It can be seen that there are some performance improve-
ments in several of the above improvements. Among them, the performance of the C2fBT
we designed shows greater improvement in identifying fishing ships, law enforcement
ships, and dredger ships, especially law enforcement ships. This is due to the fact that
bulk cargo ships, fishing ships and law enforcement ships are mostly distributed along the
coastline, with small and densely distributed targets, which poses certain challenges for
ship detection and classification. Our designed C2fBT can effectively capture the global
spatial information of the distribution of ships, and can effectively identify such densely
arranged difficult targets. The C2fBT achieves 4.1%, 1.4%, 0.9% and 1.12 improvements in
the mAP, precision, recall and F1 score, respectively, and also reduces the size of module by
0.6 M. However, it should also be noted that as the complexity of the C2f module increases,
the FPS (frames per second) of the model decreases. The FPS can be used as one of the
indicators to measure the inference speed of the model. As shown in the table, the FPS
of the C2fBT module decreased from 140.8 to 113.6 compared to the original C2f module.
Overall, our C2fBT achieves a higher model performance at the cost of moderate FPS losses.

Table 1. Detection results of different transformer modules on SRSDD-v1.0.

Module Precision (%) Recall (%) F1Score mAP (%) FPS Module Size (M)

C2f 72.1 56.7 63.47 65.2 140.8 7.1
C2F+VisionTrans 67.6 66.2 66.89 68.7 129.4 7.0
C3+VisionTrans 69.6 53.2 60.30 67.3 138.3 6.8

C2fBT 73.5 57.6 64.59 69.3 113.6 6.5

Table 2. Ship detection results of the AP of each category with different transformer modules.

Module Ore-Oil Cell-Container Fishing Law Enforce Dredger Container

C2f 47.9 78.8 43.1 93.8 82.4 56.8
C2F+VisionTrans 60.4 69.0 52.3 83.9 84.4 61.5
C3+VisionTrans 51.0 81.2 38.0 89.8 84.9 59.2

C2fBT 46.7 74.0 48.3 99.5 88.7 58.8

In the following visualization results, the white rectangular box represents a mis-
carriage of justice, the white circular box represents a misdetection, the white elliptical
box represents a missed detection, yellow represents ore–oil ships, orange represents cell–
container ships, pink represents fishing ships, green represents law enforcement ships,
brown represents dredger ships, and red represents container ships. From the compar-
ison of the visualization results in Figure 8, we can find that the C2fBT can accurately
detect densely packed ships and achieve accurate category classification for ships whose
categories are easily confused in some in-shore scenarios.
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4.1.2. Effect of Decoupled Head and ProbIoU Loss

In this section, we perform comparative experiments using CSL based on angle
classification methods, KLD and KFIoU based on angular regression methods, and ProbIoU
methods that do not use angle decoupling. As can be seen in Table 3, the CSL that converts
angle predictions to classification problems performs the worst. The angle regression
method of modelling the rotating bounding box as a Gaussian distribution performed
better overall. Our proposed ProbIoU module performs well in all evaluation metrics. This
indicates that ProbIoU+ angle decoupling+ DFL is more suitable for our model structure.

Table 3. Detection results of different angle regression methods on SRSDD-v1.0.

Module Precision (%) Recall (%) mAP (%)

CSL 64.2 46.5 46.6
KLD 74.4 63.9 69.7

KFIoU 76.2 64.1 70.7
ProbIoU 76.8 64.9 71.0

ProbIoU+ angle
decoupling+ DFL 78.2 64.2 71.8

4.1.3. Effect of LRFConv

In this section, we will focus on the comparison between the LRFConv module and
the CBAM [49] module, as well as the comparison between our LRFConv+ C2fBT module
at different locations in the network. The ablation experiments are shown in Tables 4 and 5.

Table 4. Detection validity of LRFConv on SRSDD-v1.0.

Module Precision (%) Recall (%) F1score mAP (%) Module Size (M)

LRFConv 66.1 57.7 61.62 63.8 7.0
CBAM 67.7 55.4 60.93 62.5 7.0

LRFConv+ C2fBT (1) 78.2 64.2 70.51 71.8 6.8
LRFConv+ C2fBT (2) 73.5 62.1 67.32 68.5 7.3
LRFConv+ C2fBT (3) 79.9 56.5 66.19 70.8 7.5

From the results in the table, it can be seen that although both CBAM and LRFConv
are spatial attention mechanisms, our LRFConv is able to improve the mAP by 1.3% while
maintaining its light weight. This is because LRFConv can dynamically adjust the receptive
field to the target scale to capture critical information and complex details. As a result, the
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LRFConv module is well suited to the recognition and detection of difficult multi-scale
samples with similar features.

Table 5. Ship detection results of the AP of each category for several models.

Module Ore-Oil Cell-Container Fishing Law Enforce Dredger Container

LRFConv 52.5 69.4 37.9 87.9 80.3 54.7
CBAM 49.9 72.7 33.0 87.9 80.0 51.6

LRFConv+ C2fBT (1) 52 77.3 54.5 99.5 82.6 60.7
LRFConv+ C2fBT (2) 54.7 76.2 48.4 90 82.2 59.8
LRFConv+ C2fBT (3) 59.5 81.0 42.4 99.5 82.8 59.4

In addition, we have investigated the correct location of the LRFConv and C2fBT
module in the network through ablation experiments. The positional design of the LRFConv
refers to the positional design of the spatial attention, while the positional design of the
C2fBT module refers to the positional design of the transformers. LRFConv+ C2fBT (1)
represents replacing C2f with our C2fBT only in the last layer of the backbone network and
adding two LRFConv layers in the neck network. The purpose of such a structure is to
reduce the computational cost while maximizing the extraction of global spatial and detail
information from the feature map. LRFConv+ C2fBT (2) is based on LRFConv+ C2fBT (1)
by adding the LRFConv layer in front of the three detection heads. LRFConv+ C2fBT (3)
replaces the convolution module of the neck network with LRFConv on top of LRFConv+
C2fBT (1), which is based on the idea of further extracting the spatial feature information
on the high-level semantic map.

Figure 9 shows the results of the visualization of these five different structures on
the SRSDD dataset. We can find that as the number of layers in the network increases,
the classification rate of the network increases linearly for ore–oil ships, bulk cargo ships
and fishing ships. Our LRFConv+ C2fBT module is able to efficiently extract the detail
information in the images, leading to a gradual increase in the recognition rate in the
network for ore–oil ships, which have a high overlap with coastal features, and for small
ships with similar characteristics, such as fishing ships and bulk cargo ships. However,
for large ships such as dredger ships and container ships, the detection rate decreases, the
model recall and mAP decrease, and the model parameters increase. We therefore use the
lightest structure, LRFConv+ C2fBT (1), which also has the best overall evaluation metrics.
This structure improves precision by 2.1%, recall by 7.5%, mAP by 8%, F1 score by 8.89 and
the number of parameters by 0.2 M compared to LRFConv.
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4.2. Comparison with Other Methods

In order to verify the overall performance of the proposed network, we have selected
some current mainstream single-stage and two-stage rotation detection algorithms, such as
O-RCNN, ROI, R-Retina Net and R3Det, and 13 other models for comparative tests. The
results are shown in Tables 6 and 7.

Table 6. Detection results of different CNN-based methods on SRSDD-v1.0.

Module Precision (%) Recall (%) F1Score mAP (%) Module Size (M)

FR-O [50] 49.66 57.12 53.13 53.93 315
ROI [51] 51.22 59.31 54.97 54.38 421

Gliding Vertex [52] 53.95 57.75 55.79 55.79 315
O-RCNN [53] 64.01 57.61 60.64 56.23 315

R-Retina Net [13] 12.55 53.52 20.33 32.73 277
R3Det [54] 15.41 58.06 24.36 39.12 468

BBAVectors [55] 34.56 50.08 40.90 45.33 829
R-FCOS [56] 18.42 60.56 28.25 49.49 244
RTMDet [57] - - - 56.00 -

RBFA-Net [40] - - - 63.42 -
MFCANet [58] - - - 66.28 -
R-YOLOV5 [39] 59.70 62.90 61.26 - 4.52
R-YOLOV8 [59] 73.50 56.70 64.01 65.21 7.11

R-LRBPNet 78.20 64.20 70.51 71.85 6.83

Table 7. Ship detection results of the AP of each category with different CNN-based methods.

Module Ore-Oil Cell-Container Fishing Law Enforce Dredger Container

FR-O 55.6 46.7 30.8 27.2 77.8 85.3
ROI 61.4 48.8 32.8 27.2 79.4 76.4

Gliding Vertex 43.4 52.8 34.6 28.2 71.2 79.6
O-RCNN 63.5 57.5 35.3 27.2 77.5 76.1

R-Retina Net 30.3 35.7 11.4 2.1 67.7 48.9
R3Det 44.6 42.9 18.3 1.1 54.3 73.5

BBAVectors 54.3 34.8 21.0 1.1 82.2 78.5
R-FCOS 54.8 47.3 25.1 5.4 83.0 81.1
RTMDet 59.4 76.5 40.0 27.3 80.5 52.3

RBFA-Net 59.4 57.4 41.5 73.5 77.2 71.6
MFCANet 66.2 73.0 31.4 94.8 81.8 50.5
R-YOLOV8 47.9 78.8 43.1 93.8 82.4 56.8
R-LRBPNet 54.0 77.3 54.5 99.5 82.6 63.2

The upper part of the table represents the two-stage model and the lower part the
one-stage model. Table 6 shows that the two-stage detection method is more consistent.
Among the two-stage detection models, O-RCNN has the best detection performance on
the SRSDD dataset, with the highest precision, F1score and mAP. The reason for this is that
the SRSDD dataset contains many images with complex background clutter, which is not
conducive to algorithmic detection. The two-stage detection algorithm mitigates this type
of problem by performing some initial filtering in the first stage.

Among the one-stage detection models, our proposed R-LRBPNet and anchor-free
R-YOLOV8 are at the highest level in terms of precision, recall, F1 score, mAP and module
size. The precision of R-LRBPNet has risen by 4.7% compared to R-yolov8n, which has the
highest precision, the recall has risen by 3.64% compared to R-FCOS, which has the highest
recall, the F1 scores have risen by 6.5% compared to R-YOLOV8, which has the highest F1
scores, and mAP has risen by 5.57% compared to MFCANet, which has the highest mAP.
More importantly, the size of our R-LRBPNet model is drastically reduced compared to
mainstream models, with a model size of only 6.8 M.
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Table 7 shows that R-LRBPNet performs particularly well in the detection of fishing
ships and law enforcement ships, with APs of 54.5% and 99.5% respectively. Cell–container
ships have an AP of 77.3%, only slightly lower than R-YOLOv8. R-LRBPNet also achieves
a high AP of 82.6% for the detection of dredgers, which is only second to that of R-FCOS.
In addition, R-LRBPNet achieves APs of 54.0% and 63.2% for the detection of ore–oil ships
and container ships, which are equally good in terms of detection performance for these
two categories when compared to the other 13 detection methods. Overall, R-LRBPNet
shows a balanced and excellent detection performance in all categories of ships and is
undoubtedly the best choice.

Figure 10 illustrates the Precision–Recall Curve (PRC) and the confusion matrix of
R-LRBPNet. The confusion matrix can effectively show the accuracy of the network’s
classification of ships, where the horizontal coordinate is the actual category and the
vertical coordinate is the predicted category. The diagonal line represents the probability
of correct classification and the others the probability of misclassification. It can be seen
that the network achieves the best detection performance for law enforcement ships, with
little misclassification. Container ships, cell–container ships and dredger ships are also
detected with relatively high accuracy, with an accuracy only slightly lower than that
for law enforcement ships. There are more cases of misclassification for fishing ships
compared to the other categories. It can be seen that the model easily identifies fishing
ships as container ships or background true negatives, although the R-LRBPNet achieves
an AP value of 54.5% for fishing ships, which is the highest value of all compared methods.
Compared to recent rotating ship detection and classification methods [41,42,59] based on
the SRSDD dataset, R-LRBPNet shows better performance. This is reflected not only in
quantitative metrics such as detection accuracy and recall, but also in its ability to accurately
detect different classifications of ship targets.
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In Table 8, all algorithms except R-LRBPNet use ResNet50 as the feature extraction
network. The table shows the performance of some classical one-stage and two-stage
algorithms on the SSDD+ dataset. Similar to Table 6, the two-stage algorithms have the
same stable performance on the SSDD+ dataset. The ROI method has the highest mAP of
89.04%. The precision, recall and mAP values of R-LRBPNet are 94.77%, 94.09% and 91.67%,
respectively. The experimental results of R-LRBPNet on the SSDD+ dataset prove that the
performance of R-LRBPNet on the other SAR datasets also has excellent robustness.
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Table 8. Detection results of different CNN-based methods on SSDD+.

Module Precision (%) Recall (%) mAP (%)

Two stage

ReDet [60] 89.36 92.09 88.65
ROI 90.05 91.31 89.04

Gliding Vertex 88.00 89.62 87.97
O-RCNN 85.64 88.12 84.65

One stage

R-Retina Net 76.18 76.53 70.83
R3Det 85.22 86.00 82.72

S2Anet [61] 90.38 91.09 88.36
KLD 91.57 91.63 89.10

KFIoU 91.68 93.12 90.25
R-LRBPNet 94.77 94.09 91.67

4.3. Detection and Classification Results on SRSDD

Figures 11 and 12 show the visualization results of partial detection and classification
for the different models on the SRSDD dataset for both the in-shore and off-shore scenes.
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As we can see from Figures 11 and 12, R-LRBPNet basically detects ships near the
shore. This is because R-LRBPNet uses C2fBT and LRFConv to extract rich global spatial
information and detail information, which reduces the negative impact of background
interference. Therefore, even for small ships and densely clustered ships close to the shore,
our network can accurately detect them.

Second, R-LRBPNet achieves accurate angle predictions in both in-shore and off-shore
scenarios. This is because our angle-decoupling header can provide more appropriate
feature maps for angle regression and because ProbIoU + DFL can provide more accurate
losses for angle regression. Finally, our network achieves accurate classification even for
difficult samples. For example, the features of fishing ships and bulk cargo ships in an SAR
image are similar, and both are small targets. R-LRBPNet uses LRFConv to dynamically
adjust the receptive field according to the size of the target, preserving key details. In
addition, the decoupling module of the network also adaptively enhances the feature map.
As a result, our network is able to correctly classify fishing ships and bulk cargo ships.
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5. Conclusions

In this paper, a new lightweight method entitled R-LRBPNet is proposed for simul-
taneous directional ship classification and detection in SAR images. The network first
extracts global spatial features for the detection of densely arranged ships using the modi-
fied feature extraction module C2fBT. Second, the network proposes an angle-decoupling
head to alleviate the problem of imbalance between angle regression and other tasks. The
ProbIoU and DFL methods are used in the decoupling head to compute the loss of the
rotated bounding box and achieve accurate angle regression. Finally, LRFConv is used
to increase the sensitivity of the network to details and important information in the fea-
ture map to achieve accurate ship classification. We conducted a series of comparison
and ablation experiments on the SRSDD dataset to demonstrate the ship detection and
classification performance of the network. The experimental results show that our network
achieves the best performance compared to 13 other methods based on the SRSDD dataset.
Also, the experimental results of the model on SSDD+ verify that the model has strong
generalization. Our models have also been lightweighted, reducing their size to 6.8 M
while maintaining performance.

However, our model also has shortcomings. For example, the angle prediction accu-
racy of the network still needs to be improved. The transformer structure in C2fBT reduces
the model parameters and model size, but at the same time, it inevitably increases the model
complexity and training time. The training of the baseline model YOLOv8 took longer, so
the introduction of C2fBT would increase the training time of R-LRBPNet. Therefore, our
next work will mainly focus on the following aspects: (1) The optimization of the model
architecture to reduce time costs. (2) Investigating more suitable loss functions for angle
regression. (3) Building a ship detection and recognition dataset with more categories and
numbers. (4) Investigating how to quickly perform ship detection and classification in
SAR images.
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