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Abstract: The imaging of high-speed high-squint synthetic aperture radar (HSHS-SAR), which
is mounted on maneuvering platforms with curved trajectory, is a challenging task due to the
existence of 3-D acceleration and the azimuth spatial variability of range migration and Doppler
parameters. Although existing imaging algorithms based on linear range walk correction (LRWC)
and nonlinear chirp scaling (NCS) can reduce the range–azimuth coupling of the frequency spectrum
(FS) and the spatial variability of the Doppler parameter to some extent, they become invalid as
the squint angle, speed, and resolution increase. Additionally, most of them ignore the effect of
acceleration phase calibration (APC) on NCS, which should not be neglected as resolution increases.
For these issues, a modified frequency nonlinear chirp scaling (MFNCS) algorithm is proposed in
this paper. The proposed MFNCS algorithm mainly includes the following aspects. First, a more
accurate approximation of range model (MAARM) is established to improve the accuracy of the
instantaneous slant range history. Second, a preprocessing of the proposed algorithm based on the
first range compression, LRWC, and a spatial-invariant APC (SIVAPC) is implemented to eliminate
most of the effects of high-squint angle and 3-D acceleration on the FS. Third, a spatial-variant APC
(SVAPC) is performed to remove azimuth spatial variability introduced by 3-D acceleration, and the
range focusing is accomplished by the bulk range cell migration correction (BRCMC) and extended
secondary range compression (ESRC). Fourth, the azimuth-dependent characteristics evaluation
based on LRWC, SIVAPC, and SVAPC is completed to derive the MFNCS algorithm with fifth-order
chirp scaling function for azimuth compression. Consequently, the final image is focused on the range
time and azimuth frequency domain. The experimental simulation results verify the effectiveness of
the proposed algorithm. With a curved trajectory, HSHS-SAR imaging is carried out at a 50° geometric
squint angle and 500 m × 500 m imaging width. The integrated sidelobe ratio and peak sidelobe ratio
of the point targets at the scenario edges approach the theoretical values, and the range-azimuth
resolution is 1.5 m × 3.0 m.

Keywords: synthetic aperture radar (SAR); high-speed high-squint (HSHS); curved trajectory;
frequency nonlinear chirp scaling (FNCS) algorithm; acceleration phase calibration (APC)

1. Introduction

As an active microwave sensor, synthetic aperture radar (SAR) is capable of providing
high-resolution 2-D imagery of a long-distance detection area under all weather conditions
and at all times. This is due to its electromagnetic wave characteristics and motion imaging
mechanism [1]. With the rapid advancement of SAR systems, they have been widely
applied to high-speed maneuvering platforms, including airplanes [2–5], missiles [6–9], and
unmanned aerial vehicles [10–13] for flight navigation, terminal guidance, and autonomous
landing in areas of interest. Among the modes and applications mentioned above, the
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high-speed SAR system has several distinct features that require special consideration
in SAR imaging algorithms. These features include high-squint angle, azimuth spatial
variability of Doppler parameters, real-time processing, and curved trajectory [14,15].

Basically, SAR imaging algorithms can be divided into three main categories: time-
domain algorithms [16–19], frequency-domain algorithms [20–23], and wavenumber-
domain algorithms [24–27]. Time-domain algorithms, such as the back-projection (BP)
algorithm, have essential applicability for high-squint angle and curved trajectory with
high resolution [28,29]. The intensive computation burden limits the real-time application
of time-domain algorithms, even though several accelerated BP algorithms are proposed.
Wavenumber-domain algorithms, most of which include Stolt interpolation, can deal
with cases of high-squint angle [30,31]. However, they can hardly handle the azimuth
spatial variability of Doppler parameters while also dealing with the increased compu-
tational complexity of high-squint high-speed SAR (HSHS-SAR) with curved trajectory.
Frequency-domain algorithms can provide a favorable balance between imaging accuracy
and efficiency in this scenario.

The classical frequency-domain algorithms, which are based on the range-Doppler
(RD) algorithm [32] or the chirp scaling (CS) algorithm [33–35], normally use range
cell migration correction (RCMC) and secondary range compression (SRC) to remove
range–azimuth coupling (RAC). Then, they can hardly be applied to the case of high-squint
angle due to extremely severe RAC [36,37]. Therefore, multiple nonlinear CS (NCS) algo-
rithms [38–46] are presented to decoupled the RAC. To remove more severe RAC of the
signal, the third-order CS function was used at first [38–41]. To further increase the image
precision, the CS function was then upgraded to the fourth order [42]. Afterwards, NCS
processing has been used for numerous processing methods or working modes, such as
fractional chirp scaling algorithm (FrCSA) [43], 2D NCS [44], Blind NCS [45], and Mosaic
SAR [46]. Specifically, An et al. [47] proposed a modified azimuth NCS algorithm by using
a fourth-order CS function to realize highly squint airborne SAR imaging. However, the
azimuth spatial variability of Doppler parameters needs to be considered for HSHS-SAR
with curved trajectory. In addition, Li et al. [48] proposed a frequency domain imaging
algorithm based on tandem two-step nonlinear chirp scaling (TNCS) with small aperture.
Unfortunately, most of the NCS algorithms are invalid with increased speed, squint angle,
and resolution; thus, a more accurate range model and higher-order CS function should be
implemented to improve the performance of the NCS algorithm.

Fundamentally, NCS algorithms, which deal with curved trajectory, utilize the linear
range walk correction (LRWC) to decouple RAC. And when SAR systems move with
3-D acceleration, it is indispensable to eliminate its impact on Doppler bandwidth (DB),
i.e., acceleration phase calibration (APC), which will introduce range distortion similar
to those caused by the LRWC operation. Most of the NCS algorithms only consider the
distortion resulting from LRWC when performing NCS processing. However, the distortion
caused by the removal of 3-D acceleration cannot be ignored, especially when the resolution
is increasing.

Motivated by the discussion above, a modified frequency NCS (MFNCS) algorithm
with fifth-order CS function for HSHS-SAR with curved trajectory is proposed in this
paper. First, a more accurate approximation of range model is established to enhance phase
accuracy. Then, in order to primarily eliminate the influence of high-squint angle and
3-D acceleration, a pre-processing of the proposed algorithm is conducted via the LRWC
and a spatial-invariant APC (SIVAPC). Afterward, range focusing is implemented by a
spatial-variant APC (SVAPC) and bulk compensation processing, including bulk RCMC
(BRCMC) and extended SRC (ESRC). Subsequently, the azimuth-dependent characteristics
of NCS algorithms based on the LRWC, SIVAPC, and SVAPC are analyzed to derive the
MFNCS algorithm with a fifth-order CS function for azimuth compression. Finally, the final
image is focused on the range time and azimuth frequency domain. The main innovations
of the proposed method are listed below.
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1. A more accurate approximation of the range model is proposed, along with an MFNCS
algorithm that utilizes a fifth-order CS function. Although several NCS algorithms
exist for HSHS-SAR with curved trajectory, most of them utilize fourth-order CS
functions to mitigate the azimuth spatial variability of Doppler parameters. However,
these algorithms are not suitable when the squint angle, speed, and resolution are
increasing. To address this problem, a more precise range model approximation is
established, and an MFNCS algorithm with a fifth-order CS function is derived to
accommodate the improved accuracy of the range model.

2. The impacts of the LRWC, SIVAPC, and SVAPC are analyzed in the azimuth NCS
processing. When SAR systems move with 3-D acceleration, it is necessary to eradicate
its effects on the DB, i.e., the effects of the SIVAPC and SVAPC in this paper. However,
most of the existing NCS algorithms only consider the range distortion introduced by
the LRWC operation. Then, this will result in azimuth defocusing due to improved
azimuth resolution. Hence, the effects of the SIVAPC and SVAPC are also discussed
in the azimuth NCS processing to enhance the azimuth focusing capability.

The contents of this paper are organized as follows. Section 2 deeply analyzes the
HSHS-SAR imaging geometry model with the proposed range approximation. Section 3
presents the preprocessing of the proposed algorithm for HSHS-SAR with curved trajectory.
Section 4 depicts range focusing via the SVAPC. In Section 5, an MFNCS algorithm with a
fifth-order CS function is derived in detail. Section 6 shows the results of simulation data.
The analysis and discussion of the proposed algorithm is given in Section 7. Finally, the
conclusion is drawn in Section 8.

2. Signal Model
2.1. Range Model

Assume that the HSHS-SAR system satisfies the start-stop approximation, and its

imaging geometry is shown in Figure 1. It moves along the curved trajectory
⌢

ABD during
the synthetic aperture time ta with 3-D velocity v⃗ =

(
vx, vy, vz

)
and 3-D acceleration

a⃗ =
(
ax, ay, az

)
in the Cartesian coordinates O − XYZ, respectively. Here, B(0, 0, h) is the

position corresponding to the azimuth time ta = 0, and the point C is an arbitrary position

on the trajectory
⌢

ABD. At azimuth time ta, the coordinates of point C can be expressed as

C
(

vxta +
1
2

axta
2, vyta +

1
2

ayta
2, vzta +

1
2

azta
2 + h

)
. (1)

The point P(x0, y0, 0) is the reference point of imaging scene S on the ground plane
O − XY, whose reference slant range is R0 with geometric squint angle θA and residual
angle of zero-Doppler squint angle ϑ. According to the geometric definition in Figure 1, the
coordinates of point P can be obtained by

x0 = R0 sin θA, y0 =

√
R0

2cos2θA − h2. (2)

The point Q is an arbitrary position in the scene S. Assume that the beam centerline
time is tn, then the coordinates of point Q can be derived as

Q
(

vxtn +
1
2

axtn
2 + x0, vytn +

1
2

aytn
2 + y0, vztn +

1
2

aztn
2
)

. (3)

Thus, the instantaneous slant range history (ISRH) can be approximated by the fourth-
order Taylor series (TS) as [1]

R(ta, R0) = |CQ| ≈ R0 +
4

∑
i=1

ki(ta − tn)
i, (4)
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where ki = (1/i! )
(
diR(ta, R0)/dta

i )∣∣
ta=tn

denotes the coefficient of TS.

Figure 1. Geometry of HSHS-SAR with curved trajectory.

Herein, it is necessary to analyze the slant range error of (4) to guarantee the reliability
of the following algorithm. The range error can be expressed as

∆R =

∣∣∣∣∣|CQ| −
[

R0 +
4

∑
i=1

ki(ta − tn)
i

]∣∣∣∣∣. (5)

The phase error in (4) can be written as ∆ϕ = j4π∆R/λ, where λ denotes the LFM signal
wavelength. It is worth mentioning that the range and phase errors are accumulated with
the azimuth synthetic aperture time (ASAT) and the azimuth illumination time (AIT).
Essentially, AIT is the scope of tn.

Then, the range error and phase error simulations are performed, as shown in Figure 2.
Table 1 lists the simulation parameters. The ASAT and AIT are set from −0.25 s to 0.25 s
and −1.0 s to 1.0 s, respectively. As can be seen, the overall scenario’s phase error is
fundamentally less than π/4, while the range error is much less than one wavelength, i.e., λ.
As a result, it is feasible to utilize the 4th-order Taylor expansion approximation model.

Table 1. Key simulation parameters of the SAR system.

Parameters Values Parameters Values

Carrier Frequency 16 GHz Sampling Frequency 200 MHz

PRF 20 KHz Geometric Squint Angle 50◦

Range Bandwidth 160 MHz Beam Width 4.5◦

Velocity (2000, 0, −550) m/s Acceleration (−18, 0.01, −25) m/s2

Reference Slant Range 45 km Height 15 km
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(a) (b)

Figure 2. Range and phase error of the range model after the TS. (a) Range error of (4). (b) Phase
error of (4).

2.2. Model Characteristics of the Range Model

In order to further analyze the spatial variability of the range model, it is required
to expand ki into a polynomial with respect to tn, dividing them into kijv (related only to
velocity v⃗) and kija (affected by acceleration a⃗) at the same time, i.e.,

ki =
i

∑
j=0

kijtn
j, kij = kijv + kija(1 ≤ i ≤ 4, 0 ≤ j ≤ i), (6)

where the detailed coefficients ki of TS are shown in Appendix A.
As can be observed in (A3) and (A4), all kijv are not coupled with tn, implying that

the spatial-variants (SVs) of ki are all generated by a⃗, which is a prominent feature of
HSHS-SAR signal with curved trajectory. Specifically, the space-invariant (SIV) of k1 is
related only to v⃗ and its SV is affected only by a⃗, which facilitates subsequent uniform
processing. The SIVs of ki (i = 2, 3, 4) consist of kijv and kija, but their SVs only incorporate
kija. This is quite different from the traditional SAR range model without acceleration.
Additionally, it is important to note that ki can only be expanded into an i-th polynomial
with respect to tn, which is the key factor in the approximation of the ISRH.

2.3. Accuracy Analysis of Range Model

Based on the characteristics of this range model, the ISRH can be divided succinctly
into SIVs and SVs with respect to R0 and tn. And then these two components can be
further classified as range and Doppler. In general, the range SIVs and SVs are insensitive
to variation in slant range, so the range-dependent spatial-variant error can be directly
eliminated by range blocking [47]. However, the Doppler SVs are susceptible to changes in
azimuth time. Thereby, only the spatial-variant terms in azimuth direction with R = R0
need analysis, as shown in (6). Currently, most accurate approximations of the ISRH only
retain the SIV and linear SV of k3 and the SIV of k4. This approximation is not sufficiently
accurate as resolution is increasing. Herein, in order to improve the imaging accuracy,
a more accurate approximation of range model (MAARM), which also maintains the
quadratic SV of k3 and linear SV of k4, is proposed. And the detailed approximation can be
formulated as

k1(R0, tn) = k10v + k11atn,

k2(R0, tn) = k20v + k20a + k21atn + k22atn
2,

k3(R0, tn) = k30v + k30a + k31atn + k32atn
2,

k4(R0, tn) = k40v + k40a + k41atn.

(7)
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Consequently, the residual range error (RRE) can be expressed as

∆Rres =

∣∣∣∣∣∣∣∣
|CQ| −

[
R0 +

4

∑
i=1

ki(ta − tn)
i

]
+ k33atn

3(ta − tn)
3 +

(
k42atn

2 + k43atn
3 + k44atn

4
)
(ta − tn)

4

∣∣∣∣∣∣∣∣. (8)

And the residual phase error (RPE) can be expressed as ∆ϕres = j4π∆Rres/λ.
A comparison between the current approximation model and MAARM is offered to

demonstrate the advantages of the MAARM. The simulation parameters are identical to
those found in (5). Figures 3 and 4, respectively, demonstrate the range and phase errors
of these two approximations. It is evident that the RRE of the MAARM is significantly
lower than that of the current approximation model, as shown in Figure 3a,b. Furthermore,
Figure 4 demonstrates that the RPE of the MAARM is significantly less than the amount
while the RPE of the current approximate model is mostly greater than π/4. Remarkably,
both the RPE and RRE of the MAARM are nearly identical to those of the proposed ISRH
model approximated by the 4th-order Taylor expansion. Then, in theory, the HSHS-SAR
with curved trajectory can be handled more effectively by the MAARM.

(a) (b)

Figure 3. RRE of the MAARM and the current approximate model. (a) RRE of the MAARM. (b) RRE
of the current approximate model.

(a) (b)

Figure 4. RPE of the MAARM and current approximate model. (a) RPE of the MAARM. (b) RPE of
the current approximate model.

2.4. Echo Signal Model

Suppose that the transmit signal is the linear frequency modulation (LFM) signal.
Therefore, the echo signal on baseband from the target Q in the range frequency domain
can be given as [1,49,50].

Ss( fr, ta; R(ta, R0)) = Awr( fr)aa(ta) exp

(
−jπ

fr
2

γ

)
· exp

(
−j

4π( fc + fr)

c
R(ta, R0)

)
, (9)
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where wr(·) denotes the range envelope in the frequency domain, aa(·) denotes the azimuth
envelope in the azimuth time domain, A is the signal amplitude, γ is the range chirp rate, c
is the speed of the light, fc and fr are the carrier frequency and range frequency, respectively.
Herein, wr(·), aa(·), and A do not affect the derivation of the proposed algorithm, and thus
they can be omitted in the subsequent derivations.

3. Preprocessing Based on FRC and LRWC
3.1. FRC and LRWC

Due to the characteristics of the LFM signal, the first exponential term can be removed
by range pulse compression [1], and then the filter of the first range compression (FRC) can
be expressed as

HFRC( fr) = exp

(
jπ

fr
2

γ

)
. (10)

The high-squint angle mode (HSAM) introduces a skew frequency spectrum (FS),
which results in severe RAC and will make it challenging to perform unified processing
of the echo signals. According to (4), (7) and (9), the main coupled term caused by the
HSAM is the constant term of k1, specifically the linear range walk term k10v. Thus, the
skew frequency spectrum can be decoupled largely by the LRWC [27], and its filter can be
given as

HLRWC( fr, ta; R0) = exp
(

j
4π( fc + fr)

c
k1vta

)
. (11)

3.2. Impacts of Acceleration and SIVAPC

Compared to the classical range model without acceleration, 3-D acceleration leads
to an expansion or contraction of the azimuth FS. According to the formula for Doppler
parameters [48], the DB with 3-D acceleration can be expressed as

Ba−3a =

∣∣∣∣− Ta

2π

d2 φa

dt2
a

∣∣∣∣ = 4Ta

λ

∣∣∣k2 + 3k3(ta − tn) + 6k4(ta − tn)
2
∣∣∣, (12)

where Ta and φa denote the synthetic aperture time and azimuth time phase, respectively.
In order to delineate the effect of 3-D acceleration on the DB, a ductility factor (DF) with

3-D acceleration is defined as the ratio between the Ba−3a and Ba (DB of the no-acceleration
model), which can be described as

Fd =
Ba−3a

Ba
=

∣∣∣∣∣ k2 + 3k3(ta − tn) + 6k4(ta − tn)
2

k20v + 3k30v(ta − tn) + 6k40v(ta − tn)
2

∣∣∣∣∣. (13)

Also, a simulation of the DF based on the parameters in Table 1 is performed. The
ASAT is set from −0.25 s to 0.25 s, the AIT is set from −1.0 s to 1.0 s, and two additional
sets of acceleration parameters are set as (18, 0.01, −25) m/s2 and (18, 0.01, 25) m/s2. The
visualization of the DF is shown in Figure 5. It is evident that the DF with 3-D acceleration
exhibits spatial variability. Moreover, different acceleration parameters have distinct effects
on the DF, which could potentially lead to excessive or insufficient DF values. These two
scenarios indicate that the DB is either expanded or compressed, resulting in FS aliasing
and distortion.
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(a) (b) (c)

Figure 5. DF of DB based on different acceleration parameters. (a) a⃗ = (−18, 0.01,−25) m/s2.
(b) a⃗ = (18, 0.01,−25) m/s2. (c) a⃗ = (18, 0.01, 25) m/s2.

According to (13), the main impact factors of Fd are its SIVs. Then, in order to clearly
illustrate the relationship between 3-D acceleration and DB, tn is set to 0 and both ax and az
are set from −1000 m/s2 to +1000 m/s2 in the two controlled experiments. Also, the DF,
which is based on the parameters in Table 1, is recalculated and the simulation results are
displayed in Figure 6. Evidently, the DF exhibits approximate linear correlations with ax
and az. The rate of change is substantial, and in certain instances the DF tends to approach
0. Subsequently, the PRF cannot satisfy Nyquist’s Sampling Law, and the FS is severely
compressed and distorted. Therefore, it is essential to eliminate the effects of acceleration,
and a spatial-invariant APC (SIVAPC) is proposed to restore the DB for subsequent 2-D
frequency domain processing. In this context, its filter can be expressed as

HSIVAPC( fr, ta; R0) = exp

(
j
4π( fc + fr)

c

4

∑
i=2

ki0ata
i

)
. (14)

(a) (b)

Figure 6. Impacts of 3-D acceleration on the DF. (a) The impacts of ax on the DF. (b) The impacts of az

on the DF.

After the FRC, LRWC, and SIVAPC, the signal in the range frequency domain can be
formulated as

Ss1( fr, ta; R0, tn) = exp

(
−j

4π( fc + fr)

c

4

∑
i=0

si(ta − tn)
i

)
, (15)
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where
s0 = R0 − k10vtn − k20atn

2 − k30atn
3 − k40atn

4,

s1 = −3k30atn
2 − 4k40atn

3,

s2 =
[
k20v + (k21a − 3k30a)tn + (k22a − 6k40a)tn

2
]
(ta − tn)

2,

s3 =
[
k30v + (k31a − 4k40a)tn + k32atn

2
]
(ta − tn)

3,

s4 = (k40v + k41atn)(ta − tn)
4.

As can be seen, the DF of (15), which is illustrated in Figure 7, approximates to 1,
signifying that the DB with 3-D acceleration approaches to the DB without 3-D acceleration.
Therefore, this preprocessing is suitable for most of the existing HSHS-SAR imaging
algorithms.

Figure 7. DF after preprocessing.

Although the SIVs, which are caused by 3-D acceleration, are removed by the afore-
mentioned preprocessing, the SVs should also be further eliminated for range focusing and
azimuth compression. Herein, the specific derivation of the range focusing and azimuth
compression is described in the next two sections, i.e., Sections 4 and 5.

4. Range Focusing via SVAPC

As mentioned above, the range SVs can be omitted at short range widths by blocking,
but the Doppler SVs with 3-D acceleration will introduce additional range cell migration
(RCM), which should be tackled first by a spatial-variant APC (SVAPC).

4.1. SVAPC

According to (15), the highest term of SVs is the linear term of (ta − tn)
4, which can be

compensated by a fifth-order phase filter as follows

HSVAPC( fr, ta; R0) = exp

(
−j

4π( fc + fr)

c

5

∑
i=3

Lita
i

)
, (16)

where Li (i = 3, 4, 5) are the coefficients to be determined. In order to remove the main
components of SVs, we multiply (16) with (15) and set the coefficients of ta(ta − tn)

2,
ta(ta − tn)

3, and ta(ta − tn)
4 to zero. Then, Li can be obtained as

L3 = k30a −
1
3

k21a, L4 = k40a −
1
4

k31a, L5 = −1
5

k41a. (17)
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Additionally, substitute Li (i = 3, 4, 5) into (16) and multiply it by (15), whereby the
signal after the SVAPC can be obtained as

Ss2( fr, ta; R0, tn) = exp

(
−j

4π( fc + fr)

c

5

∑
i=0

Ki(ta − tn)
i

)
, (18)

where
K0 = R0 − k10vtn − k20atn

2 − 1
3

k21atn
3 − 1

4
k31atn

4 − 1
5

k41atn
5,

K1 = −k21atn
2 − k31atn

3 − k41atn
4,

K2 = k20v +

(
k22a −

3
2

k31a

)
tn

2 − 2k41atn
3,

K3 = k30v + k30a −
1
3

k21a + (k32a − 2k41a)tn
2,

K4 = k40v + k40a −
1
4

k31a,

K5 = −1
5

k41a.

4.2. BRCMC and ESRC

Next, the BRCMC and ESRC need to be performed in the 2-D frequency domain. In
this context, the 2-D FS of the signal can be obtained by the fast Fourier transform (FFT),
which mainly utilizes the principle of stationary phase (POSP) and the method of series
reversion (MSR) [51], and then it is expanded by a third-order TS, yielding [49,50]

SS2( fr, fa; R0, tn) = exp
(
−j

4K0

c
fr

)
exp(jπφ( fr, fa)), (19)

where

φ( fr, fa) = φaz( fa; R0, tn) + φrcm( fa; R0, tn) fr + φqr( fa; R0, tn) fr
2 + φcr( fa; R0, tn) fr

3.

In (19), the first exponential term consists of range information of the target. And φaz, φrcm,
φqr, and φcr denote the azimuth phase, RCM term, quadratic range frequency modulation
(FM) term, and cubic range FM term, respectively. The detailed expression of (19) is shown
in Appendix B.

As can be seen in (A5)–(A8), they are quite complicated due to the presence of K1 which
is the spatial-variant residual Doppler center introduced by 3-D acceleration. Fortunately,
its spatial-variant effect on the range envelope is so weak that the φrcm, φqr, and φcr can
be simplified by setting tn to 0 [48]. The specific analysis will be elaborated in Section 4.3.
Thus, the filter of the BRCMC and ESRC can be given as

HBRCMC( fr, fa; R0) = exp(−jπφrcm( fa; R0, 0) fr)

= exp

[
jπ

(
+

λ

4K2 fc
fa

2 +
K3λ2

8K2
3 fc

fa
3 +

3λ3α

256K2
5 fc

fa
4 +

λ4β

256K2
7 fc

fa
5

)
fr

]
,

HESRC( fr, fa; R0) = exp
{
−jπ

[
φqr( fa; R0, 0) fr

2 + φcr( fa; R0, 0) fr
3
]}

= exp

jπ


−
(

λ

4K2 fc
2 fa

2 +
3K3λ2

16K2
3 fc

2 fa
3 +

3λ3α

128K2
5 fc

2 fa
4 +

5λ4β

512K2
7 fc

2 fa
5

)
fr

2

+

(
λ

4K2 fc
3 fa

2 +
K3λ2

4K2
3 fc

3 fa
3 +

5λ3α

128K2
5 fc

3 fa
4 +

5λ4β

256K2
7 fc

3 fa
5

)
fr

3


.

(20)
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In contrast to the traditional SRC, it should be noted that the filter of the ESRC
compensates for both φqr and φcr, improving the accuracy of the range focusing. The range
signal is focused by transforming the 2-D FS into the 2-D time domain as follows

ss3(tr, ta; R0, tn) = sinc
[

Br

(
tr −

2K0

c

)]
exp

(
−j

4π

λ

5

∑
i=0

Ki(ta − tn)
i

)
, (21)

where Br and tr denote range bandwidth and range time, respectively.

4.3. Accuracy Analysis of BRCMC and ESRC

As mentioned above, the operations of the BRCMC and ESRC involve a certain level
of approximation, where the residual Doppler center, i.e., K1 = 0, is ignored. Therefore,
an analysis of its accuracy is necessary. According to (19) and (20), the RCM error of the
BRCMC and ESRC operation can be formulated as

∆BRCMC =
λ

4
|(φrcm( fa; R0, tn)− φrcm( fa; R0, 0)) fr|,

∆ESRC =
λ

4

∣∣∣(φqr( fa; R0, tn)− φqr( fa; R0, 0)
)

fr
2 + (φcr( fa; R0, tn)− φcr( fa; R0, 0)) fr

3
∣∣∣. (22)

Then, the total RCM error can be easily expressed as

∆RCM = ∆BRCMC + ∆ESRC. (23)

To provide a more intuitive visualization of the accuracy of the BRCMC and ERC,
we conducted a simulation of the ∆RCM using the parameters listed in Table 1, as shown
in Figure 8. The AIT is set to 0.2 s, 0.5 s, and 1.0 s, respectively, to compare their spatial-
variant properties. Inspecting Figure 8a–c, it can be observed that the ∆RCM increases with
increasing tn and is far less than 1 m. This demonstrates that the accuracy of the BRCMC
and ERC is applicable for HSHS-SAR with the curved trajectory.

(a) (b) (c)

Figure 8. ∆RCM of BRCMC and ESRC. (a) tn = 0.2 s. (b) tn = 0.5 s. (c) tn = 1.0 s.

5. Azimuth Compression Based on the MFNCS Algorithm
5.1. Zero-Padding and Cascade Processing

Basically, the MFNCS operation will cause the extension of the signal time-width by
adding a perturbation factor (PF). Hence, in order to avoid imaging aliasing, the zero-
padding operation should be adopted in the azimuth time domain before azimuth process-
ing, and the azimuth zero-padding analysis can be seen in [27]. Herein, the zero-padding
factor can be set to 2 or 4 for high-squint angle.

Due to the SVAPC operation with a fifth-order phase filter, the spatial-variant con-
tinuity of the azimuth time phase φaz is broken, impairing the applicability of the FNCS
function. Thus, it is necessary to implement a cascade factor (CF) to eliminate the effect of
the SVAPC on φaz. Then, according to (16), the CF term can be obtained by

HCF(ta; R0) = exp

(
j
4π

λ

5

∑
i=3

Lita
i

)
. (24)
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Then, the signal after the cascade processing can be expressed as

ss4(tr, ta; R0, tn) = sinc
[

Br

(
tr −

2K0

c

)]
exp

(
−j

4π

λ

4

∑
i=0

si(ta − tn)
i

)
. (25)

5.2. Azimuth-Dependent Characteristics Evaluation

As can be seen in (25), targets within the same range R0 but at different AIT tn are
focused onto different range cells K0 using the LRWC, SIVAPC, and SVAPC operation.
Thus, in order to fulfil the azimuth unified processing, it is imperative to substitute K0 for
R0 as the new reference range cell. Importantly, the impact of the SIVAPC and SVAPC
should be considered together because of the complicated nonlinear relationship between
K0 and tn. Thus, an extended approximation is established as

K0 ≈ R0 − k10vtn − k20atn
2. (26)

Herein, the cubic and higher order terms of tn in K0 are omitted.
It is important to note that most classical algorithms only consider the effect of the

LRWC by keeping the constant and linear term of K0. For the purpose of analyzing the
accuracy of these two approximations more clearly, their errors of K0 should be compared.
According to (18) and (26), the error of the proposed approximation can be expressed as

∆K =

∣∣∣∣13 k21atn
3 +

1
4

k31atn
4 +

1
5

k41atn
5
∣∣∣∣. (27)

Then, the simulation of ∆K is carried out using the parameters listed in Table 1, where the
range width is set from −1.5 km to 1.5 km and AIT is set from −1.0 s to 1.0 s. The ∆K values
for the proposed and classical approximation are shown in Figure 9a,b, respectively. It is
evident that the accuracy of the proposed approximation is high enough to be applicable.
However, the ∆K of the classical approximation is even larger than a few range cells when
AIT is large. Therefore, the proposed approximation of K0 has better adaptability for
HSHS-SAR with curved trajectory. Additionally, the trend of ∆K in Figure 9 indicates
that the ∆K is not sensitive to range-dependent variability but is strongly influenced by
azimuth-dependent variability.

(a) (b)

Figure 9. Error of K0. (a) ∆K of the proposed approximation. (b) ∆K of the classical approximation.

Suppose that the conditions
∣∣vy
∣∣ ≪ {|vx|, |vz|},

∣∣ay
∣∣ ≪ {|ax|, |az|} are satisfied,

whereby then the spatial variability of σ1 can be neglected. The quadratic Equation (26) can
then be solved, and the solution is

R0 =


K0

2
− δ3tn

2
− δ4tn

2

4

+

√
(2K0 − δ4t2

n)
2 − 8(K0δ3 + 2δ1)tn + 4

(
δ3

2 − 2δ2

)
tn

2 + 4δ3δ4tn
3

4

, (28)
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where δ1 = vyσ1 − vzh, δ2 = ayσ1 − azh, δ3 = vx sin θA, δ4 = ax sin θA.
Then, R0 in (25) is substituted by K0 utilizing (28), and the azimuth signal will be

rewritten as

ss4(tr, ta; K0, tn) = sinc
[

Br

(
tr −

2K0

c

)]
exp

(
−j

4π

λ

4

∑
i=0

di(ta − tn)
i

)
, (29)

where di is related to K0 instead of R0.

5.3. Derivation of MFNCS Algorithm

Before performing the MFNCS operation, the PF of the high-order phase (HOP)
should be embedded in (29) to align the azimuth phase for subsequent uniform processing.
Meanwhile, the highest-order term in (29) is the linear term of its fourth-order phase [47].
Then, in order to adjust the overall phase, the PF of the HOP should be a fifth-order
polynomial. Thus, the filter of the PF can be expressed as

HPF(ta; K0) = exp

(
−j

4π

λ

i=5

∑
i=3

Ci(K0)ta
i

)
, (30)

where Ci (K0) corresponds to each range cell and are required to be determined. Then, we
multiply (30) and (29), and then transform the signal into the azimuth frequency domain
utilizing the POSP and MSR, yielding

sS5(tr, fa; K0, tn) = sinc
(

Br

(
tr −

2K0

c

))
exp(−j

4π J0

λ
) exp(jπφaz1( fa; K0, tn)), (31)

φaz1( fa; K0, tn) =


− 2 fatn +

λ

4J2

(
fa +

2
λ

J1

)2
+

λ2 J3

16J2
3

(
fa +

2
λ

J1

)3

+
λ3α̂

256J2
5

(
fa +

2
λ

J1

)4
+

λ4 β̂

1024 J2
7

(
fa +

2
λ

J1

)5

, (32)

where

K0 = R0 − k10vtn − k20atn
2,

J0 = R0 − k10vtn − k20atn
2 + (C3 − k30a)tn

3 + (C4 − k40a)tn
4 + C5tn

5,

J1 = (3C3 − 3k30a)tn
2 + (4C4 − 4k40a)tn

3 + 5C5 tn
4,

J2 = k20v + (k21a − 3k30a + 3C3 )tn + (k22a − 6k40a + 6 C4)tn
2 + 10C5 tn

3,

J3 = k30v + C3 + (k31a − 4k40a + 4C4)tn + (k32a + 10 C5)tn
2,

J4 = k40v + C4 + (k41a + 5 C5)tn,

J5 = C5,

α̂ = 9J3
2 − 4J2 J4,

β̂ = 4 J5 J2
2 − 24 J4 J2 J3 + 27 J3

3.

For the purpose of simplifying the subsequently expressions, it is needed to expand Ji
using the TS into a polynomial form with respect to tn. Then, Ji can be given as follows

J1 = J12tn
2 + J13tn

3 + J14tn
4,

J2 = J20 + J21tn + J22tn
2 + J23tn

3,

J3 = J30 + J31tn + J32tn
2,

J4 = J40 + J41tn,

(33)
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where Jij denotes the polynomial coefficient of Ji with respect to tn. And, the detailed
expressions of (33) are shown in the Appendix C.

After applying a fifth-order azimuth filter, i.e., the filter of the PF, a fifth-order CS
function is introduced to eliminate the azimuth-dependence of the azimuth FM rate and
higher-order Doppler phase in the azimuth frequency domain. Thus, the filter of MFNCS
can be presented as

HMFNCS( fa; R0, K0) = exp

(
jπ

5

∑
i=2

Si(K0) fa
i

)
, (34)

where Si corresponds to K0 and is to be determined.
Then, we multiply (34) by (31) and transform the signal back into the azimuth time

domain utilizing the POSP and MSR. Also, based on the accuracy analysis of the MAARM,
the azimuth phase of the signal can be expanded to the order corresponding to that of (7)
by the 2-D TS with respect to ta and tn at [ta = 0, tn = 0]. Then, the signal can be fetched by

ss6(tr, ta; K0, tn) = sinc
[

Br

(
tr −

2K0

c

)]
exp(−j

4π J0

λ
) exp(jπ[ξaz(ta; K0, tn)]), (35)

where

ξaz(ta; K0, tn) ≈


A(ta; K0) + B(K0, tn) + C(K0; S2)tatn + D(K0; S2, S3, C3)tatn

2

+ E(K0; S2, S3, C3)ta
2tn + F(K0; S2, S3, S4, C3, C4)ta

2tn
2

+ G(K0; S2, S3, S4, C3, C4)ta
3tn + H(K0; S2, S3, S4, S5, C3, C4, C5)ta

3tn
2

+ I(K0; S2, S3, S4, S5, C3, C4, C5)ta
4tn

. (36)

The completed expression of (36) can be viewed in Appendix D.
The first exponential term of (35) does not affect the derivation of the MFNCS operation

and is independent of ta; hence, it has no impact on azimuth focusing and can be omitted
in the subsequent derivation. Then, the characteristics of (36) should be addressed: the
first term A(ta; K0) is the azimuth unified focusing phase, which is used for subsequent
azimuth compression; the second term B(tn; K0) is independent of ta, which does not
influence the quality of the focusing image, so then it can be neglected in subsequent
derivations; the third term C(K0,S2) is the linear coupling term between ta and tn, which
describes the azimuth position information of the target, so therefore this term should be
maintained; evidently, the other terms of (36) are high-order coupling terms of ta and tn,
which severely impair the quality of azimuth focusing, so hence these terms should be
eliminated. Consequently, the terms of (36) should be set as

C(K0; S2) =
4J20

λη
,

D(K0; S2, S3, C3) = 0,

E(K0; S2, S3, C3) = 0,

F(K0; S2, S3, S4, C3, C4) = 0,

G(K0; S2, S3, S4, C3, C4) = 0,

H(K0; S2, S3, S4, S5, C3, C4, C5) = 0,

I(K0; S2, S3, S4, S5, C3, C4, C5) = 0,

(37)
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where η denotes the NCS factor, which must be chosen to be around 0.5 for reducing the
geometric distortion of the target position. By solving (37), undetermined coefficients in (30)
and (34) can be ascertained as

C3 =

4
∑

i=0
C3−iK0

i−5

6(2η − 1)
, C4 =

8
∑

i=0
C4−iK0

i−7

24(2η − 1)2ε1
, C5 =

12
∑

i=0
C5−iK0

i−9

40(2η − 1)3ε1
2

, (38)

S2 = −K0
3λ(2η−1)

2ε1
, S3 =

λ2
4
∑

i=0
S3−iK0

i+4

12ε1
3 , S4 =

λ3
8
∑

i=0
S4−iK0

i+5

96(2η−1)ε1
5 , S5 =

λ4
12
∑

i=0
S5−iK0

i+6

960(2η−1)2ε1
7 . (39)

And, the specific expressions of (38) and (39) are given in Appendix E.
After incorporating (38) and (39) into (35) and ignoring the exponential terms that do

not affect the focusing quality, the signal can be rewritten as

ss6(tr, ta; K0, tn) = sinc
(

Br

(
tr −

2K0

c

))
exp(jπ(A(K0, ta) + C(K0, S2)tatn)), (40)

where

A(ta; K0) =
5

∑
i=2

Pita
i, C(K0; S2) =

4J20

λη
. (41)

According to (41), the filter of azimuth unified compression can be obtained by

HAC(ta; K0) = exp(−jπA(ta; K0)) = exp

(
−jπ

5

∑
i=2

Pita
i

)
. (42)

Finally, transform the signal after azimuth compression into the azimuth frequency
domain, and the ultimate focusing signal can be acquired as

sS7(tr, fa; R0, K0, tn) =


sinc

[
Br

(
tr −

2K0

c

)]
sinc

[
Ta

(
fa −

2J20

λα
tn

)]
× exp(−j

4π J0

λ
) exp(jπB(tn))

, (43)

where the exponential terms of (43) have no implications on the focusing quality since they
are irrelevant to ta. Thus, the final focusing position of the target Q on the slant plane is
given as

Q̂
(

K0,
2J20

λη
tn

)
. (44)

And, the flowchart of the proposed method is shown in Figure 10.
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Figure 10. Flowchart of the proposed algorithm.

6. Simulation Results
6.1. Simulation Scenario 1

This subsection depicts a simulation experiment to confirm the effectiveness of the
proposed algorithm. The key simulation parameters are listed in Table 1. In addition,
windowing is not used in the processing to suppress the sidelobe. As illustrated in Figure 11,
the five point targets are distributed in cross shape in this scenario. Point targets are 250 m
apart in the X and Y directions. The imaging result of the proposed algorithm is displayed
in Figure 12. The range-azimuth resolution is about 1.5 m × 3.0 m.

Figure 11. Distribution of the cross-shaped point targets.
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Figure 12. Imaging results of the cross-shaped point targets based on the proposed algorithm.

To elucidate the processing impact of the proposed algorithm, the processing results
of several key steps are displayed in Figures 13 and 14. Results are provided for a variety
of domains, including 2D time domain, range-frequency and azimuth-time domain, range-
time and azimuth-frequency domain, and 2D frequency domain.

Figure 13. Processing results of key steps before azimuth processing in different domains based on
the proposed algorithm.
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Figure 14. Processing results of key steps in azimuth processing in different domains based on the
proposed algorithm.

The processing results of key steps before azimuth processing are shown in Figure 13.
As can be seen in the first two rows of Figure 13, the major influence of the highly squint
angle is abolished in the following LWRC operation. The 2D spectrum shows that most
effects of acceleration are removed after SVAPC. In order to further analyze the validity of
RCMC and ESRC, the last three subfigures in the third column of Figure 13, i.e., the image
by using LWRC, SVAPC, and ESRC operations in the range-time and azimuth-frequency
domain, are partially magnified, as shown in Figure 15. The red boxes in the three images
above are the magnified portions. And, the signal is obviously focused on a single range cell
during ESRC processing, meaning that range cell migration has been completely corrected.

Meanwhile, Figure 14 displays the processing results of important azimuth processing
stages. After MFNCS processing, the 2D time-domain signal is broadened in the azimuth
dimension. Hence, prior to azimuth processing, a zero-padding step is required. After
AC, the signal is finally well-focused in the azimuth-frequency and range-time domain, as
shown in Figure 12.

6.2. Simulation Scenario 2

To further verify the effectiveness and superiority of the proposed algorithm, a com-
parison simulation experiment between the proposed method and the tandem TNCS
algorithm [48] is implemented in this subsection. The conditions and parameters of this
simulation experiment are the same as the experiment in Section 6.1. The 5 × 5 target array
(ground range × azimuth) with a scene size of 500 m × 500 m (ground range × azimuth) is
set on the ground uniformly, as shown in Figure 16. Subsequently, in order to evaluate the
imaging quality of the proposed method, five targets are selected, which are distributed
both in the center and on the edge of the scene, as shown in Figure 17.
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(a) (b) (c)

Figure 15. Magnified image after LWRC, SVAPC, and ESRC operation in range-time and azimuth-
frequency domain. (a) Magnified image after LRWC. (b) Magnified image after SVAPC. (c) Magnified
image after ESRC.

Their contour plots, processed by the proposed algorithm and the tandem TNCS
algorithm, are given in Figure 18. The top subfigures of Figure 18 show that all targets,
except for the center point target C, which are treated by the tandem TNCS algorithm, are
extremely defocused in the azimuth dimension. This azimuth defocusing can be attributed
to the tandem TNCS algorithm’s failure to account for the impact of APC on K0. Then,
while considering this impact, the proposed algorithm improves the accuracy of the ISRH
and utilizes a fifth-order CS function for FNCS operation, thereby greatly enhancing the
quality of azimuth imaging. Thus, it can be seen in the bottom subfigures of Figure 18 that
all targets, which are processed by the proposed algorithm, are well focused in both range
and azimuth dimension.

In order to further analyze the azimuth focusing quality of these two algorithms,
the azimuth profiles of point targets are compared, as shown in Figure 19. The top and
bottom figures of Figure 19 are azimuth profiles processed by tandem TNCS algorithm
and the proposed algorithm, respectively. By conducting a comparative analysis of the
results obtained from these two figures, it becomes evident that the proposed algorithm
demonstrates superiority over the tandem TNCS algorithm.

Furthermore, the range resolution is approximately 1.5 m. Additionally, to further
analyze the performance of the proposed algorithm, the evaluations of the azimuth per-
formance based on the proposed algorithm and the reference algorithm are presented in
Tables 2 and 3, respectively. It is evident from Table 2 that the proposed approach performs
exceptionally well in imaging. The azimuth resolution (AR) is about 3.0 m, and the peak
sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) of point targets closely match
the theoretical value of the Sinc function. Regarding the reference algorithm, only the
performance metrics for point target C, as indicated in Table 3, match the theoretical values.
Stated otherwise, the reference algorithm achieved excellent focusing on the core point
target, leaving the edged point targets totally unfocused. It can be concluded that the
proposed algorithm has excellent superiority over the reference algorithm and is very
suitable for the simulation scenario.
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Figure 16. Distribution of targets array.

Figure 17. Imaging results of total scene based on the proposed algorithm.

Table 2. Azimuth performance evaluation based on the proposed algorithms.

Performance Metrics
Point Target

A B C D E

Azimuth Resolution/m 3.09 3.04 3.06 3.06 3.17
PSLR/dB −13.27 −13.13 −13.39 −13.26 −13.03
ISLR/dB −10.28 −10.07 −10.39 −10.25 −10.02
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Figure 18. Contour plots of targets A to E processed by tandem TNCS algorithm and the proposed
algorithm. The (top) and (bottom) are processed by tandem TNCS algorithm and the proposed
algorithm, respectively.
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Figure 19. Azimuth profiles of targets A to E processed by tandem TNCS algorithm and the proposed
algorithm. The (top) and (bottom) are processed by tandem TNCS algorithm and the proposed
algorithm, respectively.

Table 3. Azimuth performance evaluation based on the reference algorithm.

Performance Metrics
Point Target

A B C D E

Azimuth Resolution/m / / 3.06 / /
PSLR/dB −1.89 −1.85 −13.23 −2.47 −0.96
ISLR/dB 0.09 −0.28 −10.38 −1.22 −0.43

7. Discussion and Analysis
7.1. Fifth-Order CS Function Applicability Analysis

As described in Section 2.2, ki of (4) can only be expanded into an i-th polynomial with
respect to tn, meaning that there exists an (i-1)-order azimuth SV phase of the i-th order
azimuth phase. Then, as stated in [47], in order to fulfill the application conditions of the
NCS processing, the azimuth NCS processing should make approximations, i.e., ignore
the comparatively higher-order SV phase. After that, the relatively lower-order azimuth
SV phases can be compensated. For example, for the 4th-order CS function, its NCS
processing can compensate several parts: (i) the linear part of the 3rd-order azimuth SV
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phase; (ii) the linear and quadratic parts of the second-order azimuth SV phase; (iii) the
linear, quadratic, and cubic parts of the first-order azimuth SV phase. And it ignores the
portion of other higher-order phases. Naturally, the 5th-order NCS function can adjust
to the higher resolution requirement because its higher-order azimuth SV phase can be
compensated more than that of the 4th-order CS function.

On the other hand, the squint angle, synthetic aperture time, azimuth imaging breadth,
and other variables affect the azimuth SV phase. In the meantime, the higher-order SV
phase will unavoidably be ignored by the NCS processing. Therefore, the imaging quality
of the NCS algorithm degrades with increasing squint angle and azimuth imaging width.
The higher the geometric squint angle, the smaller the azimuth imaging width that may
be accommodated by the proposed MFNCS method which is based on a 5th-order CS
function. As stated above, the 500 m azimuth imaging width can be accommodated when
the geometric squint angle is about 50°.

Subsequently, an approximation, i.e.,
∣∣vy
∣∣ ≪ {|vx|, |vz|} and

∣∣ay
∣∣ ≪ {|ax|, |az|}, is

made in the azimuth NCS processing using the suggested MFNCS method, which is based
on a 5th order CS function. This indicates that the suggested algorithm is unable to adjust
to the situation in which vy/vx, vy/vz, ay/ax, and ay/az are too large. Fortunately, the effect
of this approximation can be mitigated by the velocity and acceleration vector synthesis.

7.2. Geometric Distortion Analysis

According to the derivation of the MFNCS, the target Q is focused at the location
(K0, 2J20

λη tn) on the slant plane, and the relationship between K0 and R0 is

K0 = R0 − k10vtn − k20atn
2 − 1

3
k21atn

3 − 1
4

k31atn
4 − 1

5
k41atn

5. (45)

Thus, there is a nonlinear distortion in the focused range position, and the magnitude of
range distortion can be obtained as

D∆R =

∣∣∣∣k10vtn + k20atn
2 +

1
3

k21atn
3 +

1
4

k31atn
4 +

1
5

k41atn
5
∣∣∣∣. (46)

And, the azimuth position also has a retractable distortion due to the NCS factor and
J20, and the flexible factor of azimuth distortion can be given as

D∆tn =
2J20

λη
. (47)

By observing J20, the azimuth distortion is associated with K0, indicating that the geometric
distortion is coupled in two dimensions. Therefore, based on (46) and (47), the geometric
correction should be implemented using 2-D Sinc interpolation, taking into account the
2-D distortion simultaneously [52].

7.3. Computational Complexity Analysis

As mentioned above, the proposed method mainly includes three procedures: (1) pre-
processing of the MFNCS algorithm; (2) range focusing via the SVAPC operation; (3) az-
imuth compression based on the MFNCS algorithm. Then, in order to further analyze the
efficiency of the proposed algorithm, a detailed discussion of computational complexity is
presented here.

Assume that the SAR echo data is of Nr × Na pixels, where Nr and Na denote the
sample points of the range and azimuth dimension, respectively. The zero-padding factor is
supposed to be n in the azimuth dimension, and thus the signal data after the zero-padding
operation is of Nr × nNa pixels. Characteristically, all operations of the proposed algorithm
contain only FFTs and complex multiplication, as shown in Figure 10. Moreover, the
imaging algorithm before the zero-padding operation includes six complex multiplications,
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two range FFTs, and two azimuth FFTs, and it consists of four complex multiplications and
three azimuth FFTs after the zero-padding operation.

According to the computer operating rules, for a data of N1 × N2 pixels, the com-
putation complexity of each complex multiplication is O(6N1N2), and the computation
complexity of each FFT can be given as O[5N1N2log2(N1/2)]. Consequently, the computa-
tion complexity of the entire procedure can be calculated as

CMFNCS = O
[
12(3 + 2n)Nr Na + 5Nr Nalog2

(
n3nNr

2Na
3n+2

)]
. (48)

The zero-padding factor is usually set to 2 or 4 [27], which already satisfies most of the
high-squint application scenarios.

The processing times of the reference method, the proposed algorithm, and the back-
projection algorithm are 13.63 s, 32.96 s, and 460.07 s, respectively, when the echo data size
is Nr × Na = 4096 × 3584 and the zero-padding factor is 2. We implement the algorithms
on a laptop with an i7-10750H and 128 GB memory. It is evident that the frequency-
domain algorithm has a better efficiency than the time-domain method does. The proposed
algorithm employs higher-order CS functions for NCS processing, meaning that higher-
order filters need to be generated for azimuth processing, and this operation brings higher
computational complexity. Fortunately, the complexity is still within an acceptable scope,
and the computational efficiency can be further improved by code optimization or filter
pre-generation.

8. Conclusions

In this paper, a MFNCS algorithm with a fifth-order CS function was proposed for
HSHS-SAR with curved trajectory. First, a MAARM has been established to enhance
the accuracy of the ISRH, and the 3-D acceleration was regarded as a parameter in the
theoretical signal model. Then, a preprocessing of the proposed algorithm was depicted,
which combines the FRC, LRWC, and SIVAPC to largely eliminate the effects of the LFM
signal, high-squint angle, and 3-D acceleration on 2-D FS, respectively. Afterwards, range
focusing has been accomplished by the SVAPC, BRCMC, and ESRC. Subsequently, the
azimuth-dependent characteristics evaluation, which is influenced by the SIVAPC and
SVAPC, was conducted to derive an MFNCS algorithm with a fifth-order CS function for
azimuth compression. Consequently, the final image has been focused on the range time
and azimuth frequency domain. Under a 50◦ geometric squint angle and 500 m × 500 m
imaging width, the HSHS-SAR imagery with the range-azimuth resolution of 1.5 m × 3.0 m
has been obtained by simulation experiment. Furthermore, by comparing the proposed
algorithm with the reference algorithm, the superiority of the proposed algorithm in the
simulated scenario has been demonstrated.
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Appendix A

According to the Taylor expansion formula, and in order to simplify the expression,
set

σ1 =

√
R0

2cos2θA − h2, σ2 = R0 sin θA,

σ3 = axvx + ayvy + azvz, σ4 = ax
2 + ay

2 + az
2,

σ5 = vx
2 + vy

2 + vz
2, σ6 = −vzh + vyσ1 + vxσ2,

σ7 = −azh + ayσ1 + axσ2.

(A1)

Then, the detailed coefficients ki, which is obtained by the TS, can be derived as

k1(R0; tn) = − σ6

R0
− σ7

R0
tn,

k2(R0; tn) = −
σ2

6

2R0
3 +

σ5

2R0
− σ7

2R0
+

(
σ3

R0
− σ7σ6

R0
3

)
tn +

(
σ4

2R0
− σ7

2

2R0
3

)
tn

2,

k3(R0; tn) =


σ6σ5

2R0
3 − σ6

3

2R0
5 +

σ3

2R0
− σ6σ7

2R0
3 +

(
σ4

2R0
− 3σ7σ6

2

2R0
5 +

σ7σ5 − σ2
7 + 2σ3σ6

2R0
3

)
tn

+

(
σ6σ4 + 2σ3σ7

2R0
3 − 3σ7

2σ6

2R0
5

)
tn

2 +

(
σ7σ4

2R0
3 − σ7

3

2R0
5

)
tn

3

,

k4(R0; tn) =



− σ5
2

8R0
3 +

3σ6
2σ5

4R0
5 − 5σ6

4

8R0
7 +

σ4

8R0
+

σ3σ6

2R0
3 − σ7

2 − 2σ5σ7

8R0
3 − 3σ6

2σ7

4R0
5

+

(
3
(
σ3σ6

2 − σ7
2σ6 + σ7σ6σ5

)
2R0

5 − 5σ7σ6
3

2R0
7 +

(σ6σ4 + 2σ3σ7 − σ3σ5)

2R0
3

)
tn

+

((
3σ7σ4 − 2σ3

2 − σ4σ5
)

4R0
3 − 15σ7

2σ6
2

4R0
7 +

3
(
σ6

2σ4 − σ7
3 + σ7

2σ5 + 4σ3σ7σ6
)

4R0
5

)
tn

2

+

(
3
(
σ3σ7

2 + σ7σ6σ4
)

2R0
5 − σ3σ4

2R0
3 − 5σ7

3σ6

2R0
7

)
tn

3 +

(
3σ7

2σ4

4R0
5 − 5σ7

4

8R0
7 − σ4

2

8R0
3

)
tn

4



.

(A2)

Observing (A2), it is seen that kijv contains only σ5 and σ6, but kija comprises all the
variables of (A1), thus (A2) can be decomposed as

k1(R0; tn) = k10v + k11atn,

k2(R0; tn) = k20v + k20a + k21atn + k22atn
2,

k3(R0; tn) = k30v + k30a + k31atn + k32atn
2 + k33atn

3,

k4(R0; tn) = k40v + k40a + k41atn + k42atn
2 + k43atn

3 + k44atn
4,

(A3)
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where

k10v = − σ6

R0
, k11a = − σ7

R0
;

k20v =
σ5

2R0
− σ6

2

2R0
3 , k20a = − σ7

2R0
,

k21a =
σ3

R0
− σ7σ6

R0
3 , k22a =

σ4

2R0
− σ7

2

2R0
3 ;

k30v =
σ6σ5

2R0
3 − σ6

3

2R0
5 , k30a =

σ3
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− σ6σ7

2R0
3 ,
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Appendix B

According to (18), the FFT of it can be obtained by the POSP and MSR, and the detailed
expression of (19) is shown as follows:

φaz( fa; R0, tn) = −4K0

λ
− 2 fatn +

λ

4K2
Y2 +

λ2K3

16K2
3 Y3 +

λ3α

256K2
5 Y4 +

λ4β

1024K2
7 Y5, (A5)

φrcm( fa; R0, tn) =


K1

fcK2
Y −

λ
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2K2
2 − 3K1K3

)
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2048K2
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, (A6)

φqr( fa; R0, tn) =
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φcr( fa; R0, tn) =
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where
Y = fa +

2
λ

K1,

α = 9K3
2 − 4K2K4,

β = 4K5K2
2 − 24K4K2K3 + 27K3

3.

Appendix C

According to (28) and (32), Jij can be obtained by using TS as
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2K0
+

2 δ2δ4 − 2 δ4σ5 − 7 δ3σ3 + 9 δ3
2δ4

2K0
2 +

15 δ1
2δ2

2K0
5

+
δ2

2 + 12 δ2δ3
2 − 2 σ5δ2 + 21δ1δ3δ4 − 7 δ1σ3

2K0
3 +

12 δ1
2δ4 + 27 δ1δ2δ3

2K0
4

,

J14 =



5C5 +
5 δ3δ4

2 − 3 σ3δ4 − 2 σ4δ3

4K0
2 +

3
(

13δ1
3δ4 + 46 δ1

2δ2δ3

)
2K0

6

+
8 δ1δ4

2 − 3 δ2σ3 − 2 δ1σ4 + 30 δ3
3δ4 − 22 σ3δ3

2δ4 + 17δ2δ3δ4 − 8 σ5δ3δ4

4K0
3

+
12 δ2

2δ3 + 54 δ2δ3
3 − 12 σ5δ2δ3 + 23 δ1δ2δ4 + 132 δ1δ3

2δ4 − 58 δ1δ3σ3 − 8 δ1δ4σ5

4K0
4

+
3
(

60δ1
2δ3δ4 − 12 σ3δ1

2 + 5 δ1δ2
2 + 72 δ1δ2δ3

2 − 4 σ5δ1δ2

)
4K0

5 +
57 δ1

3δ2

2K0
7



;

(A9)
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J20 =
σ5

2K0
− (δ1 + K0δ3)

2

2K0
3 ,

J21 = 3C3 +
δ3δ4 − σ3

2K0
+

δ1δ4 − δ3
3 + δ2δ3 + σ5δ3

2K0
2 − 5δ1δ3

2 − δ1δ2 − δ1σ5

2K0
3 − 7δ1

2δ3

2K0
4 − 3δ1

3

2K0
5 ,

J22 =



− 6C4 +
σ4 − δ4

2

4K0
+

5δ4σ5 − 2δ2δ4 + 14σ3δ3 − 19δ3
2δ4

4K0
2

+
5σ5δ2 − δ2

2 − 21δ2δ3
2 + 2δ3

4 − 2σ5δ3
2 − 38δ1δ3δ4 + 14δ1σ3

4K0
3

+
18δ1δ3

3 − 19δ1
2δ4 − 42δ1δ2δ3 − 6δ1δ3σ5

4K0
4 +

48δ1
2δ3

2 − 4δ1
2σ5 − 21δ1

2δ2

4K0
5 +

25δ1
3δ3

2K0
6 +

9δ1
4

2K0
7


,

J23 =



− 10C5 +
−2δ3δ4

2 + σ3δ4 + σ4δ3

4K0
2 +

δ1σ4 + δ2σ3 − 3δ1δ4
2 − 36δ3

3δ4 + 26δ3
2δ4 − 7δ2δ3δ4 + 10σ5δ3δ4

4K0
3

+
−5δ2

2δ3 − 57δ2δ3
3 + 15σ5δ2δ3 − 9δ1δ2δ4 + 2δ3

5 − 2σ5δ3
3 − 141δ1δ3

2δ4 + 66δ1δ3σ3 + 9δ1δ4σ5

4K0
4

+
20σ3δ1

2 − 86δ1
2δ3δ4 − 3δ1δ2

2 − 103δ1δ2δ3
2 + 7σ5δ1δ2 + 14δ1δ3

4 − 6σ5δ1δ3
2

2K0
5

+
120δ1

2δ3
3 − 67δ1

3δ4 − 239δ1
2δ2δ3 − 20δ1

2δ3σ5

4K0
6 +

110δ1
3δ3

2 − 5δ1
3σ5 − 45δ1

3δ2

2K0
7 +

91δ1
4δ3

2K0
8 +

14δ1
5

K0
9


;

(A10)

J30 = C3 +
σ5(δ1 + K0δ3)

2K0
3 − (δ1 + K0δ3)

3

2K0
5 ,

J31 =


4C4 +

3δ3
2δ4 − 2 δ3σ3 − δ4σ5

2K0
2 +

3δ2δ3
2 − δ2σ5 − 2δ3

4 − 2δ1σ3 + 2σ5δ3
2 + 6δ1δ3δ4

2K0
3

+
3δ1

2δ4 − 11δ1δ3
3 + 6δ1δ2δ3 + 5δ1δ3σ5

2K0
4 +

3
(

δ1
2δ2 + δ1

2σ5 − 7δ1
2δ3

2
)

2K0
5 − 17δ1

3δ3

2K0
6 − 5δ1

4

2K0
7

,

J32 =



10C5 +
−6δ3δ4

2 + 4σ3δ4 + 2σ4δ3

4K0
2 +

2δ1σ4 + 4δ2σ3 − 6δ1δ4
2 + 10δ3

3δ4 − 8σ3δ3
2 − 12δ2δ3δ4 − 2σ5δ3δ4

4K0
3

+
16δ2δ3

3 − 6δ2
2δ3 − 4σ5δ2δ3 − 12δ1δ2δ4 − 6δ3

5 + 6σ5δ3
3 + 39δ1δ3

2δ4 − 20δ1δ3σ3 − δ1δ4σ5

4K0
4

+
48δ1

2δ3δ4 − 12σ3δ1
2 − 6δ1δ2

2 + 57δ1δ2δ3
2 − 3σ5δ1δ2 − 52δ1δ3

4 + 28σ5δ1δ3
2

4K0
5

+
19δ1

3δ4 − 160δ1
2δ3

3 + 66δ1
2δ2δ3 + 40δ1

2δ3σ5

4K0
6 +

25δ1
3δ2 + 18δ1

3σ5 − 228δ1
3δ3

2

4K0
7 − 77δ1

4δ3

2K0
8 − 10δ1

5

K0
9


;

(A11)

J40 = C4 −
σ5

2

8K0
3 +

3σ5(δ1 + K0δ3)
2

4K0
5 − 5(δ1 + K0vxδ3)

4

8K0
7 ,

J41 =



5C5 +
2σ3δ4 − 3δ3δ4

2 + σ4δ3

2K0
2 +

δ1σ4 + 2δ2σ3 − σ3σ5 − 3δ1δ4
2 − 5δ3

3δ4 + 3δ3
2δ4 − 6δ2δ3δ4 + 3δ3δ4σ5

2K0
3

+

(
12δ2δ3σ5 − 12δ2

2δ3 − 20δ2δ3
3 − 24δ1δ2δ4 − 3σ5

2δ3

+ 18σ5δ3
3 + 12δ1δ4σ5 − 15δ3

5 − 60δ1δ3
2δ4 + 24δ1δ3σ3

)
8K0

4 +

(
12σ3δ1

2 − 60δ1
2δ3δ4 − 12δ1δ2

2 + 12δ1δ2σ5

− 60δ1δ2δ3
2 − 3δ1σ5

2 + 66δ1δ3
2σ5 − 95δ1δ3

4

)
8K0

5

+
39δ1

2δ3σ5 − 10δ1
3δ4 − 30δ1

2δ2δ3 − 115δ1
2δ3

3

8K0
6 +

15δ1
3σ5 − 10δ1

3δ2 − 135δ1
3δ3

2

4K0
7 − 155δ1

4δ3

8K0
8 − 35δ1

5

8K0
9


.

(A12)
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Appendix D

According to (34) and (31), the signal in the azimuth frequency domain can be ex-
pressed as

sS5(tr, fa; K0, tn) = sinc
(

Br

(
tr −

2K0

c

))
exp(−j

4π J0

λ
) exp(jπφaz2( fa; K0, tn)), (A13)

φaz2( fa; tn, K0) = −2 fatn +
5

∑
i=0

Di

(
fa +

2
λ

J1

)i
, (A14)

where

D0 =
4

λ2 J1
2S2 −

8
λ3 J1

3S3 +
16
λ4 J1

4S4 −
32 J1

5

λ5 S5,

D1 = − 4
λ

J1S2 +
12
λ2 J1

2S3 −
32
λ3 J1

3S4 +
80 J1

4

λ4 S5,

D2 =
λ

4J2
+ S2 −

6
λ

J1S3 +
24
λ2 J1

2S4 −
80 J1

3

λ3 S5,

D3 =
λ2 J3

16J2
3 + S3 −

8
λ

J1S4 +
40 J1

2

λ2 S5,

D4 =
λ3α̂

256J2
5 + S4 −

10 J1

λ
S5, D5 =

λ4 β̂

1024 J2
7 + S5.

Transform the signal into the azimuth time domain by the POSP and MSR, and the
signal in the 2-D time domain can be obtained by

ss6(tr, ta; K0, tn) = sinc
(

Br

(
tr −

2K0

c

))
exp(−j

4π J0

λ
) exp(jπξaz(ta; K0, tn)), (A15)

ξaz(ta; K0, tn) =
5

∑
i=0

Di

(
4

∑
k=1

ckZk

)i

+ 2(ta − tn)

 5

∑
i=0

Di

(
4

∑
k=1

ckZk

)i

− 2J1

λ

, (A16)

where
Z = 2(ta − tn) + D1,

c1 = − 1
2D2

,

c2 = − 3D3

8D2
3 ,

c3 = −9D3
2 − 4D2D4

16D2
5 ,

c4 = −20 D5D2
2 − 120 D4D2D3 + 135 D3

3

128 D2
7 .

According to the accuracy analysis of (7), the main components of (A16) are the same
as the terms of the MAARM, so it should be expanded into the order corresponding to that
of (7) by the 2-D TS with respect to ta and tn at [ta = 0, tn = 0]. Then, the azimuth phase can
be rewritten as shown in (36), and the detailed expression is given as
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A(ta; K0) =
5

∑
i=2

Pita
i,

C(K0; S2) = 8 J20χ−1,

D(K0; S2, S3, C3) = −4χ−3
2

∑
i=0

Uiλ
i,

E(K0; S2, S3, C3) = 4χ−3
2

∑
i=0

Eiλ
i,

F(K0; S2, S3, S4, C3, C4) = 4χ−5
4

∑
i=0

Fiλ
i,

G(K0; S2, S3, S4, C3, C4) = −4χ−5
4

∑
i=0

Giλ
i,

H(K0; S2, S3, S4, S5, C3, C4, C5) = −4χ−7
6

∑
i=0

Hiλ
i,

I(K0; S2, S3, S4, S5, C3, C4, C5) = −4χ−7
6

∑
i=0

Iiλ
i,

(A17)

with
χ = λ + 4 J20 S2,

P2 = − 2 ε1(
2 S2ε1 − K0

3 λ
) ,

P3 = −
4
(

2S3ε1
3 − K0

9 λ2 ε3

)
(

2 S2ε1 − K0
3 λ
)3 ,

P4 = 2


(

8S4ε1
5 − K0

15 λ3 ε5

)
ε1

(
2 S2ε1 − K0

3 λ
)4 −

9
(

2 S3ε1
3 − K0

9 λ2ε3

)2

ε1

(
2 S2ε1 − K0

3 λ
)5

,

P5 = −4


(

8S5ε1
7 − K0

21λ4ε6

)
ε1

2
(

2 S2ε1 − K0
3 λ
)5 +

27
(

2 S3ε1
3 − K0

9 λ2ε3

)3

ε1
2
(

2 S2ε1 − K0
3 λ
)7 −

6
(

8 S4ε1
5 − K0

15 λ3 ε5

) (
2 S3ε1

3 − K0
9 λ2ε3

)
ε1

2
(

2 S2ε1 − K0
3 λ
)6

,

where
ε1 = ε2

2 − σ5K0
2, ε2 = δ1 + K0δ3,

ε3 = C3 +
σ5ε2

2K0
3 − ε2

3

2K0
5 , ε4 = C4 −

σ5
2

8K0
3 +

3σ5ε2
2

4K0
5 − 5ε2

4

8K0
7 ,

ε5 = 9ε3
2 +

2ε1ε4

K0
3 , ε6 = 27ε3

3 +
12ε3ε1ε4

K0
3 +

C5ε1
2

K0
6 .



Remote Sens. 2024, 16, 1588 30 of 35

Here, in order to save paper space, no specific expression is given for the second term
of (36) and some terms of (A17).

Appendix E

According to (37), the specific expressions of (38) and (39) are rendered as

C3−0 = −3δ1
3,

C3−1 = −7δ1
2δ3,

C3−2 = δ1σ5 − 5δ1δ3
2 + (1 − 6η)δ1δ2,

C3−3 = δ3σ5 − δ3
3 + (1 − 6η)(δ1δ4 + δ2δ3),

C3−4 = (1 − 6η)(δ3δ4 − σ3);

S3−0 = 6δ1
3η,

S3−1 = 2δ1
2δ3(7η − 1),

S3−2 = 2δ1δ3
2(5η − 2) + δ1δ2(4η − 1)− 2δ1σ5(η − 1),

S3−3 = (η − 1)
(

δ3
3 − 2δ3σ5

)
+ (δ2δ3 + δ1δ4)(4η − 1),

S3−4 = (4η − 1)(δ3δ4 − σ3);

(A18)

C4−0 = −3δ1
6(22η − 5),

C4−1 = δ1
5δ3

(
8η2 − 310η + 81

)
,

C4−2 = −δ1
4
{
−180δ3

2 + 9δ2 + 24σ5 +
(

588δ3
2 − 72δ2 − 68σ5

)
η +

(
−32δ3

2 + 180δ2 + 40σ5

)
η2
}

,

C4−3 = −δ1
3
{

9δ1δ4 + 36δ2δ3 + 84δ3σ5 − 210δ3
3 +

(
572δ3

3 − 296δ2δ3 − 208δ3σ5 − 68δ1δ4

)
η + O

(
η2
)}

,

C4−4 = δ1
2

135δ3
4 − 108δ3

2σ5 − 54δ2δ3
2 − 36δ1δ4δ3 + 9σ5

2 + 12δ2σ5 + 6δ1σ3

+
(

10δ2
2 + 456δ2δ3

2 − 96δ2σ5 − 298δ3
4 + 228δ3

2σ5 + 280δ1δ4δ3 − 18σ5
2 − 52δ1σ3

)
η + O

(
η2
),

C4−5 = δ1

{(
45δ3

5 − 12δ3
3(5σ5 + 3δ2) + 18δ1δ3(σ3 − 3δ3δ4) + 15δ3σ5

2 + 12σ5(δ1δ4 + 2δ2δ3)
)
+ o(η)

}
,

C4−6 =
{

6δ3
6 − 3δ3

4(4σ5 + 3δ2)− 36δ1δ4δ3
3 + 6δ3

2
(

σ5
2 + 3δ1σ3

)
+ 12δ3σ5(δ2δ3 + 2δ1δ4)− 3σ5(δ2σ5 − 2δ1σ3) + o(η)

}
,

C4−7 =


2δ3σ3

(
δ3

2 − σ5

)(
44η2 − 30η + 3

)
− δ3

4δ4

(
108η2 − 76η + 9

)
+ 4η(δ1δ4 + δ2δ3)(4σ3(4η − 1) + δ3δ4(5 − 18η))

+ 4η(δ2δ4σ5 + δ1δ3σ4)(2η − 1) + δ3
2δ4σ5

(
128η2 − 92η + 12

)
− δ4σ5

2
(

20η2 − 16η + 3
)

,

(A19)
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C4−8 = 2η
(
−δ3

2δ4
2(18η − 5) +

(
δ3

2σ4 + δ4
2σ5 − σ4σ5

)
(2η − 1) + 4σ3(2δ3δ4 − σ3)(4η − 1)

)
;

S4−0 = −6δ1
6η(8η − 1),

S4−1 = δ1
5δ3

(
−260η2 + 40η + 9

)
,

S4−2 = δ1
4
(

3
(

11δ3
2 + 3δ2 − 3σ5

)
+ 2η

(
57δ3

2 − 9δ2 − 13σ5

)
+ 4η2

(
22σ5 − 143δ3

2 − 9δ2

))
,

S4−3 = δ1
3


3
(

3δ1δ4 + 8δ2δ3 − 8δ3σ5 + 14δ3
3
)
+ 2η

(
88δ3

3 − 16δ2δ3 − 44δ3σ5 − 7δ1δ4

)
+ 4η2

(
66δ3σ5 − 34δ2δ3 − 11δ1δ4 − 162δ3

3
)

,

S4−4 = δ1
2


3
(
−δ2

2 + 6δ2δ3
2 + 6δ3

4 − 6σ5δ3
2 + 8δ1δ4δ3 − 2δ1σ3

)
+ 2η

(
10δ2

2 + 6δ2δ3
2 − 6δ2σ5 + 77δ3

4 − 60δ3
2σ5 − 8δ1δ4δ3 + 3σ5

2 + 2δ1σ3

)
+ O

(
η2
)
,

S4−5 = δ1


3
(
−2δ2

2δ3 − 2δ1δ4δ2 − δ3
5 + 6δ1δ4δ3

2 + δ3σ5
2 − 2δ1σ3δ3

)
+ 4η

(
10δ2

2δ3 + 12δ2δ3
3 − 6δ2δ3σ5 + 10δ1δ4δ2 + 18δ3

5

− 20δ3
3σ5 + 9δ1δ4δ3

2 + 2δ3σ5
2 − 7δ1σ3δ3 − 4δ1δ4σ5

)
+ O

(
η2
)
,

S4−6 =

3

2
(

σ3δ1δ2 − δ1δ2δ3δ4 + σ3δ1δ3
2 − σ3δ1σ5

)
+
(
(δ1δ4 + δ2δ3)

2 − δ2δ3
4 + δ2σ5

2 − δ3
6 + δ3

4σ5 + δ3
2σ5

2 − σ5
3
)
+ o(η)

,

S4−7 =



3
(

δ4σ5
2 − δ3

4δ4

)
+ 6
(

σ3δ3
3 − δ2δ3

2δ4 − δ1δ3δ4
2 − σ3δ3σ5 + δ2σ3δ3 + δ1σ3δ4

)
+ 2η

(
13δ3

4δ4 − 18δ3
3σ3 − 5δ4σ5

2 + 2δ1δ3σ4 − 22δ1δ4σ3 − 22δ2δ3σ3 + 2δ2δ4σ5

+ 18δ3σ3σ5 + 20δ1δ3δ4
2 + 20δ2δ3

2δ4 − 8δ3
2δ4σ5

)

+ 4η2

(
11δ3

3σ3 − 9δ3
4δ4 + 2δ4σ5

2 − 2δ1δ3σ4 + 20δ1δ4σ3 + 20δ2δ3σ3 − 2δ2δ4σ5

− 11δ3σ3σ5 − 18δ1δ3δ4
2 − 18δ2δ3

2δ4 + 7δ3
2δ4σ5

)


,

S4−8 =


− 3(σ3 − δ3δ4)

2 + 2η
(

10δ3
2δ4

2 + σ4δ3
2 − 22δ3δ4σ3 + σ5δ4

2 + 11σ3
2 − σ4σ5

)
+ 4η2

(
−9δ3

2δ4
2 − σ4δ3

2 + 20δ3δ4σ3 − σ5δ4
2 − 10σ3

2 + σ4σ5

)
;

(A20)

C5−0 = δ1
9
(

32η3 − 532η2 + 220η − 35
)

,

C5−1 = δ1
8δ3

(
352η3 − 3752η2 + 1766η − 295

)
,

C5−2 = −2δ1
7


10
(

55δ3
2 + δ2 − 5σ5

)
+ η

(
−3108δ3

2 + 9δ2 + 277σ5

)
+ 2η2

(
2892δ3

2 − 132δ2 − 233σ5

)
+ 4η3

(
175δ2 − 188δ3

2 + 74σ5

)
,

C5−3 = −2δ1
6


2
(

595δ3
3 − 162δ3σ5 + 35δ2δ3 + 5δ1δ4

)
+ η

(
3δ1δ4 + 91δ2δ3 + 1672δ3σ5 − 6284δ3

3
)

+ 2η2
(

5108δ3
3 − 1292δ3σ5 − 947δ2δ3 − 108δ1δ4

)
+ 4η3

(
370δ3σ5 − 428δ3

3 + 1052δ2δ3 + 157δ1δ4

)
,

C5−4 = −2δ1
5


6δ2

2 + 210δ2δ3
2 − 26δ2σ5 + 1645δ3

4 − 894δ3
2σ5 + 70δ1δ4δ3 + 49σ5

2 − 6δ1σ3

+ η
(
−8024δ3

4 + 4253δ3
2σ5 + 351δ2δ3

2 + 45δ1δ4δ3 − 223σ5
2 − 38δ2σ5 − 3δ1σ3

)
+ o
(

η2
)

,

C5−5 = −2δ1
4

{
30δ2

2δ3 + 350δ2δ3
3 − 130δ2δ3σ5 + 12δ1δ4δ2 + 1505δ3

5 − 1360δ3
3σ5

+ 210δ1δ4δ3
2 + 223δ3σ5

2 − 36δ1σ3δ3 − 26δ1δ4σ5 + o(η)

}
,
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C5−6 = −2δ1
3


6δ1

2δ4
2 − 2σ4δ1

2 + 60δ1δ2δ3δ4 + 350δ1δ3
3δ4 − 130δ1δ3δ4σ5 + 60δ2

2δ3
2

− 12δ2
2σ5 + 350δ2δ3

4 + 22δ2σ5
2 − 260δ2δ3

2σ5 + 910δ3
6 − 1230δ3

4σ5

+ 402δ3
2σ5

2 − 18σ5
3 + 2

(
7δ1σ5 − 45δ1δ3

2 − 2δ1δ2

)
σ3 + o(η)

,

C5−7 = −4δ1
2


175
(

δ1δ3
4δ4 + δ3

7
)
− 130δ3

2σ5(δ2δ3 + δ1δ4)− 18δ2
2δ3σ5 + 179δ3

3σ5
2 − 12

(
δ1δ2δ4σ5 + 2δ3σ5

3
)

+ 5
(

3δ1
2δ3δ4

2 − δ1
2δ3σ4 + 12δ1δ2δ3

2δ4 + 6δ2
2δ3

3 + 21δ2δ3
5
)
+ 11

(
3δ2δ3σ5

2 + δ1δ4σ5
2 − 10δ3

5σ5

)
+ o(η)

,

C5−8 = −δ1



− 520δ1δ3
3δ4σ5 + 132δ1δ3δ4σ5

2 + 60δ2
2δ3

4 − 72δ2
2δ3

2σ5 + 12δ2
2σ5

2 + 140δ2δ3
6 − 260δ2δ3

4σ5

+ 132δ2δ3
2σ5

2 + 120δ1
2δ3

2δ4
2 − 40σ4δ1

2δ3
2 − 24δ1

2δ4
2σ5 + 8σ4δ1

2σ5 + 240δ1δ2δ3
3δ4

− 144δ1δ2δ3δ4σ5 + 420δ1δ3
5δ4 − 12δ2σ5

3 + 155δ3
8 − 388δ3

6σ5 + 314δ3
4σ5

2 − 84δ3
2σ5

3 + 3σ5
4

+
(
−32δ4δ1

2δ3 − 180δ1δ3
4 + 168δ1δ3

2σ5 − 48δ2δ1δ3
2 − 20δ1σ5

2 + 16δ2δ1σ5

)
σ3 + o(η)


,

C5−9 =



24
(

δ2
2δ3

3σ5 − δ1δ2δ4σ5
2 − σ4δ1

2δ3σ5 + δ3
3σ5

3
)
+ 12

(
δ1δ4σ5

3 − δ2
2δ3

5 − δ2
2δ3σ5

2 + δ2δ3σ5
3 − δ1δ3

2δ4σ5
2
)

− 120
(

δ1
2δ3

3δ4
2 + δ1δ2δ3

4δ4 + δ1δ3
2δ4σ5

2
)
+ 40σ4δ1

2δ3
3 + 72δ1

2δ3δ4
2σ5 + 144δ1δ2δ3

2δ4σ5 − 140δ1δ3
6δ4

+ 260δ1δ3
4δ4σ5 − 20δ2δ3

7 + 52δ2δ3
5σ5 − 44δ2δ3

3σ5
2 − 15δ3

9 + 48δ3
7σ5 − 54δ3

5σ5
2 − 3δ3σ5

4

8
(

6δ4δ1
2δ3

2 − 2δ4δ1
2σ5 + 9δ1δ3

5 − 14δ1δ3
3σ5 + 4δ2δ1δ3

3 + 5δ1δ3σ5
2 − 4δ2δ1δ3σ5

)
σ3 + o(η)


,

C5−10 = 4


− 5δ3

7δ4 + 13δ3
5δ4σ5 − 6δ2δ3

5δ4 − 15δ1δ3
4δ4

2 + 5δ1σ4δ3
4 − 11δ3

3δ4σ5
2 + 12δ2δ3

3δ4σ5 + 18δ1δ3
2δ4

2σ5

− 6δ1σ4δ3
2σ5 + 3δ3δ4σ5

3 − 6δ2δ3δ4σ5
2 − 3δ1δ4

2σ5
2 + δ1σ4σ5

2(
3δ3

6 − 7δ3
4σ5 + 2δ2δ3

4 + 8δ1δ4δ3
3 + 5δ3

2σ5
2 − 4δ2δ3

2σ5 − 8δ1δ4δ3σ5 − σ5
3 + 2δ2σ5

2
)

σ3 + o(η)


C5−11 = 2

{
2
(

δ3

(
σ4 − 3δ4

2
)(

δ3
2 − σ5

)2
+ σ3δ3

2δ4

(
δ3

2 − 2σ5

)
+ σ5(σ3δ4σ5)

)
+ o(η)

}
,

C5−12 = 2η(σ3 − δ3δ4)

δ3
2δ4

2 − σ4δ3
2 − σ5δ4

2 + σ4σ5

+ 2
(

5σ4δ3
2 − 9δ3

2δ4
2 + 8δ3δ4σ3 + 5σ5δ4

2 − 4σ3
2 − 5σ4σ5

)
η + o(η)

;

(A22)

S5−0 = 3δ1
9
(

128η3 + 132η2 − 150η + 35
)

,

S5−1 = 3δ1
8δ3

(
1120η3 + 1168η2 − 1316η + 295

)
,

S5−2 = 2δ1
7


30
(

58δ3
2 + δ2 − 5σ5

)
+ η

(
+741σ5 − 7844δ3

2 − 153 δ2

)
+ 2η2

(
3420δ3

2 + 69δ2 − 321σ5

)
+ 4η3

(
1616δ3

2 + 87δ2 − 165σ5

)
,

S5−3 = 2δ1
6


30δ1δ4 + 345δ2δ3 − 1152δ3σ5 + 4140δ3

3 + 2η
(

81δ1δ4 + 660δ2δ3 − 2118δ3σ5 + 7748δ3
3
)

+ 4η2
(

93δ1δ4 + 604δ2δ3 − 1029δ3σ5 + 3576δ3
3
)
+ 4η3

(
372δ1δ4 + 2416δ2δ3 − 4116δ3σ5 + 14304δ3

3
)
,

S5−4 = 2δ1
5


3
(

21δ2
2 + 450δ2δ3

2 − 71δ2σ5 + 2155δ3
4 − 1234δ3

2σ5 + 115δ1δ4δ3 + 79σ5
2 − 6δ1σ3

)
+ η

(
860δ2σ5 − 369δ2

2 − 5967δ2δ3
2 − 27942δ3

4 + 15885δ3
2σ5 − 1695δ1δ4δ3 − 925σ5

2 + 105δ1σ3

)
+ o(η)

,

S5−5 = 2δ1
4


+ 270δ2

2δ3 + 2625δ2δ3
3 − 1065δ2δ3σ5 + 126δ1δ4δ2 + 6765δ3

5 − 6480δ3
3σ5 + 1350δ1δ4δ3

2 + 1179δ3σ5
2

− 213δ1σ3δ3 − 213δ1δ4σ5 + η

(
− 1529δ2

2δ3 − 11235δ2δ3
3 + 4331δ2δ3σ5 − 724δ1δ4δ2 − 28240δ3

5

+ 26796δ3
3σ5 − 6177δ1δ4δ3

2 − 4728δ3σ5
2 + 1007δ1σ3δ3 + 874δ1δ4σ5

)
+ o(η)

,
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S5−6 = δ1
3

3


42δ1

2δ4
2 − 4σ4δ1

2 + 360δ1δ2δ3δ4 + 1750δ1δ3
3δ4 − 710δ1δ3δ4σ5 − 5δ2

3

+ 300δ2
2δ3

2 − 34δ2
2σ5 + 1900δ2δ3

4 − 1420δ2δ3
2σ5 + 104δ2σ5

2 + 3120δ3
6

− 4460δ3
4σ5 + 1584δ3

2σ5
2 − 76σ5

3 − 2δ1σ3

(
235δ3

2 + 29δ2 − 49σ5

)
+ o(η)

,

S5−7 = δ1
2


3


180δ1

2δ3δ4
2 − 20σ4δ1

2δ3 − 15δ1δ2
2δ4 + 600δ1δ2δ3

2δ4 − 68δ1δ2δ4σ5 + 1900δ1δ3
4δ4

− 1420δ1δ3
2δ4σ5 + 104δ1δ4σ5

2 − 15δ2
3δ3 + 240δ2

2δ3
3 − 102δ2

2δ3σ5 + 1170δ2δ3
5

− 1420δ2δ3
3σ5 + 342δ2δ3σ5

2 + 1360δ3
7 − 2720δ3

5σ5 + 1616δ3
3σ5

2 − 256δ3σ5
3

− 2δ1σ3

(
29δ1δ4 + 86δ2δ3 − 176δ3σ5 + 350δ3

3
)

+ o(η)


,

S5−8 = δ1



900δ1
2δ3

2δ4
2 − 45δ1

2δ2δ4
2 − 120σ4δ1

2δ3
2 − 516δ1

2δ3δ4σ3 − 102δ1
2δ4

2σ5 + 60δ1
2σ3

2

+ 24σ4δ1
2σ5 − 135δ1δ2

2δ3δ4 + 45δ1δ2
2σ3 + 1440δ1δ2δ3

3δ4 − 504δ1δ2δ3
2σ3 − 612δ1δ2δ3δ4σ5

+ 48δ1δ2σ3σ5 + 3510δ1δ3
5δ4 − 1560δ1δ3

4σ3 − 4260δ1δ3
3δ4σ5 + 1404δ1δ3

2σ3σ5 + 1026δ1δ3δ4σ5
2

− 120δ1σ3σ5
2 − 45δ2

3δ3
2 + 270δ2

2δ3
4 − 306δ2

2δ3
2σ5 + 1140δ2δ3

6 − 2130δ2δ3
4σ5 + 1116δ2δ3

2σ5
2

− 126δ2σ5
3 + 1005δ3

8 − 2724δ3
6σ5 + 2502δ3

4σ5
2 − 852δ3

2σ5
3 + 69σ5

4 + o(η)


,

S5−9 = 3



− 5δ1
3δ4

3 − 45δ1
2δ2δ3δ4

2 + 240δ1
2δ3

3δ4
2 − 40σ4δ1

2δ3
3 − 102δ1

2δ3δ4
2σ5 + 24σ4δ1

2δ3σ5 − 45δ1δ2
2δ3

2δ4

+ 180δ1δ2δ3
4δ4 − 204δ1δ2δ3

2δ4σ5 + 44δ1δ2δ4σ5
2 + 380δ1δ3

6δ4 − 710δ1δ3
4δ4σ5 + 372δ1δ3

2δ4σ5
2

+ 12δ2
2δ3

5 − 34δ2
2δ3

3σ5 + 22δ2
2δ3σ5

2 + 50δ2δ3
7 − 142δ2δ3

5σ5 + 134δ2δ3
3σ5

2 − 42δ2δ3σ5
3 + 35δ3

9

− 128δ3
7σ5 + 174δ3

5σ5
2 − 104δ3

3σ5
3 + 23δ3σ5

4 + 30δ1
2δ3σ3

2 − 5δ2
3δ3

3 − 42δ1δ4σ5
3

+ 2δ1σ3

(
15δ2

2δ3 − 26δ2δ3
3 + 16δ2δ3σ5 + 15δ1δ4δ2 − 91δ3

5 + 136δ3
3σ5 − 84δ1δ4δ3

2 − 45δ3σ5
2 + 8δ1δ4σ5

)


+ o(η),

S5−10 = 3



90δ1δ3
4δ4

2 − 15δ1
2δ3δ4

3 − 45δ1δ2δ3
2δ4

2 − 20σ4δ1δ3
4 − 102δ1δ3

2δ4
2σ5 + 24σ4δ1δ3

2σ5

− 4σ4δ1σ5
2 − 15δ2

2δ3
3δ4 + 24δ2δ3

5δ4 − 68δ2δ3
3δ4σ5 + 44δ2δ3δ4σ5

2 + 50δ3
7δ4 − 142δ3

5δ4σ5

+ 134δ3
3δ4σ5

2 − 42δ3δ4σ5
3 + 22δ1δ4

2σ5
2 − 5δ1σ3

2(3δ2 − 2σ5)

+

(
15(δ1δ4 + δ2δ3)

2 + 30δ1δ2δ3δ4 − 52δ1δ3
3δ4 + 32δ1δ3δ4σ5 + 2δ2δ3

4

+ 16δ2δ3
2σ5 − 18δ2σ5

2 − 22δ3
6 + 58δ3

4σ5 − 50δ3
2σ5

2 + 14σ5
3

)
σ3


+ o(η),

S5−11 = 3

12δ3
5δ4

2 − 4σ4δ3
5 − 34δ3

3δ4
2σ5 − 15δ2δ3

3δ4
2 + 8σ4δ3

3σ5 − 15δ1δ3
2δ4

3 + 22δ3δ4
2σ5

2 − 4σ4δ3σ5
2

+ 2
(

δ3
4 + 8δ3

2σ5 + 15δ2δ3
2 + 15δ1δ4δ3 − 9σ5

2
)

δ4σ3 − 5
(

3(δ1δ4 + δ2δ3) + 2δ3

(
δ3

2 − σ5

))
σ3

2

+ o(η),

S5−12 = (4η − 1)(δ3δ4 − σ3)


15(σ3 − δ3δ4)

2 + 2η
(

100δ3δ4σ3 − 43δ3
2δ4

2 − 7σ4δ3
2 − 7σ5δ4

2 − 50σ3
2 + 7σ4σ5

)
+ 4η2

(
36δ3

2δ4
2 + 7σ4δ3

2 − 86δ3δ4σ3 + 7σ5δ4
2 + 43σ3

2 − 7σ4σ5

)
.

(A24)
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