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Abstract: On 5 September 2022, the Ms 6.8 Luding earthquake occurred at 29.59°N and 102.08°E in
China. To investigate the variations in geomagnetic signals before the earthquake, this study analyzes
the geomagnetic data from nine stations around the epicenter. First, we apply the Multi-channel
Singular Spectrum Analysis to reconstruct the periodic components of the geomagnetic data from
multiple stations. Second, we employ K-means clustering to rule out the possibility of occasional
anomalies caused by a single station. Subsequently, we construct a geomagnetic topology network
considering the remaining stations. Network centrality is defined as a measure of overall network
connectivity, where the higher the correlation between multiple stations, the greater the network
centrality. Finally, we examine the network centrality 45 days before and 15 days after the Luding
earthquake. The results show that several anomalies in network centrality are extracted about one
week before the earthquake. We further validate the significance of the anomalies in terms of time
as well as space and verify the utility of the centrality anomalies through the SEA technique. The
anomalies are found to have a statistical correlation with the earthquake event. We consider that this
study provides a new way and a novel observational perspective for earthquake precursor analysis
of ground-based magnetic data.

Keywords: geomagnetic signals; Luding earthquake; multiple stations; topology network

1. Introduction

Monitoring earthquakes plays a crucial role in the early detection and warning
of earthquake activities. With the development of monitoring technologies, seismo-
electromagnetic (EM) phenomena have gradually come to be considered the most promising
candidates for short-term earthquake prediction [1–4]. In particular, the development of the
lithosphere–atmosphere–ionosphere coupling (LAIC) mechanism has brought us new find-
ings and understandings of the process of earthquake preparation [5–7]. Currently, the
most reliable methods of recognizing earthquake precursors are considered to be the multi-
component and multi-method analysis [8–11]. For example, Pulinets et al. [12] adopted a
multi-method way to validate the precursory phenomena in the ionospheric of the 1999
Hector Mine and 2019 Ridgecrest earthquakes: firstly, they computed the time-series of
∆TEC% around the earthquakes and found there are likely positive night-time deviations
before the earthquakes; secondly, they started cognitive recognition through the precursor
mask approach [13], which is a special visualization pattern analysis to check the possible
precursors; thirdly, they revealed the increased spatial variability by calculating the root
mean square deviation (RMSD) to further validate the precursor mask; next, to further
prove that suspicious variations, they used a cross-correlation technique to reveal the
reliability of the precursor mask [14]; and lastly, they demonstrated the precursors based
on the physical mechanisms of their generation and the morphology of their behavior
during the precursory period. What is more, there is also a multi-component way; Liu
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et al. [15] provided an analysis of the seismic Precursor Identification (CAPRI) algorithm
to detect anomalous changes associated with the Ms 8.0 2008 Wenchuan and Ms 7.0 2013
Lushan earthquakes based on four datasets in the atmosphere. Finally, they found a chain
of processes that occurred within two months before the earthquakes and concluded that
the extracted anomalies may be related to the same process.

EM phenomena closest to lithospheric earthquakes, usually concerning the ground-
based magnetic field, have also followed this multi-component and multi-method approach
to study the precursor anomaly [16–19]. Currently, some researchers are focused primarily
on a united study on the results of independent stations. Hattori et al. [4] selected six
stations in the Izu and Boso Peninsulas and applied wavelet transformations at each
station to evaluate anomalies in the 0.01 Hz band of ULF geomagnetic data individually,
to illustrate that the unusual enhancements in geomagnetic energy preceding the main
earthquake events may be a precursor. Then, Guo et al. [20] utilized an enhanced principal
component analysis method for each station’s geomagnetic data to extract anomalous
signals from 20 high-quality AETA stations, and confirmed a relationship between EM
anomalies and local earthquake events. However, earthquake preparation is a systematic
self-organizing process [21], which may have been recorded at the observational data
level. Thus, some researchers analyzed the correlation of EM data across multiple stations.
Wen et al. [22] calculated the cross-correlation between eleven stations of the geomagnetic
data from the two frequency bands to determine whether the correlation is associated with
seismo-magnetic anomalies, and they found that decreased values of the cross-correlation
and earthquake occurrences yield a good agreement in the time scale. Pulinets et al. [14] also
used cross-correlation as an effective skill for determining precursors. However, the cross-
correlation between stations is calculated in pairs, and information on the cross-correlation
coefficients is very limited when discussing dense stations.

Therefore, we adopt a multi-station analysis approach at the data level through Multi-
channel Singular Spectrum Analysis (MSSA) [23]. MSSA is particularly suitable for the
multi-scale decomposition of spatiotemporal data and managing multivariate time series
by estimating periodic components and trends and reducing noise [24,25]. Subsequently, to
address the limitations of cross-correlation, we construct a topology network to analyze the
correlation of spatiotemporal features in multi-station data. Topology networks have many
properties that can clarify diverse correlation information based on graph theory, such as
centrality degree, density, and small world [26–29], regardless of the number of stations.

In this paper, we investigate the geomagnetic observations related to the Luding Ms 6.8
earthquake from the Acoustic and Electromagnetics to Artificial Intelligence (AETA) system.
AETA is a multi-component earthquake-monitoring system, which has been installed in
over 200 sites nationwide in China [30]. To date, there have been many advances in the
study of earthquake precursors based on the AETA system [31,32]. This work is organized
as follows. Sections 2 and 3 describe the observations and analysis methods. Section 4
shows our results and analysis. In Section 5, we provide a discussion on whether the
extracted network anomalies are associated with the Luding earthquake. Finally, the
conclusions are presented in Section 6.

2. Studied Earthquakes and Observations
2.1. Studied Earthquake

In this work, our study focuses on the Luding Ms 6.8 earthquake. The Luding earth-
quake occurred in Luding County on 5 September 2022, at 12:52 p.m. (UTC+8), and is one
of the most significant earthquakes that have occurred in China in recent years [33–35].
Figure 1 indicates the epicenter of the Luding earthquake and the geographic structure
of its surrounding areas. Luding County is located in the southwestern part of China’s
Qinghai–Tibet Plateau region, and is situated at the junction of the major fault zone in the
Qinghai–Tibet Plateau and the Sichuan–Yunnan block, serving as a collision zone between
the Indian Plate and the Eurasian Plate. Thus, the earthquake activity in this region is
relatively frequent, making it a recognized area prone to frequent earthquakes [36].
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The Luding earthquake occurred on the left-lateral Moxi Fault Zone at the eastern
edge of the Qinghai–Tibet Plateau [37]. This fault zone belongs to the southeastern segment
of the Xianshuihe Fault Zone, which exhibits active tectonic activities in the southeastern
part of the Qinghai–Tibet Plateau, intersecting with the Longmenshan Fault Zone at this
location [37].

Figure 1. The map shows the tectonic background of western China and the locations of the
AETA stations. The red star denotes the Ms 6.8 Luding earthquake, and the blue markers indicate
the AETA stations.

2.2. Geomagnetic Observations from AETA

AETA is an integrated software and hardware system capable of acquiring and ana-
lyzing earthquake signals in multiple components [38]. Currently, a monitoring network
comprising over 220 AETA stations has been established in China, with widespread distri-
bution in the southwestern region of the country [31]. The AETA system collects electro-
magnetic signals through its electromagnetic sensors. Its operation is based on Faraday’s
electromagnetic theory, which obtains induced electromotive force from the vertically
varying magnetic field. Subsequently, the signals undergo amplification, filtering, analog-
to-digital conversion, and other processing steps [39], yielding ultra-low frequency (ULF)
and very low frequency (VLF) electromagnetic signals, with a dynamic range from 0.1 Hz
to 10 kHz [40]. The AETA system conducts the final data processing, calculating statistical
features such as the mean, variance, skewness, and kurtosis of the raw data [39,41].

In our study, we choose the “magn@abs_mean” dataset provided by the AETA system
platform (http://platform.aeta.cn, lastest access: 3 November 2023), which provides the
data every ten minutes [40]. The identification numbers of the selected stations and their
locations are provided in Table 1 and Figure 1. Figure 2 shows the raw magnetic data
during the week before the Luding earthquake from the nine stations in this study. For
raw magnetic data, preprocessing is required. We first conduct linear interpolation to fill
in missing values and normalize the daily sequences. While the data from these stations
demonstrate good long-term continuity, they are still disturbed by various non-geological
activities. Then, we select the study period from 00:00 a.m. to 06:00 a.m. (UTC+8) each day
to avoid the interference caused by human activities and electric power.

http://platform.aeta.cn
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Figure 2. Daily variation of magnetic data (magn@abs_mean) from nine stations. The red dashed line
indicates the moment of the Ludian earthquake (2022-09-05 12:52 p.m., UTC+8).

Table 1. Geographical information of the nine AETA stations.

No. Station ID Latitude (°N) Longitude (°E) Distance from the Epicenter (km)

1 33 29.31 102.28 23.19
2 152 25.83 100.59 184.86
3 73 28.83 103.54 163.42
4 124 30.19 103.15 119.87
5 177 29.80 102.84 84.66
6 318 27.82 99.70 267.21
7 254 28.30 103.85 199.42
8 206 27.15 100.39 195.17
9 331 29.45 104.23 239.10

3. Methods
3.1. Extracting Periodic Components Based on MSSA

Due to the wide spatial impact of earthquakes, conducting a united analysis of geo-
magnetic data from multiple stations is more reliable than analyzing data from individual
stations. To extract the spatial features of geomagnetic data from multiple stations, we
consider employing the MSSA method.

MSSA is an extension of Singular Spectrum Analysis (SSA) that incorporates the rela-
tionships between multiple time series. It is widely applied to extract periodic components,
noise components, and other relevant features from multiple time series data [25,42–45].
SSA is based on singular spectrum decomposition, a powerful technique for decomposing
and reconstructing time series [46]. Compared to SSA, MSSA synchronously groups and
reconstructs multiple sequences, enabling the simultaneous extraction of sub-sequences
with common trends across multiple sequences.
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In our study, xn,l is the observational sequence, n = 1, 2, . . . , N and l = 1, 2, . . . , L,
where n is the number of the N stations in the study area, and L represents the length of
the sequence. First, we build a Hankel matrix H with a time lag of m [47],

H =



x1,1 x1,2 · · · x1,L−m+1
x1,2 x1,3 · · · x1,L−m+2

...
...

. . .
...

x1,m x1,m+1 · · · x1,L
x2,1 x2,2 · · · x2,L−m+1

...
...

. . .
...

x2,m x2,m+1 · · · x2,L
...

...
. . .

...
xN,1 xN,2 · · · xN,L−m+1

...
...

. . .
...

xN,m xN,m+1 · · · xN,L



(1)

where H is also known as the trajectory matrix, and it is an (N × m)× (L − m + 1) matrix.
m represents the length of this sliding window, which is also called the time delay win-
dow or the embedding window. The function of the time delay window is to balance the
time–frequency domain resolution [47]. Generally speaking, the larger the m, the higher
the frequency domain resolution, and the more obvious the extracted low-frequency com-
ponents. Conversely, the high-frequency component is more significant. The value of m
directly affects the size of the trajectory matrix H. In our study, we set the values of N, L,
and m as 9, 37, and 3, respectively. Here, N = 9 for 9 stations. L = 37 indicates the length
of each magnetic data sequence (00:00 a.m. to 06:00 a.m.). Generally, m does not exceed 1/4
of the length of the sequence. m is finally set to 3, which can extract clear low-frequency
components while ensuring low computational reconstruction.

Next, we conduct a Singular Value Decomposition (SVD) on matrix H, H = UΛVT ,
where the matrices U and V represent the left and right singular matrices, respectively. Λ
is a diagonal matrix with r singular values λk for k = 1, 2, . . . , r, arranged in descending
order, where

r =

{
N × m, N × m ≤ L − m + 1

L − m + 1, L − m + 1 < N × m
(2)

Then, the eigen sub-sequence Tk corresponding to λk, can be obtained, Tk =
√

λkukvT
k ,

where the column vectors uk and vk are sourced from the matrices U and V, respectively [25].
The reconstructed sub-sequences R(k)

n,l , which corresponds to Tk, are derived by applying
diagonal averaging to Tk

R(k)
n,l =



1
l

l

∑
i=1

Ti,l−i+1, 1 ≤ l < m

1
m

m

∑
i=1

Ti,l−i+1, m ≤ l < N − m + 1

1
L − l + 1

m

∑
i=l−L+m

Ti,l−i+1. N − m + 1 ≤ l < L

(3)

For each station, we use a short form for R(k)
n,l as RCk, where RCk = R(k)

n,l [47]. Since
the singular values in the diagonal matrix Λ are arranged in descending order, the recon-
structed sub-sequence RCk corresponding to the singular value λ0 is the most significant
in terms of contribution, indicating the primary low-frequency periodic component in
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the reconstructed sequence. Therefore, in this study, we consider RC0 to be the magnetic
periodic low-frequency component.

Figure 3a,b present two examples of the reconstructed component signals for nine
stations with a time lag window m = 3. Figure 3a shows the MSSA reconstruction results
for a normal case. The first row displays the variations in geomagnetic raw data for
these nine stations over three consecutive days (00:30 a.m. to 04:30 a.m. each day). The
second row shows the reconstructed geomagnetic periodic component RC0 for each station.
The last row presents the other components corresponding to relatively small singular
values ∑26

k=1 RCk, which may contain some high-frequency geomagnetic changes and noises.
Figure 3b shows the reconstruction results for an earthquake period. As we can see, what
accounts for the highest contribution in the daily geomagnetic data is the daily periodic
and low-frequency components. It can be noticed that, after MSSA, the periodicity of each
station can be seen very cleanly, even if it is not prominent in the raw data. Therefore, we
want to investigate whether there is any earthquake-related information in this component.
As shown in Figure 3a, for a normal state, the daily periodic low-frequency components
for each station should be very similar. For an abnormal state as shown in Figure 3b,
there are some changes and differences in their daily periodic low-frequency components.
Thus, we expect that the MSSA can extract the daily periodic low-frequency component for
multi-stations and capture the changes in those components.

3.2. Building a Geomagnetic Topology Network for the Periodic Components

Topology networks are commonly used to represent an observational network [27,29].
To assess the overall relationship across multiple stations, we construct a geomagnetic
topology network G for geomagnetic periodic component observations, with G = (S, E),
where S is a set of nodes S = [s1, s2, . . . , sN ]. Here, the AETA stations are represented as the
nodes. E is the set of the network edges, expressed as the connectivity between nodes. The
structure and properties of topology networks are studied through graph theory, regardless
of the actual geographical environment and the distance between stations. We design this
topology network G as a weight-free network, so all edges are of equal weight, and the
matrix E is shown below:

E =


e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N

...
...

. . .
...

eN,1 eN,2 · · · eN,N

 (4)

where ei,j represents an edge between the nodes si and sj, taking values of 1 or 0 to indicate
the presence or absence of the connectivity between the stations,

ei,j =

{
1, |pi,j| ≥ 0.8

0, |pi,j| < 0.8
(5)

where pi,j represents the Pearson correlation coefficient between the two RC0s, RC0(i,l) and
RC0(j,l), from station i and station j, for i, j ∈ N, l = 1, 2, . . . , L, defined as follows:

pi,j =
cov(RC0(i,l), RC0(j,l))

σRC0(i,l)
σRC0(j,l)

=
∑L

l=1(RC0(i,l) − RC0(i,l))(RC0(j,l) − RC0(j,l))√
∑L

l=1(RC0(i,l) − RC0(i,l))
2(RC0(j,l) − RC0(j,l))

2
(6)

where cov(X, Y) represents the covariance between sequences X and Y, σX represents the
standard deviations of sequences X, and X represents the mean of sequences X.

Then, we set a threshold value to quantify each pi,j. Generally, a Pearson correlation
coefficient greater than 0.8 between two sequences indicates a strong linear relationship
between them. Therefore, we set this threshold to 0.8 as indicated by the quantification
criterion in Equation (5).
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To further evaluate the significance of the overall connectivity of the network, we
define the network centrality [48] as

k =
1

N(N − 1)

N

∑
i=1

N

∑
j=1

ei,j, j ̸= i (7)

The value of k represents the correlations of multiple geomagnetic stations. Here, we
provide two examples to show the connections in a topology network. Figure 3c shows
a fully connected topology network on 14 August 2022. As we can see, all nodes are
connected, which means that the magnetic periodic components of the nine stations are
strongly similar to each other as shown in Figure 3a. In this case, the whole connection
matrix E will be a full one matrix, that is, all ei,j = 1; Figure 3d represents the topology
network on the day of the Luding earthquake, and there is no connection between some
nodes, i.e., their corresponding ei,j = 0. This represents the absolute value of the correlation
coefficients between the magnetic periodic components of the corresponding station as
being less than 0.8, and they are not strongly consistent as shown in Figure 3b.

Figure 3. (a) An example of MSSA reconstruction results for a normal case. There are variations in
magnetic data from 9 stations along with their periodic and other components from August 14 to
August 16 (seismic quiet period). The black lines indicate the raw magnetic data, and the red and
grey lines represent the periodic components and other components of geomagnetic observations,
respectively. (b) An example of MSSA reconstruction results for an earthquake period. There are
variations of the periodic and other components from September 4 to September 6. The Luding
earthquake occurred on 5 September 2022. (c) A fully connected topology network on 14 August
2002, corresponding to (a). The blue triangles represent the AETA stations. (d) The topology network
on the day of the Luding earthquake.

3.3. Excluding the Anomalous Interference from One Single Station

In general, RC0 is capable of reflecting changes in the periodic components [49]. In this
study, we focus on the overall relationship between the periodic components of multiple
stations. However, for a united analysis of multiple stations, an outlier caused by accidental
factors at one station can affect the entire network connectivity. Thus, to identify and
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eliminate unreliable RC0 from one particular single station, we need to evaluate whether
RC0 at a given station is significantly different from all other stations.

We utilize K-means clustering to classify RC0 into two classes: M1 and M2. Here, the
class with fewer stations is called the isolated class M1, and the M2 with more stations
is the mainstream class. When the clustering result shows that the M1 class contains
only one station, we consider the data of this station to have been influenced by accident
factors and as needing to be removed. To find the situation of only one station in M1,
we first initialize the clustering centers µ1 and µ2 for two classes. Then, we calculate the
Euclidean distance, di,j = |CRCi − µj| for i = 1, 2, . . . , N and j = 1, 2; CRCi is the object of
our clustering. Subsequently, each CRCi is assigned to the class corresponding to the closest
clustering center based on the magnitude of di,1 and di,2. Once all points are classified, the
clustering centers are updated, and this process is iterated until the difference in clustering
centers between two consecutive iterations is less than 10−4. The final classification result
is obtained through this iterative procedure.

In this study, we set CRC = [CRC1, CRC2, . . . , CRCN , ], in which CRCi represents the
correlation of the RC0 of station i with the RC0s of all other stations. If the RC0 of station i
significantly deviates from that of the other stations, its corresponding CRCi will be very
small, leading it to be classified as an isolated class. Therefore, the RC0 of the single
anomalous station can be identified and removed.

Figure 4 demonstrates three possible cases of the clustering results. Figure 4a depicts
an example of the normal clustering results, the elements of set CRC are roughly uniformly
distributed among two classes, where the black crosses represent the cluster centers, while
the red and green points represent the points in the two classes. Figure 4b is a typical
clustering result with one outlier belonging to one class. In this case, the clustering centers
are farther apart. Thus, we can recognize that outlier and remove it. Figure 4c shows
there are two or more outlier stations; we do not consider these outliers to be accidental
disturbances and therefore do not address them. Moreover, this case is very likely to be
extracted as a network anomaly.

Figure 4. An example of three possible cases of clustering results. (a) The absence of any anomalous
RC0 data. (b) One of the classes is one single outlier. (c) One of the classes is two or more outliers.

4. Results

To investigate the correlation of geomagnetic observations between multiple stations
preceding the Luding earthquake, we construct a geomagnetic topology network consisting
of nine AETA stations within a 500-kilometer radius from the epicenter by utilizing the
aforementioned method. The daily geomagnetic topology network from 20 days before
to 5 days after the Luding earthquake is shown in Figure 5. It can be found that, in the
first 10 days, the network is basically fully connected, which means that there is very high
consistency in the periodic components over the nine stations. Then, the connectivity of
the network is gradually weakened from 30 August to 2 September 2022. On the day of the
earthquake, the connectivity of the network reaches its lowest level and remains a weak
connection for 5 days after the earthquake. It is important to note that, to avoid daytime
interference, we study the geomagnetic data from 0:00 a.m. to 4:30 a.m. To be precise, the
network showing on the day of the earthquake also precedes the earthquake (12:52 p.m.).
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Next, we examine the network centrality k, spanning 45 days before and 15 days after
the earthquake, and the result is shown in Figure 6. The threshold of 0.949 is the mean of
centrality minus two times the standard deviation from 2017 to 2022. As we can see, there
are several values of centrality dropping from a normal value of 1 to a small value before
the earthquake, which indicates a weakened correlation between the geomagnetic periodic
components of the nine stations. Subsequently, we notice that the centrality anomaly of four
consecutive days from 30 August to 2 September appears before the earthquake. The value
of centrality drops from 1 to 0.93 to 0.79, and finally to 0.62. Especially on the days of the
earthquake, the centrality reaches its minimum value within these 60 days. Finally, within
10 days after the earthquake, the overall trend of k shows a recovery sign. In addition,
these results are consistent with the network of Figure 5. Therefore, we consider that
our results may suggest a correlation between centrality anomalies and the earthquake
event. At the beginning of August, we also observe several centrality anomalies. However,
these anomalies are of discontinuity and one-day duration, as well as a nearly one-month
interval with the earthquake. It is possible that these centrality anomalies are not related to
the earthquake.

Figure 5. Daily geomagnetic topology network diagram from 20 days before to 5 days after the
Luding earthquake. The black lines indicate the edges between two stations, the blue triangles
represent the AETA stations, and the red star denotes the epicenter of the Luding earthquake. It
is noted that the data from stations 33 and 177 (in grey) are completely missing for several days
following the Luding earthquake, so we do not consider their nodal connectivity during this period.
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Figure 6. The variations of network centralities for the Luding earthquake. The blue line represents
the network centrality from 45 days before to 15 days after the Luding earthquake. The red dashed
line marks the date of the Luding earthquake.

5. Discussion
5.1. Network Centrality during Random Periods

To further explore the possibility of the extracted Luding earthquake-related anomalies
from network centrality in the geomagnetic network, we randomly select two additional
periods before the Luding earthquake. These periods are characterized by a low occurrence
of earthquakes within the network and relatively small magnitudes of earthquake events.
They are 1 September 2021, to 30 October 2021, and 1 April 2022, to 30 May 2022. For each
of the periods, we employ the same methodology to calculate the network centrality. The
changes in the network centrality are shown in Figure 7.

Figure 7. Network centralities for two random periods.

It is evident that the centrality anomalies for the random periods in the geomagnetic
topology network are relatively messy and disordered. The result implies that during peri-
ods characterized by fewer earthquake events and lower magnitudes, the network centrality
values do not display significant anomalies. Thus, this finding supports the correlation
between the extracted network anomalies in Section 4 and the Luding earthquake.

5.2. Network Centrality for an Additional Network

To further assess the spatial sensitivity of the extracted anomalies associated with the
Luding earthquake, we construct a new geomagnetic network using seventeen additional
stations located outside the original network; the geographical locations are presented
in Table 2 and Figure 8b. Although the epicenter distance is larger for each station, the
coverage of the additional network is a much larger area. We repeat the above method in
Section 3 for the additional network and calculate its network centrality. The changes in
the network centrality are shown in Figure 8c.

Figure 8c illustrates that the additional network exhibits higher fluctuations and
stronger amplitudes. Multiple anomalies in the network centrality appear approximately
45 days to 5 days before the earthquake, especially on August 16 and 29. Furthermore, on
the day of the Luding earthquake, although the centrality anomaly is not so pronounced
compared to other periods, there is a recognizable decrease in network centrality.
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These results can be attributed to two factors. Firstly, the presence of several farther
stations introduces more randomness and external interference; the additional network may
be influenced by other earthquake events with medium magnitudes within its extended
coverage area. Therefore, the expanded coverage weakens the correlation of geomagnetic
periodic components among the stations. As a result, the network centrality fluctuates
more. Secondly, the coverage of the additional network is inclusive of both the epicenter
and the original network, so the network centralities also appear as suspected anomalies
for the Luding earthquake. In the studied 60 days, the values of the centrality anomalies
grow stronger in the pre-earthquake period and recover after the earthquake. However,
the confidence of the centrality anomalies in the additional network still needs to be
explored further.

Table 2. Geographical information of the additional AETA stations.

No. Station ID Latitude (°N) Longitude (°E) Distance from the
Epicenter (km)

1 50,117 24.12 102.75 611
2 146 32.59 105.23 448
3 332 23.73 102.52 653
4 106 24.44 98.59 668
5 24 32.63 105.75 486
6 155 32.78 105.42 476
7 161 23.38 103.16 698
8 220 24.47 102.62 571
9 186 25.11 99.12 577
10 226 32.93 104.69 446
11 113 32.44 105.35 444
12 115 25.03 98.52 616
13 141 33.15 104.2 444
14 183 25.21 98.49 602
15 43 24.95 98.43 629
16 172 23.37 102.38 692
17 202 23.23 102.84 711

Figure 8. (a) Distribution map of the original network. The blue triangles represent the stations of
the original network, and the solid gray lines are the connections between stations. (b) Distribution
map of the additional network. The green triangles represent the stations of the additional network,
and the dotted gray lines are the connections between stations. (c) The network centrality of the
original and additional networks during the 45 days before and 15 days after the Luding earthquake.
The blue dashed line represents the network centrality of the original network, while the green line
represents the network centrality of the additional network.
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By comparing the centrality anomalies in the original and additional networks for the
Luding earthquake, it becomes evident that the original geomagnetic topology network
sensitively captures the daily variations in the overall correlation of geomagnetic peri-
odic components, demonstrating that the original network effectively extracts the spatial
anomalies associated with the Luding earthquake.

5.3. Superposed Epoch Analysis (SEA) for the Geomagnetic Topology Network

To further validate the efficiency of the geomagnetic topology network for other
earthquakes, we conduct a statistical study using the Superposed Epoch Analysis (SEA)
from 2008 to 2022 [50]. SEA unveils temporal patterns and trends surrounding specific
events, thereby offering insights into their impact and underlying relationships [51–54].

Initially, we create circles with a radius of 100 kilometers, centered at each station of
our geomagnetic topology network. Then, the externally located circles by their common
tangential points are connected to define our statistical region. Thus, the earthquakes with
magnitudes greater than 5 in this range are our target earthquakes. AETA provides the
observations from 2017, so we utilize the geomagnetic data from the China Earthquake
Networks Center to study the earthquakes before 2017. This study is authorized for data
from 2008 to 2014. To ensure consistency in the studied region, we choose eight stations
to construct the geomagnetic topology network; their locations are listed in Table 3. The
studied earthquakes and the constructed networks are shown in Figure 9.

Table 3. Geographical information of the stations from China Earthquake Networks Center.

No. Station ID Latitude (°N) Longitude (°E)
Distance from
the Epicenter

(km)

1 CDP 103.76 30.91 218
2 NNS 102.609 27.221 268
3 CHX 101.53 25.032 509
4 YOS 100.768 26.695 346
5 MUL 101.272 27.932 200
6 XIC 102.55 27.89 194
7 WEC 101.646 27.454 241
8 NAS 101.69 26.54 341

Figure 9. (a) The outermost red line represents the statistical region of the geomagnetic topology
network, and the yellow dots indicate the target earthquakes from 2018 to 2022. The blue triangle
represents the AETA station.(b) The outermost blue line represents the statistical region of the
geomagnetic topology network, and the yellow dots indicate the target earthquakes from 2008 to
2014. The blue triangle represents the Chinese Magnetic networks station.
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Next, we perform the SEA for the target earthquakes [55]. We calculate the network
centrality for these earthquakes within the 45 days preceding each earthquake and the
15 days following them. The threshold for determining centrality anomaly remains at 0.949.
If one day exhibits a centrality anomaly, we increment the count by one for that specific day
across the entire dataset [55]. In the analysis from 2018 to 2022, we employ this procedure
for 65 target earthquakes with magnitude greater than 4, followed by superposing the
counts across all datasets. Since there are fewer than 10 earthquakes of magnitude five
or greater, it is not statistical. Similarly, in the analysis from 2008 to 2014, we repeat this
procedure for 20 target earthquakes with magnitudes greater than 5. The SEA results of
one-day counts and five-day counts are shown in Figure 10. To further assess statistical
significance, we randomly select 65 days within the complete dataset spanning from 2018 to
2022, excluding the dates coinciding with earthquake events, and apply the same procedure.
And the same operation is implemented for the data from 2008 to 2014. We repeat this
random SEA test 10,000 times to calculate the mean and standard deviation [50].

Figure 10. (a) The SEA results of geomagnetic disturbance observation network centrality from 2008 to
2014. (b) The SEA results of geomagnetic disturbance observation network centrality from 2018 to 2022.

Assuming no correlation between centrality (k) anomalies and earthquake events, the
anomaly counts for these actual earthquakes would be expected to roughly follow the
random distribution. This also implies that if the counts for one day or five days exceed
the random mean plus 1.5 standard deviation level, it indicates a statistically significant
correlation between the earthquakes and centrality anomalies. Figure 10a indicates that
within the 20 days preceding the earthquakes, there are four one-day anomaly counts,
surpassing the level of mean plus 1.5 times the standard deviation. Moreover, the five-day
anomaly counts exceed its mean plus 1.5 times the standard deviation for −15 to −10 days
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and −5 to 0 days. Figure 10b indicates both the one-day anomaly counts and the five-day
anomaly counts from −10 to −5 days before the earthquake exceeds the mean plus 1.5 times
the standard variance. These results highly indicate the correlation between earthquakes
and centrality anomalies.

In addition to geomagnetic data, significant progress has been made in investigat-
ing the precursors associated with the Luding earthquake over the past two years [11].
Wu et al. [56] analyzed the variations of the atmospheric electric field (AEF) in the 15 days
leading up to the Luding earthquake. They investigated the observed AEF anomalies
and concluded that four negative AEF anomalies are likely associated with the Luding
earthquake. Zhu et al. [57] studied the outgoing longwave radiation (OLR) data prior to
the Luding earthquake.Significant OLR anomalies were detected on August 9, August 18,
and August 28 before the Luding earthquake. Liu et al. [58] also investigated the anomalies
in AEF and OLR before the Luding earthquake, along with examining disturbances in the
ionosphere and investigating the anomalies in infrared radiation and hot spring ions. They
found that the AEF anomalies appeared approximately one week before the earthquake,
the (infrared brightness temperature) IBT anomalies showed throughout August, and the
anomalies in hot spring ions appeared in July and lasted until September, which may indi-
cate the enhanced seismic-ionospheric coupling effect. Then, we further exhibit a summary
of the anomalies of different observations as shown in Figure 11.

Figure 11. A summary of the geomagnetic anomalies in our study (in red) and the anomalies of
different observations (in gray) associated with the Ms 6.8 Luding Earthquake [56–58].

In Figure 11, the multiple observational parameters show anomalies during the 45 days
before the earthquake, but these anomalies appear at different times. Since different
methods are designed with different principles for different features, it is reasonable that
different features appear at different times. Therefore, developing a method that can
recognize multiple features is important and challenging.

6. Conclusions

In this study, we employ the MSSA method to reconstruct the periodic components of
geomagnetic data from multiple stations. Based on the correlation of the periodic compo-
nents, we establish a geomagnetic topology network and calculate the network centrality.
The network centrality quantifies the connectivity of the geomagnetic topology network,
reflecting the overall correlation between the geomagnetic data from multiple stations. Sub-
sequently, we investigate the changes in network centrality around the Luding earthquake
on 5 September 2022. We extracted several centrality anomalies during the studied period.
Especially in the 6 to 3 days and hours before the earthquake, the centrality drops from 1 to
0.93 to 0.79, and finally to 0.62. Then, we further examine the extracted anomalies in both
time and space, demonstrating the significance of the centrality anomalies for the Luding
earthquake. Additionally, we compile the counts of centrality anomalies during 2008–2022
through the SEA method. For the statistical SEA results of more than 80 earthquakes, we
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find that centrality anomalies are more likely to occur before an earthquake than afterward.
Our method unites information from multiple geomagnetic stations and effectively extracts
spatial features between multiple stations, as well as providing a new method of earthquake
precursor analysis of ground-based observation data.
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