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Abstract: Cropland mapping using remote sensing data is the basis for effective crop monitoring,
crop rotation control, and the detection of irrational land use. Classification using Normalized
Difference Vegetation Index (NDVI) time series from multi-year data requires additional time costs,
especially when sentinel data are sparse. Approximation by nonlinear functions was proposed
to solve this problem. Time series of weekly NDVI composites were plotted using multispectral
Sentinel-2 (Level-2A) images at a resolution of 10 m for sites in Khabarovsk District from April to
October in the years 2021 and 2022. Missing values due to the lack of suitable images for analysis
were recovered using cubic polynomial, Fourier series, and double sinusoidal function approximation.
The classes that were considered included crops, namely, soybean, buckwheat, oat, and perennial
grasses, and fallow. The mean absolute percentage error (MAPE) of each class fitting was calculated.
It was found that Fourier series fitting showed the highest accuracy, with a mean error of 8.2%.
Different classifiers, such as the support vector machine (SVM), random forest (RF), and gradient
boosting (GB), were comparatively evaluated. The overall accuracy (OA) for the site pixels during
the cross-validation (Fourier series restored) was 67.3%, 87.2%, and 85.9% for the SVM, RF, and GB
classifiers, respectively. Thus, it was established that the best result in terms of combined accuracy,
performance, and limitations in cropland mapping was achieved by composite construction using
Fourier series and machine learning using GB. Similar results should be expected in regions with
similar cropland structures and crop phenological cycles, including other regions of the Far East.

Keywords: remote sensing; crop mapping; Sentinel-2; NDVI

1. Introduction

An effective approach for the information support of precision agriculture involves the
quantitative assessment of cropland area and the analysis of cropland structure. Currently,
the use of machine learning methods for the development of global and regional cropland
masks, as well as masks of individual crops, has received much attention [1–4]. Remote
sensing has emerged as a promising method for generating such masks. In particular,
Sentinel imagery has made it possible to obtain information with the simultaneous coverage
of significant areas with high periodicity, which is practically impossible to realize when
using ground-based data.

The issue of cropland classification can be addressed by aggregating the values of
visible and infrared spectrum bands to serve as input data. This process yields vegetation
indices, such as the normalized difference vegetation index (NDVI), enhanced vegetation
index (EVI), normalized difference water index (NDWI), and others. A popular method
for constructing crop masks is the use of a single multispectral image [5–7]. However, this
approach is more suitable for classifying land cover than for crops that are characterized by
significant variations in vegetation index values during the vegetation season. Therefore,
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time series of vegetation indices are extensively used. For instance, Luo et al. used Sentinel-
2 NDVI time series data (with various phenological characteristics) to map crops in northern
China [8], computing 20 informative features (time series and phenological) to achieve
a classification accuracy of 93% using the random forest algorithm (RF). Ouzemou et al.
used Landsat NDVI time series data for cropland mapping after resharpening them to a
resolution of 15 m (10 images per season) [9].

A major disadvantage of optical data is the significant influence of weather phenomena,
such as different types of clouds, haze, aerosols, and cloud shadows, on the vegetation
indices’ values. The expert or automated removal of unsuitable images is not a simple task
and may often lead to a significant sparsity of time series. The process of the computation
of vegetation indices’ temporal composites can help address this issue by reducing the
negative effects of atmospheric indices. Computing composites also reduces the amount
of input data. For example, Erdanaev et al. identified agricultural crops in Uzbekistan,
including cotton, wheat, rice, and others, using Landsat-8 and Sentinel-2 monthly NDVI,
EVI, and NDWI composites [10]. Hao et al. also used Landsat-8 and Sentinel-2 imagery
to construct 15-day NDVI and EVI composites [11]. In both cases, the authors were
able to achieve a high classification accuracy. However, when working with data from
different sensors, it is essential to perform data projection and resampling procedures.
Low-resolution data are also used for land cover and crop mapping. For example, 16-day
Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI composites were used for
classification [12,13]. However, using low spatial products, such as imagery with a spatial
resolution of 250 m, does not allow for accurate crop mapping for relatively small sites or
sites with multiple crops growing simultaneously.

To create an accurate classifier, it is necessary to account for the inter-annual variabil-
ity associated with climatic factors, hydrological conditions, and anthropogenic factors.
Consequently, studies using multi-year satellite data are more promising. For instance,
Feyisa et al. classified croplands in Ethiopia using 8-day NDVI composites and the RF
method and achieved the highest accuracy when using 3-year MODIS data [14]. Crop
mapping using satellite data for previous (or, in the case of retrospective prediction, sub-
sequent) years is also of great interest. For example, Konduri et al. used MODIS NDVI
data for 7 previous years to generate cropland maps in the US in 2015–2018 [15]. Later, a
classifier trained on monthly composites of Sentinel-2 bands and indices in 2020 performed
a retrospective prediction of crops grown in 2019 using the RF algorithm to recover crop
rotation information [16].

Often, there may be long periods between the dates of optical images suitable for
analysis in regions that are characterized by distinct rainy seasons, long cloudy periods,
and the presence of aerosols or fog during the vegetation season. If such a pause lasts for
2 weeks or longer, the calculation of composites (even over 15–16 days) is insufficient for
the generation of continuous time series. In such cases, the missing values are recovered
through interpolation, using neighboring values [17] and splines [18] or filters [19,20]. How-
ever, a more effective approach to filling the gaps in the data is time series function fitting.
In this case, a function with a shape similar to that of the seasonal course of the vegetation
index is selected. Extensive research has been conducted on the selection of functions for
the function-fitting of the most popular vegetation indices. For example, polynomials [11],
the Gauss function [21], logistic functions [22,23], and the Fourier series [24] have been
used to fit NDVI time series.

A characteristic feature of the Russian Far East is the lack of reliable cropland maps and
databases. Various machine learning (ML) models have been developed to validate ground-
based observations, often using existing cropland maps for accuracy assessment [25–27].
Subsequently, the accuracy of global and federal cropland maps developed for different
climatic conditions, crops, varieties, and agricultural practices is comparatively low. The
lack of a regional database that takes into account crop phenology in the Russian Far
East poses a serious challenge, hindering rational land use and the development of the
agro-industrial complex as a whole. In addition, the inadequate control of crop rotation and
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agricultural practices in the region results in non-compliance with crop rotations and the
dominance of soybean. In some municipalities of the Far East, the share of soybean in the
total amount of cropland exceeds 90% (https://rosstat.gov.ru, accessed on 15 April 2024).
Repeating the cultivation of soybean as the most profitable crop, in cases of non-compliance
with the crop rotation, leads to a decrease in soil fertility. To maintain fertility, the inclusion
of oat and perennial grasses in crop rotation is recommended [28]. Gajduchenko et al.
conducted 20-year research and demonstrated that crop rotation increases the soybean
yield [29]. Moreover, a high-yielding crop such as buckwheat can be used in crop rotation
with soybean for additional benefits in terms of the overall yield.

Various factors, including waterlogging, the decline in soil fertility, and the overgrowth
of weeds and trees, coupled with primitive methods of fallow land identification, have
resulted in a substantial amount of unused agricultural land in the region. Therefore, the
introduction of forested and waterlogged fallow land into crop rotation is one of the most
important tasks of agriculture in the Russian Far East. Remote sensing methods have not
been previously used to solve these important problems in this region.

The main objective of this research is to develop an automated method for cropland
classification using Sentinel-2 weekly NDVI composites and data reconstruction algorithms.
An important problem that this study intends to address is to establish the feasibility of
classification using time series over two years of observation. An approach that has not
been used before for cropland mapping in the Russian Far East is relevant due to the large
number of cloudy days during the growing season, as well as the different dates of images
in different years, which create difficulties for the researcher. We have proposed to consider
the possibility of using function-fitting to restore composite values. The study will evaluate
the function-fitting accuracy using different algorithms and the classification accuracy
using different ML methods.

2. Materials and Methods
2.1. Study Area

The study area is located in Khabarovsk Municipal District in the south of the Middle
Amur Lowland. This region is on the right bank of the Amur River east of Khabarovsk
between 48.31◦ and 48.64◦N latitude and 134.81◦ and 135.57◦E longitude (Figure 1). These
lands lie in the temperate belt and experience a monsoon type of climate, i.e., winters
are quite cold while summers are warm and sometimes hot, with high precipitation. The
average annual precipitation is about 700 mm. The duration of the frost-free period is
130–150 days. The short duration of the vegetation season does not allow for the growth of
winter crops.
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The climate and soil conditions favor the cultivation of leguminous crops, primarily
soybean. In 2022, soybean grew on 59% of cropland in Khabarovsk District (10,722 ha), while
oat and buckwheat occupied 8% (1446 ha) and 2% (327 ha) of total cropland, respectively.

2.2. Ground Truth Data

Marked sites of the Far-Eastern Agriculture Research Institute and agricultural enter-
prises of the region with crop information were used as ground observation data. Infor-
mation on crop rotation in 2021 and 2022 was provided by the heads of organizations and
verified during ground observations. Overall, in 2021, information on 50 sites with a total
area of 1130 ha was collected. In 2022, information was collected on 80 sites, covering an
area of 1992 ha. In 2021, the share of fallow land and soybean exceeded 30% of the total
area, while buckwheat occupied 26% of these lands, and oat and perennial grasses together
occupied just over 10%. In 2022, the number of sites with oat increased from 4 to 17 (with
a corresponding increase in area from 67 to 511 ha), while those with perennial grasses
increased from 2 to 29 (with a corresponding increase in area from 60 to 528 ha). Table 1
shows the number and total area of sites for each class.

Table 1. Number of sites and the area for each class included in this study.

Class Season Sites Area, ha

Fallow
2021 15 356
2022 12 282

Soybean 2021 15 347
2022 14 355

Oat
2021 4 67
2022 17 511

Perennial grasses 2021 2 60
2022 29 528

Buckwheat
2021 14 300
2022 8 316

Overall
2021 50 1130
2022 80 1992

2.3. Crop Phenology

Active vegetation of soybean in Khabarovsk District begins in calendar weeks 26–28
(late June to mid-July), the vegetation maximum is reached by weeks 32–33 (mid-August),
and the biomass then decreases until the end of the growing season (soybean harvesting
is carried out not earlier than mid-October). Oat is sown in the first half of May (weeks
18–19), with the vegetation maximum occurring in early July (weeks 26–27); it is then
harvested and the NDVI declines sharply. Perennial grasses are sown under the cover
of grain crops in the previous year, allowing vegetation to begin immediately with the
onset of the frost-free period. Biomass growth occurs at a rapid pace, reaching its peak by
calendar weeks 25–27 (second half of June to early July). Following the summer mowing,
the grass regrows rapidly.

In 2021, the experimental sowing of buckwheat was resumed in Khabarovsk District
after a long break. Its vegetation period is approximately only 70 days, which allows for
variations in the sowing and harvesting dates. Thus, in 2021, sowing was carried out in
the first half of July (calendar weeks 27–28), and harvesting was performed in the second
half of September (calendar weeks 38–39). Such dates are considered optimal for the local
buckwheat variety. In 2022, sowing was carried out a month earlier, commencing in early
June (weeks 22–23). Buckwheat maturation occurred by mid-August, with the end of
the vegetative phase occurring in week 34, and harvesting took place in late August and
early September.
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The fallow land represents unused cropland with grass, shrubs, and woody vegetation.
The insufficient melioration of cropland is an urgent problem in the Far East, resulting in
waterlogging. Vegetation on fallow land experiences growth from the beginning of spring,
maintains a consistently high level during the summer, and starts to wilt with a gradual
decrease in biomass during the fall. Crop phenology for soybean, oat, buckwheat, and
perennial grasses (with average temperatures) is presented in Figure 2.
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Figure 2. Crop phenology in Khabarovsk District.

2.4. Imagery Processing and NDVI Calculation

Multispectral Sentinel-2 data (Level-2A product) were accessed from the Copernicus
Open Access Hub service. The Graph Processing Framework (GPF), available on the
European Space Agency (ESA) Sentinel Application Platform (SNAP) v.9.0 (http://step.esa.
int/main, accessed on 21 December 2023; ESA, Paris, France), was used to create graphs
and set up chains for batch processing, as shown in Figure 3.
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Figure 3. Flowchart for NDVI time series generation.

NDVI time series were calculated for images that fulfilled the condition of the cloud
cover being less than 20% for the scene (Figure 4).
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Additionally, for the selected images, Scene Classification (SCL) products were used
together with Quality Indicators (QI) for clouds. Pixels were masked if they were contained
in at least one of the following bands: “scl_cloud_high_proba”, “scl_cloud_shadow”,
“opaque_clouds”, “scl_cloud_medium_proba”, “cirrus_clouds”, and “scl_thin_cirrus”.
Initially, SCL products were resampled to 10 m. Further, using the near-infrared (B8)
and red (B4) bands, the NDVI for each scene was calculated. The NDVI was calculated
as follows:

NDVI =
B8 − B4
B8 + B4

(1)

Before the dataset construction, we additionally performed “2σ-filtering”—for each
field, the mean value and standard deviation of the NDVI by site were calculated for each
date. Pixels when over half of the time series values did not fall within the 2σ-interval were
considered anomalous and were not included in the dataset. A total of 0.6% of the series
in 2021 and 0.8% of the series in 2022 were filtered out, which shows insignificant NDVI
variability across the site. A flowchart of the current research (starting from time-series
filtration, including time series restoration and classification) is presented in Figure 5.
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2.5. Composites Construction and Data Restoration

To equalize the number of observations in the time series, we calculated weekly NDVI
composites. Within each time series, the values were divided by calendar weeks; in the
case of several values within one calendar week, the average value was calculated. Thus,
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all the NDVI composites time series included 27 observations (from 17 to 43 calendar
weeks—from the end of April to the end of October).

The composites reduced the sparsity in the dataset, this was observed only for weeks
with images. The dataset remained highly sparse, missing 36% of the values for 2021 and
47% of the values for 2022. An example of a time series with a large number of missing
observations is shown in Figure 6.
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Figure 6. NDVI time series example for 2022.

To recover the missing values, we fitted each time series. The independent variable
was the number of calendar weeks, while the dependent variable was the NDVI value. The
parameters of the function were obtained for each time series. Then, using the number
of the week as an argument, we obtained the missing values of the time series. The lmfit
library (https://lmfit.github.io/lmfit-py; accessed on 15 November 2023) of the Python
programming language was used for fitting function parameters by the least squares’
method—specifically, the Levenberg–Marquardt algorithm [30]. The fitting functions were
the cubic polynomial, double sinusoidal function, and Fourier series.

2.5.1. Cubic Polynomial

Time series function fitting using polynomials is among the simplest and most com-
monly used methods for time series reconstruction [11,23,31]. A cubic polynomial (Cube)
has only four parameters and has the following form:

y = ax3 + bx2 + cx + d, (2)

where a, b, c, and d represent the parameters of the model.

2.5.2. Double Sinusoidal Function

Trigonometric polynomials have demonstrated their effectiveness as fitting functions
for periodic dependencies, which may include time series of vegetation indices [32]. In
particular, the double sinusoidal function (DS) is suitable for dependencies that have
two characteristic peaks. The DS function has six parameters and has the following
general form:

y = a1sin(b1x1 + c1) + a2sin(b2x2 + c2) (3)

where a1, b1, c1, a2, b2, and c2 represent the parameters of the function.

https://lmfit.github.io/lmfit-py
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2.5.3. Fourier Series

Fourier series are the best-known trigonometric series. Fourier series decomposition is
often used in signal processing and serves to extract the amplitude component, thus allow-
ing for the elimination of noise. There are several examples of the successful application of
such decomposition for time series of vegetation indices [33,34]. Fourier series enables the
representation of a complex relationship as the sum of simple trigonometric functions. In
our study, we use the first two terms of the Fourier series expansion (DF):

y = a0 + a1cos(xw) + b1sin(xw) + a2cos(2xw) + b2sin(2xw) (4)

As in the case of the DS, the approximation is reduced to the search for six parameters
represented by w, a0, a1, a2, b1, and b2. We calculated the MAPE for the averaged time
series of all classes for 2021 and 2022, fitted by different numbers of terms in the Fourier
series (Table S2). It was found that the mean error for one term and two terms differed
significantly (p < 0.05), while the mean error for two terms and for three terms did not
differ significantly (p > 0.05). An increase in the number of terms of Fourier series leads to
an increase in the number of model parameters, which, first, requires more observations in
time series (which can cause limitations in case of a lack of uncloudy data), and second,
increases the complexity of the calculations and interpretation of the model. Therefore,
using the first two terms of the Fourier series in the model is optimal.

2.5.4. Function Fitting Accuracy Evaluation

The mean absolute percentage error (MAPE) was calculated for each time series to
compare fitting functions and to select the function that best fit the original data:

MAPEi =
1

n − 1∑n

∣∣∣vpr
ij − vobs

ij

∣∣∣
vobs

ij
100 (5)

where i is the series index, vpr
ij is the predicted NDVI in week j, vobs

ij is the real NDVI in
week j, and n is the week number with the known NDVI for series i. The MAPE values
obtained for each series were averaged across classes and the entire dataset, as follows:

MAPEclass =
1
m∑i∈class MAPEi (6)

MAPEoverall =
1
N ∑i MAPEi, (7)

where class is the name of the class, m represents the number of series in the class, and N is
the number of series in the dataset. The function with the lowest MAPEoverall is used to
reconstruct the time series when generating datasets for ML.

2.6. Machine Learning

The dataset for 2021 and 2022 was obtained after filtering. The number of series in the
datasets is presented in Table 2. Partitioning into validation for 10-fold cross-validation sets
was performed based on site locations to prevent the simultaneous inclusion of series from
the same site in sets, as this could result in overfitting. A total of 295,673 labeled NDVI series
belonging to 130 sites, with a total area of 3122 ha, were used in cross-validation. In general,
the dataset can be considered balanced, thus avoiding distortions in the classification result.

To create classifiers, we used three ML algorithms, namely, support vector machines
(SVM), RF, and gradient boosting (GB). These algorithms, along with other popular ML
algorithms, were implemented using the scikit-learn package (https://scikit-learn.org/
stable; accessed on 15 November 2023) in the Python language.

https://scikit-learn.org/stable
https://scikit-learn.org/stable
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Table 2. Number of time series for each class included in the dataset.

Class Series

Fallow 62,156
Soybean 66,259

Oat 58,550
Perennial grasses 51,315

Buckwheat 57,393
Overall 295,673

2.6.1. Support Vector Machines

The SVM algorithm is widely applied in regression and classification tasks, including
cropland mapping [9,35,36]. The essence of SVM is to determine the optimal hyperplane
within the feature space that effectively separates points belonging to different classes. The
competitive advantages of the SVM include efficiency with a large number of features, mem-
ory economy, and flexibility in kernel feature selection. In this study, a high-performance
variation of the LinearSVC algorithm using a linear kernel was used. The parameters of
SVM are the penalization norm, loss function, and multiclass strategy. The main parameter
of the algorithm is the regularization coefficient C.

2.6.2. Random Forest

The RF algorithm is based on averaging the results of the ensembles of trees through
bagging, with each tree being trained on a subsample of the dataset [37]. The RF method
is used in both regression and classification problems. It is currently the most popular
algorithm in cropland mapping [25,27,37]. The advantages of RF include high performance
(especially for large datasets), high accuracy, and robustness regarding the presence of
noise in the data [9,38]. Its parameters are the quality criterion, the minimum number of
samples required to split an internal node, the minimum number of samples required to
be at a leaf node, and the number of features for each split. However, the main parameter
affecting the performance of RF is the number of trees.

2.6.3. Gradient Boosting

Similar to RF, the GB [39] algorithm is based on an ensemble of trees. The main
difference in this algorithm is the fact that training is performed sequentially. During
each iteration, the deviations in predictions made by the already trained ensemble on the
training sample are computed. The next model to be added to the ensemble will predict
these deviations. New trees are added to the ensemble as long as the error decreases or until
one of the “early stopping” rules is satisfied. GB is considered a flexible, computationally
fast algorithm that works even with sparse data. It has been used in prior research for land
cover mapping tasks [40–42]. Histogram-based GB is a simplified and fast implementation
of GB in the scikit-learn library, developed to classify large datasets. These fast estimators
first group the input samples X into integer-valued bins (typically, 256 bins). This significant
reduction in the number of splitting points to consider enables the algorithm to utilize
integer-based data structures (histograms) instead of relying on sorted continuous values
when constructing the trees. The set of algorithm parameters is the minimum number
of samples in a leaf node, the maximum number of leaves in a node, and the number
of iterations.

2.6.4. Mapping Accuracy Evaluation

The GridSearchCV tool was used to optimize the key parameters of the algorithms.
The parameters selection and algorithms comparison were performed using 10-fold cross-
validation (10 sets by 13 sites). The random state control was used to ensure the repro-
ducibility of the results. In this study, the metrics used to compare the algorithms were
overall accuracy (OA), user accuracy (UA), performance accuracy (PA), and F1. These
metrics were calculated from the confusion matrix.
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The confusion matrix is a square matrix of the dimension n × n, where n represents
the number of classes. In the confusion matrix, each column represents the actual class
and each row represents the predicted class. Each element of the matrix Xik denotes the
number of pixels of class k that fall into class i during classification. The diagonal elements
of the matrix represent the number of correctly classified pixels. The ratio of the sum of the
diagonal elements (true positive pixels TP) to the sum of all elements of the error matrix N
(expressed as a percentage) is given by the OA metric:

OA =
TP
N

∗ 100%. (8)

The confusion matrix also shows the number of pixels of class k (k ∈ [1, n]) that are
incorrectly assigned to other classes (false negative pixels FNk). PA represents the map
accuracy from the point of view of the map maker or producer. This metric represents
the frequency at which real features on the ground are correctly shown on the classified
map or the probability that a certain type of land cover of a given area on the ground is
classified correctly. PA is the complement of the omission error and is given by the number
of reference sites classified accurately divided by the total number of reference sites for
that class:

PAk =
TPk

TPk + FNk
∗ 100%. (9)

In the confusion matrix, it is also possible to count the number of pixels erroneously
assigned to class k (FPk). UA represents the accuracy from the point of view of a map
user rather than the map maker. UA represents the frequency at which a class on the map
is present on the ground, which is referred to as reliability. It is the complement of the
commission error and is given by the total number of correct classifications for a particular
class divided by the sum of row elements:

UAj =
TPk

TPk + FPk
∗ 100%. (10)

The F1 score can be interpreted as the harmonic mean of precision and recall, which
varies from 0 to 1. The relative contributions of precision and recall to the F1 score are equal:

F1k =
2 ∗ UAk ∗ PAk

UAk + PAk
(11)

Based on the results of comparing the metrics, the algorithm with the most suitable
parameters for cropland mapping was selected. It is also important to determine the
number of sites where the crop was correctly identified to evaluate the performance of
the best classifier. The number of pixels assigned to a particular class by the classifier
determined the crop in each site as the class label with the largest number of pixels assigned
to the site. The number and proportion of sites with correctly identified crops were used to
assess the classification accuracy at the parcel level.

3. Results
3.1. NDVI Time Series Restoration

Figure 7 shows the crop and year-averaged NDVI composite series that were recon-
structed using function fitting (Figure 7a–f). Figure 7a,b show that the Cube fit the NDVI
time series rather roughly, causing significant breaks in the seasonal curve. In particular,
this pattern was observed at the beginning of the growing season—at week 21 in 2021
for perennial grasses and oats and at week 22 in 2022 for oat and buckwheat. In June
2021 (calendar week 25–26), an uncharacteristic drop in the NDVI was observed for oat,
buckwheat, and perennial grasses. In mid-August in 2021 (weeks 33 and 34), there was an
underestimation of the NDVI for soybean near the peak and an overestimation for soybean
and perennial grasses (just after harvesting). In 2022, there was a sharp reversal in the
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NDVI for soybean, buckwheat, and perennial grasses at week 23, with mid-season spikes
for perennial grasses. The most serious anomalies using the Cube were observed at the
end of the season—the NDVI of oat and perennial grasses increased at the end of October
(week 43), but the NDVI of soybean was observed to exhibit a value less than 0. In general,
the use of Fourier series and DS allows for the generation of time series without anomalous
omissions, even in periods with long absences of satellite observations (such as weeks
29–31 in 2021 and weeks 19–21 and 27–29 in 2022). Overall, the restored seasonal NDVI
pattern is consistent with the crop phenology.
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An evaluation of the accuracy of the time series function fitting (in weeks with known
NDVI) is presented in Table 3.

For the Cube, the largest error was observed for soybean (MAPEsoybean = 26.1%). The
MAPE values for oats and buckwheat also exceeded 15% (MAPEoat = 19.8%,
MAPEbuckwheat = 17.4%), while that of perennial grasses was lower (MAPEgrasses = 13%).
A high approximation accuracy was achieved only for unused land NDVI fitting
(MAPE f allow = 7.8%), characterized by the most stable pattern. Thus, MAPEoverall for
the Cube function was 16.8% (significantly higher than for other methods, Tukey test,
p < 0.01), making it unsuitable for the recovery of the NDVI series.
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Table 3. MAPE for different functions, crops, and seasons.

Function Crop Season MAPE, %

Cube

Soybean 2021 22.0
2022 30.3

Fallow
2021 8.3
2022 7.4

Oat
2021 24.2
2022 15.4

Buckwheat
2021 15.2
2022 19.6

Perennial grasses 2021 14.0
2022 12.0

DF

Soybean 2021 11.6
2022 12.0

Fallow
2021 4.3
2022 6.0

Oat
2021 6.9
2022 8.3

Buckwheat
2021 10.1
2022 7.1

Perennial grasses 2021 8.1
2022 7.7

DS

Soybean 2021 12.9
2022 11.5

Fallow
2021 5.2
2022 6.2

Oat
2021 7.1
2022 8.9

Buckwheat
2021 14.3
2022 7.2

Perennial grasses 2021 6.4
2022 7.8

The use of DS allowed for a nearly 50% reduction in error in comparison with
the Cube (MAPEoverall = 8.7%). The most significant error was observed for soybean
(MAPEsoybean = 12.2%) and buckwheat (MAPEbuckwheat = 10.7%) due to the unsuccess-
ful fitting of the composites for 2021. For the other classes, the approximation accuracy
exceeded 90% (MAPEoat = 7.9%, MAPEgrasses = 7.1%, MAPE f allow = 5.7%).

The lowest error (MAPEoverall = 8.2%) was observed when using DF. The highest accuracy
was achieved for soybean (MAPEsoybean = 11.8%), buckwheat (MAPEbuckwheat = 8.6%), oat
(MAPEoat = 7.6%), and fallow land (MAPE f allow = 5.1%). The error was slightly higher than
that observed when using DS only for perennial grasses (MAPEgrasses = 7.9%). Based on
these results, DF was selected for data recovery to construct a common dataset.

3.2. Machine Learning Parameters Optimization

Table 4 shows the parameters of the Linear SVM algorithm that were obtained during
optimization by evaluating the 10-fold cross-validation accuracy.

Table 4. Optimal SVM parameters.

Parameter Value

Penalization norm L2
Loss function Squared hinge

Multi-class strategy ovr
Regularization parameter C 100
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For the first three parameters, the default values were optimal. The main parameter
affecting the performance of the algorithm was the regularization coefficient C. The depen-
dence of the cross-validation accuracy on C is shown in Figure S1. The standard value of
the regularization coefficient, i.e., 1, was not optimal. Increasing this value to 100 improved
the cross-validation accuracy by 1.5% (from 65.8% to 67.3%). Any further increase in the
value of the parameter led to a decrease in accuracy.

Table 5 summarizes the parameters of the RF algorithm, fitted using GridSearch.

Table 5. Optimal RF parameters.

Parameter Value

Criterion Gini
Minimum samples to split 2
Minimum samples in leaf node 1
Features to best split 5
Maximum leaf in nodes Unlimited
Trees 150

The default value of 5 for the number of features used to determine the best split was
found to be optimal. Limiting the number of leaves in nodes (by default, this number is
not limited) also led to a decrease in cross-validation accuracy. The dependence of the
cross-validation accuracy on the number of trees is presented in Figure S2. Increasing
the number of trees led to higher training time costs, due to which capping this value at
150 trees was found to be feasible. Subsequently, the maximum accuracy achieved with RF
during the 10-fold cross-validation was 87.2%.

Table 6 summarizes the GB algorithm parameters fitted using GridSearch during
10-fold cross-validation.

Table 6. Optimal GB parameters.

Parameter Value

Minimum samples in leaf 20
Maximum leaf in nodes 31

Maximum iterations 300

For the minimum number of samples in a leaf and the maximum number of leaves
in a node, the default values (20 and 31, respectively) were optimal. The maximum
number of iterations was increased from 100 to 300. The dependence of the cross-validation
accuracy on the number of iterations is shown in Figure S3. The difference in accuracy
after 100 and 300 iterations was 0.3% (85.6% and 85.9%, respectively). However, the higher
computational performance of the histogram-based GB (an order higher than RF) did not
lead to a significant increase in the computational cost.

3.3. Crop Mapping Results

When performing 10-fold cross-validation for DF-restored time series, the overall
classification accuracy was 67.3% for the SVM method, 87.2% for the RF method, and 85.9%
for the GB method.

Figure 8 shows the confusion matrix for the SVM method. The OA was 67.3%,
which was not a satisfactory result. Overall, the classifier only managed to detect soy-
bean (PAsoybean = 0.89, UAsoybean = 0.95, F1soybean = 0.92). In particular, the SVM classifier
faced challenges when attempting to separate fallow and perennial grasses. Consequently,
17,613 of 51,315 perennial grasses times series were recognized as fallow (PAgrasses = 0.30,
UA f allow = 0.55), resulting in relatively low values of F1 f allow and F1grasses (0.58 and 0.33,
respectively). For oat, the value of F1oat was 0.77, with parts of the series (14%) being rec-
ognized as either perennial grasses or buckwheat. The SVM classifier did not perform well
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enough in recognizing buckwheat (F1buckwheat = 0.66), and a substantial proportion of series
(17%) were classified as fallow, while 12% of fallow series were classified as buckwheat.
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Figure 9 shows the RF confusion matrix. The OA for the RF method was 87.2%,
which was 19.9% higher than that of the SVM classifier. The values of F1 for soybean and
oat exceeded 0.9 (F1soybean = 0.96, F1oat = 0.91). The F1 values for buckwheat and fallow
exceeded 0.85 (F1buckwheat = 0.87, F1 f allow = 0.85). The most difficult task for the RF classifier
was the recognition of the perennial grasses’ series (F1grasses = 0.69): 21% of grasses time
series were recognized as fallow. It could be related to the lack of plowing during the
season in several fields with perennial grasses, making the time series resemble that of
abandoned cropland. Nevertheless, the classification results with the RF method could be
considered successful.

The GB classifier showed high accuracy (OA = 85.9%). The GB confusion matrix is
presented in Figure 10. In general, the results were similar to the results obtained from the
RF classifier (F1soybean = 0.98, F1oat = 0.88, F1grasses = 0.62, F1 f allow = 0.84, F1buckwheat = 0.88).
Moreover, similar to the other classifiers, the issue of grasses recognition (perennial or natural
in unused cropland) is relevant (PAgrasses = 0.54 and UAgrasses = 0.73).

Table 7 summarizes the performance estimates for all three classifiers used in the study.
The cross-validation OA for the three classes is present in Table S1. In terms of overall
accuracy, the tree-based classifiers (RF and GB) significantly outperformed SVM (Tukey
test, p < 0.01). Although the RF and GB classifiers achieved a similar classification accuracy
(Tukey test, p > 0.05), the GB algorithm could significantly reduce the time cost (Tukey
test, p < 0.01). Therefore, the use of a classifier based on GB is optimal in addressing the
cropland mapping problem.
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Table 7. Accuracy metrics for the function-fitted dataset.

Metric SVM RF GB

OA, % 67.3 87.2 85.9
F1soybean 0.92 0.96 0.98
F1 f allow 0.58 0.85 0.84

F1oat 0.77 0.91 0.88
F1grasses 0.33 0.69 0.62

F1buckwheat 0.66 0.87 0.88
Mean time, s 275.86 221.17 20.54

3.4. Crop Identification at the Parcel Level

Table 8 shows the accuracy of the crop identification in the sites located in Khabarovsk
District. A total of 9 errors were observed across 130 test sites, with a total accuracy of 93%
at the parcel level. Buckwheat was identified on one of the unused sites. Two buckwheat
sites were identified incorrectly (one as perennial grasses and one as fallow—in both cases,
the percentage of correctly identified sites was near 40%). One oat site was identified as
perennial grasses, which can be related to the oat-perennial grasses in-season crop rotation,
when grains and perennial grasses grow together but farmers specify only one crop. Five
perennial grass sites were recognized incorrectly: two sites as oat (grasses presence) and
three sites as fallow (invisible plowing).

Table 8. GB accuracy at the parcel level.

Crop Correctly Classified Number of Fields Accuracy, %

Soybean 29 29 100
Fallow 26 27 96

Oat 20 21 95
Perennial grasses 26 31 84

Buckwheat 20 22 91
Overall 121 130 93

Figure 11 shows the results of crop mapping on individual sites. A correctly classified
soybean site is presented in Figure 11a, with 2680 of 2713 pixels (98.8%) identified correctly.
Figure 11b shows an example of unused land recognition. Fallow on the up-right site was
recognized nearly perfectly, with only 9 out of 2239 pixels being recognized incorrectly.
On the left-down site, 5% of time series were classified as soybean; however, the OA for
this site was 93.1%. The site with oat in Figure 11c was identified correctly, with only 8
of 1102 series being classified incorrectly. The classification accuracy for both sites with
perennial grasses in Figure 11d was higher than 97%; however, a limited number of the
series were classified as fallow, which could be attributed to the presence of unused land at
the site margins. Figure 11e shows an example of buckwheat cluster mapping. Four sites
were identified with an accuracy higher than 96%. The case of misclassification is shown in
Figure 11f (marked yellow). This error can be explained by the unsuccessful experience of
growing buckwheat on individual sites—buckwheat did not grow, the site was overgrown
with weeds, and on visual inspection, it was identified as unused. The resulting combined
cropland map is shown in Figure S4.
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4. Discussion
4.1. NDVI Time Series Restoration

The use of compound trigonometric functions (sums of trigonometric functions)
resulted in relatively high MAPE values when approximating NDVI series for soybean. It
can be observed that the soybean NDVI plots showed a single peak and that employing
simple functions with a single extremum may be better suited to fit such series (similar
to the Gaussian function) [24,43]. However, single-peak functions were less effective for
fitting the NDVI series for perennial grasses and buckwheat (when sown in July), which
have two peaks [44]. In practice, unmarked data (where the crop was not known) were
used when using the classifier. Therefore, a compromise solution had to be chosen when
recovering the data.
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The proposed data recovery methodology required the calculation of composites and
obtaining the coefficients of functions for each series. Computationally, function fitting
is much more complex than simple interpolation methods [17,18]. However, for a region
with a large number of cloudy days during the vegetation season, the use of spatial and
temporal interpolation is extremely difficult. Spatial interpolation requires the presence of
NDVI values in the site, and the presence of cloud cover over the whole site hinders the use
of this method. Temporal interpolation is most effective when there are only a few gaps
in the time series; the lack of data for 3–4 weeks makes such interpolation impossible. It
should be noted again that using this method is a relatively simple and efficient way to
recover multi-year sparse time series for classification.

The obtained fitting accuracy is comparable to the results published in leading scientific
journals. The average root mean square errors (RMSE) using DF for soybean, perennial
grasses, buckwheat, oat, and fallow were 0.061, 0.053, 0.047, 0.043, and 0.031, respectively.
For example, Vorobieva et al. fitted NDVI time series obtained from MODIS data for various
sites across the Samara region in Russia [24]. When approximating fallow land (combined
with perennial grasses) using the double logistic function, the RMSE was 0.038, while it
was 0.043 for cereal crops (including oat). When the first four terms of the Fourier series
were used, the RMSE was 0.043 for both fallow and cereal crops. The use of four terms of
the Fourier series did not result in a substantial improvement in accuracy when applied
with both single-peaked and double-peaked series, rendering it seemingly unnecessary.
Berger et al. used a double logistic function to approximate 8-day MODIS NDVI soybean
composites [23], resulting in an RMSE of 0.105, which is 0.044 more than that in our model.
Sun et al. reconstructed the time series of NDVI composites [45] and reported an RMSE of
0.091 for soybean, which is 0.03 more than that in our model.

4.2. Crop Mapping

To validate the performance of these classification algorithms, it is important to com-
pare the results of our study with the findings of prior research on NDVI time series
classification for cropland mapping. For example, Erdanaev et al. used monthly Sentinel-2
NDVI composites and the SVM classifier for land cover and crop mapping, considering
seven classes, including five crop types, water, and other [10]. They reported an overall
accuracy of 87%, with SVM being more accurate than RF. Other vegetation indices and
their combinations were also tested, but none of them achieved an accuracy exceeding 90%.
Ouzemou et al. used pan-sharpened Landsat-8 NDVI data to classify cropland, including
orchards, with the RF classifier achieving a maximum accuracy of 89% [9]. These studies
used one-year sentinel data for crop mapping. Mapping cropland using multi-year data
is substantially more challenging due to the inter-annual variation in vegetation indices
and the need to calculate composites. Hu et al. used Sentinel-2 images for 2019 and 2020 to
map four crops across croplands in North China (four crops) and achieved a classification
accuracy of 92% [16]. However, the process involved a significant number of computa-
tions, as a range of bands and vegetation indices were required. Thus, the accuracy and
computational performance of the GB-based classifier developed in this study can both be
considered high.

Shapley values analysis [46,47] was performed to explain the contribution of each week
to the GB prediction. Figure 12 shows the percentage contribution to the final prediction for
each class (the five most valuable weeks were demonstrated in diagrams). All components
of the time series are almost uniformly used for soybean series identification: among the
most important parameters for prediction are NDVI values at the beginning of the soybean
growing season, at its peak, and at the end of the growing season. For the identification
of fallow, the most important are NDVI values in August (32–34 weeks), since only for
fallow in this period is there a stability of values (for soybean, there is a peak, for oats and
perennial grasses, the NDVI in this period is low, and for buckwheat in general, the NDVI
growth is characteristic). For oat identification, the NDVI drop after its harvesting at the
end of July–August (30, 32, 34 weeks) and the values on the approach to the vegetation
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peak (24, 26 week) are of the greatest importance. For the recognition of perennial grasses,
both the values at the beginning of the growing season (18, 22 weeks) and the values at
the time of reaching the second peak (August–September) characteristic of this particular
class are important. Due to the early sowing and harvesting of buckwheat in 2022, the most
characteristic for buckwheat was the NDVI at week 34 (end of August)—its contribution
was 20.8%. It was during this period that buckwheat in 2022 was characterized by a
sharp drop in the NDVI. The analysis showed that although summer NDVI values have a
greater impact in general, it is important to use the entire seasonal NDVI time series for
multiclass classification.
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(d) grasses, and (e) buckwheat.

5. Conclusions

Time series of weekly NDVI composites for 2021 and 2022 were generated using multispec-
tral Sentinel-2 images for crop sites in Khabarovsk District. Three types of nonlinear functions
were fitted to recover observations for missing weeks. It was found that the Fourier series
showed the highest accuracy in approximating the NDVI series, with a mean error of 8.2%.



Remote Sens. 2024, 16, 1633 20 of 23

Thus MAPEsoybean = 11.8%, MAPEbuckwheat = 8.6%, MAPEoat = 7.6%, MAPE f allow = 5.1%,
and MAPEgrasses = 7.9%. The use of a double sinusoidal function for fitting the NDVI series
resulted in an increase in the error by up to 8.6%, while using a cubic polynomial resulted in an
even higher increase in error by up to 16.8%.

Tenfold cross-validation was performed to optimize the hyperparameters of three
classification methods (SVM with linear kernel, RF, and GB), with a histogram-based
modification, and compare their accuracy. The overall accuracy when using the optimal
hyperparameters was 67.3%, 87.2%, and 85.9% for SVM, RF, and GB, respectively. The
F1 values for different classes ranged from 0.33 to 0.92 for SVM, 0.69 to 0.96 for RF, and
0.62 to 0.98 for HGB. For the main crop of the Far East, soybean, the F1 value when using
GB was 0.98. An important factor supporting the use of this algorithm is that the time
cost of using GB is an order of magnitude lower compared to the other methods. Thus,
it has been shown that the use of fitting functions to reconstruct NDVI time series and
subsequent GB machine learning make it possible to perform crop mapping based on
multi-year data. The high accuracy and productivity of the proposed method determine
the prospects for its use in regions with similar cropland structures and crop phenological
cycles, including the developing agricultural regions of Northeast China that have large
areas of cropland [3,48,49].

In future research, we plan to test the developed method in other regions using data
for more years. It is also planned to use data from different satellites to eliminate sparsity
in time series. The use of a combination of satellite bands and neural networks may be
very promising.

The use of precision methods for cropland identification and control will make it pos-
sible to more effectively manage the agro-industrial complex. Accurate cropland mapping
and vegetation analysis can also help assess the rational use of fertilizers, whose contribu-
tion to total nitrogen emissions is large enough that it can lead to significant changes in
ecosystems [50]. Effective management in agriculture, coupled with well-managed urban-
ization, will allow for the faster adoption of modern agricultural methods, which, in turn,
will reduce nitrogen emissions, potentially improving air and water quality [51]. Globally,
climate change greatly impacts the production of major crops [52]. This impact is very
uneven, especially for countries with large territories. The climate in Russia is warming
about 2.5 times more intensely than the global average. The softening of winters in Russia
could be an important factor in the future development of agriculture [53]. An increase in
precipitation and climate warming leads to an increase in soybean yields. In general, the
change in agro-climatic conditions in the Middle Amur River Region is relatively favorable
for soybean (which is the major crop in this region) cultivation [54].
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