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Abstract: Powdery mildew significantly impacts the yield of natural rubber by being one of the
predominant diseases that affect rubber trees. Accurate, non-destructive recognition of powdery
mildew in the early stage is essential for the cultivation management of rubber trees. The objective
of this study is to establish a technique for the early detection of powdery mildew in rubber trees
by combining spectral and physicochemical parameter features. At three field experiment sites
and in the laboratory, a spectroradiometer and a hand-held optical leaf-clip meter were utilized,
respectively, to measure the hyperspectral reflectance data (350–2500 nm) and physicochemical
parameter data of both healthy and early-stage powdery-mildew-infected leaves. Initially, vegetation
indices were extracted from hyperspectral reflectance data, and wavelet energy coefficients were
obtained through continuous wavelet transform (CWT). Subsequently, significant vegetation indices
(VIs) were selected using the ReliefF algorithm, and the optimal wavelengths (OWs) were chosen
via competitive adaptive reweighted sampling. Principal component analysis was used for the
dimensionality reduction of significant wavelet energy coefficients, resulting in wavelet features
(WFs). To evaluate the detection capability of the aforementioned features, the three spectral features
extracted above, along with their combinations with physicochemical parameter features (PFs)
(VIs + PFs, OWs + PFs, WFs + PFs), were used to construct six classes of features. In turn, these
features were input into support vector machine (SVM), random forest (RF), and logistic regression
(LR), respectively, to build early detection models for powdery mildew in rubber trees. The results
revealed that models based on WFs perform well, markedly outperforming those constructed using
VIs and OWs as inputs. Moreover, models incorporating combined features surpass those relying on
single features, with an overall accuracy (OA) improvement of over 1.9% and an increase in F1-Score
of over 0.012. The model that combines WFs and PFs shows superior performance over all the other
models, achieving OAs of 94.3%, 90.6%, and 93.4%, and F1-Scores of 0.952, 0.917, and 0.941 on SVM,
RF, and LR, respectively. Compared to using WFs alone, the OAs improved by 1.9%, 2.8%, and 1.9%,
and the F1-Scores increased by 0.017, 0.017, and 0.016, respectively. This study showcases the viability
of early detection of powdery mildew in rubber trees.
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1. Introduction

The rubber tree (Hevea brasiliensis), a valuable economic crop, produces milky latex,
which serves as the primary source of natural rubber. Originating in the tropical rainforests
of the Amazon River basin, it thrives in tropical and subtropical regions. Powdery mildew,
resulting from infestation by the pathogen Oidium heveae Steinmann, is among the prominent
diseases impacting rubber trees [1]. It is commonly found in the spring during the period of
bud break and leaf spread, primarily damaging the young leaves, shoots, and inflorescences,
leading to secondary leaf fall. This results in a delayed onset of rubber tapping and
significantly impacts the production of natural rubber [2]. Early on in the infectious
process, rubber tree leaves begin to show a small amount of scattered radial silver-white
mycelium, which can rapidly spread across the entire plantation area under suitable climatic
conditions [3]. Traditional detection of powdery mildew primarily relies on experienced
professionals conducting periodic leaf surveys to assess the disease’s severity. However,
this method is labor-intensive, lacks strong representativeness, and suffers from incomplete
and untimely data submissions from some sites, diminishing its effectiveness in offering
timely scientific guidance. Therefore, achieving accurate detection in the early stages of
powdery mildew occurrence could effectively control its outbreak, holding significant
importance for agricultural production.

In recent years, hyperspectral remote sensing technology has acquired widespread
usage in crop disease detection, leveraging its benefits of swift measurements and its
non-destructive nature [4,5]. After being infected by pathogens, crops typically do not
exhibit obvious visual symptoms in the early stages. However, a series of physiological
and biochemical changes begin to occur, leading to different spectral responses. Therefore,
disease identification can be accomplished through the analysis of crop spectral reflectance.
Common hyperspectral-based methods for detecting crop diseases include vegetation
indices, optimal wavelengths selection from original spectra, and continuous wavelet trans-
form (CWT), among others. Vegetation indices (VIs), by combining sensitive bands and
abnormal changes in spectral response, highlight the spectral characteristics of diseases,
representing a simple and effective method for characterizing spectral changes. Ashour-
loo et al. measured the hyperspectral data of wheat leaves and identified three sensitive
wavelengths (605 nm, 695 nm, and 455 nm) for wheat leaf rust disease [6]. Based on this,
they developed two vegetation indices, LRDSI_1 and LRDSI_2, enabling the monitoring of
wheat leaf rust disease. Abdulridha et al. investigated and assessed 29 vegetation indices
extracted from indoor hyperspectral data of squash leaves, discovering that the water index
and the photochemical reflectance index could facilitate early detection and classification
of squash powdery mildew [7]. Optimal wavelength (OWs) selection, by analyzing in-
teractions between wavelengths, extracts a small number of sensitive wavelengths from
abundant spectral data as the optimal feature combination, reducing redundancy between
data and amplifying spectral differences between samples. Zhou et al. utilized hyperspec-
tral reflectance data from barley leaves and employed competitive adaptive reweighted
sampling (CARS) to extract 30 feature wavelengths [8]. Coupled with linear discriminant
analysis (LDA), they achieved early identification of symptoms of Magnaporthe oryzae
infection in barley leaves. Guo et al. employed the successive projection algorithm (SPA) to
extract six feature wavelengths sensitive to wheat stripe rust, facilitating the extraction of
stripe rust lesions on wheat leaves [9]. CWT is a burgeoning spectral analysis technique
that decomposes spectral data across multiple scales, enabling the capture of intricate
spectral variations. Shi et al. introduced a methodology employing wavelet features (WFs)
to elucidate the mechanisms associated with wheat stripe rust [10]. Zhang et al. combined
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CWT with partial least squares regression using hyperspectral information from infected
leaves, facilitating the evaluation of winter wheat powdery mildew [11].

Compared to spectral features, physicochemical parameter features (PFs) of crops
more directly reflect the physiological and chemical changes occurring after crop infection,
garnering increasing attention in crop disease detection [12,13]. Wu et al. extracted mul-
tiple PFs including chlorophyll content and LAI from hyperspectral images captured by
unmanned aerial vehicles during the fruit expansion period of jujube trees and established
a health assessment model based on these features [14]. Liu et al. conducted a comprehen-
sive analysis of hyperspectral data and chlorophyll content to assess the severity of Apple
mosaic virus (ApMV) infection in apple leaves at the leaf scale [15]. The above studies all
utilized hyperspectral data to invert PFs. In addition, portable hand-held optical leaf-clip
meters such as SPAD and Dualex, owing to their advantages of real-time, accurate, and
non-destructive measurement of PFs such as chlorophyll and anthocyanin content in leaves,
are also commonly employed for on-site acquisition of PFs in field experiments [16]. Sims
et al. conducted the detection of cassava brown streak disease and cassava mosaic disease
based on SPAD measurements, demonstrating that the utilization of SPAD devices can
enhance the precision of translating disease assessments from leaf-scale to landscape-scale,
consequently augmenting the sensitivity of field evaluations [17]. The above studies in-
dicate the advantage of PFs in crop disease detection. Nevertheless, there is presently a
lack of research on using PFs for detecting powdery mildew in rubber trees. Therefore,
further exploration is necessary to unlock the potential of PFs in identifying rubber tree
powdery mildew.

The process of crop pathogen infection leading to disease is complex. Therefore, us-
ing only a single type of feature as input may not adequately characterize the complex
responses of crops to diseases. In recent years, the utilization of combined features has
become prevalent in early crop disease detection owing to their exceptional detection capa-
bilities [18,19]. Tian et al. extensively utilized the rich spectral information from a two-year
dataset and selected 21 features sensitive to rice blast disease from the perspectives of
individual reflectance bands, spectral indices, and wavelet coefficients [20]. These features
were employed for detecting rice blast disease at asymptomatic, early, and mild-infection
stages, achieving detection accuracies exceeding 66%, 80%, and 95%, respectively. Zhu et al.
explored the early detection of tobacco disease through hyperspectral imaging, incorporat-
ing both spectral and texture features [21]. Their findings revealed that models integrating
spectral and texture features surpassed those relying solely on spectral or texture features,
achieving detection accuracies exceeding 80%. The aforementioned studies provide the
foundation for our research, demonstrating the superiority of utilizing combined features in
the early detection of crop diseases. However, there is currently insufficient attention given
to the remote sensing early detection of powdery mildew in rubber trees using combined
features, particularly the combination of spectral and physicochemical parameter features.
Further research in this area is warranted.

To address this research gap, especially the limited exploration of early detection
methods for powdery mildew in rubber trees and the lack of studies employing combined
features incorporating physiochemical parameters for this detection, this paper employs
hyperspectral reflectance data and physiochemical parameter data from rubber tree leaves
as data sources to propose an effective method for the early detection of powdery mildew
in rubber trees by integrating spectral and physiochemical parameter features. The specific
aims of this research were (1) to assess the efficacy of VIs, OWs, and WFs individually, as
well as their combinations with PFs, in the early detection of powdery mildew in rubber
trees; and (2) to construct an early detection model for powdery mildew in rubber trees
by merging spectral and physiochemical parameter features using machine learning tech-
niques. This research provides valuable insights for the early detection and management of
powdery mildew in rubber trees.
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2. Materials and Methods
2.1. Study Area

The study area, situated in the Dai Autonomous Prefecture of Xishuangbanna, Yunnan
Province, China, is part of the rubber research region of the Tropical Crops Research
Institute of Yunnan Province. Its geographical coordinates are 22◦2′N, 100◦52′E, and it
sits at an elevation of 852.2 m. The year-round climate of Xishuangbanna is warm and
humid, with temperatures typically ranging from 18.9 to 23.5 ◦C and annual precipitation
of 1214.8 to 1615.9 mm. The experiment took place from 28 February to 2 March 2023,
conducted both in the field and indoors. The three field experiment sites were located
in Sandashan of Jinghong City (22◦3′49′′N, 100◦53′32′′E), Ganlanba Farm (21◦47′42′′N,
100◦46′20′′E), and Dongfeng Farm (21◦43′41′′N, 100◦44′32′′E). During this period, the
rubber tree phenology was mainly characterized by leaves transitioning from bronze to
pale green, which represents a crucial phase for identifying and managing powdery mildew
in rubber trees.

2.2. Data Acquisition
2.2.1. Collection of Leaf Reflectance Spectra

Hyperspectral reflectance data from rubber tree leaves were collected using the Field-
Spec Pro FR spectrometer (ASD, Boulder, CO, USA). The device spans a spectral range
from 350 to 2500 nm and provides resolutions of 3 nm and 10 nm in the respective ranges
of 350 to 1000 nm and 1000 to 2500 nm [22]. To mitigate the impact of the solar zenith angle
on measurement outcomes, outdoor experiments were conducted between 10:00 and 14:00
local time with clear skies. During measurements, the leaves were placed flat on a 1 m by
1 m black cloth, and the probe of the spectrometer was positioned 0.5 m directly above the
leaves for spectral acquisition. Each sample underwent five measurements to determine
the average leaf spectral reflectance. Before each measurement, spectral calibration was
performed on a 40 cm by 40 cm BaSO4 reference panel. During indoor measurements, the
leaves were placed horizontally on the working surface, and each sample underwent five
measurements to calculate the average leaf spectral reflectance. Before measurements, a
standard white reference board was used for spectrum calibration, and recalibrations were
conducted every 10 to 20 min. Finally, precise spectral reflectance data were acquired, and
the spectral curve was resampled to ensure a precision of 1 nm.

Samples were categorized according to the size of lesions and the visual appearance
of rubber tree leaves when gathering leaf hyperspectral reflectance data, following the
technical guidelines for predicting powdery mildew in rubber trees established in China in
2015 (NY/T1089-2015) [23]. Healthy (H) leaves exhibited no disease lesions, while leaves
with early-stage disease (E) had lesions covering less than one-eighth of the total leaf area
(Figure 1). A total of 263 leaf samples’ spectral reflectance data were collected, comprising
152 H and 111 E samples. The specific sample distribution is shown in Table 1.
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Table 1. Sample distribution was obtained at each experimental site.

Experimental Site
Number of Field Survey Samples

Healthy Early Sum

Sanda Mountain 43 21 64
Ganlanba Farm 30 30 60
Dongfeng Farm 29 10 39

Indoor Laboratory 50 50 100

2.2.2. Collection of Leaf Physicochemical Parameters

The leaf physicochemical parameter measurements were performed using the Dualex 4
(Force-A, Orsay, France), a portable optical leaf-clip meter capable of non-destructively
and accurately evaluating chlorophyll and epidermal flavonol content [24]. During the
measurement process, five measurements were taken at positions 1/3 (upper), 1/2 (middle),
and 2/3 (lower) from the leaf tip for each sample, with the average subsequently calculated
(Figure 2). The measurement results were displayed in units of µg/cm2. Chlorophyll and
anthocyanin content were measured and selected as the physicochemical parameters.
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2.3. Feature Extraction and Analysis

Figure 3 shows the flowchart for identifying rubber tree powdery mildew using
spectral and physicochemical parameter features (VIs, OWs, WFs, and their combinations
with PFs). The process comprises three steps: (1) collection of hyperspectral reflectance
data and physicochemical parameter data of rubber tree leaves; (2) extraction of spectral
and physicochemical parameter features (VIs were chosen using the ReliefF algorithm,
OWs were selected via CARS, WFs were derived through PCA dimensionality reduction
on significant wavelet energy coefficients, and PFs were obtained through measurements
using the Dualex 4); (3) utilization of machine learning models to establish detection models
employing various features, with model performance assessed through confusion matrices,
overall accuracy, and F1-Score.
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2.3.1. Vegetation Indices Extraction and Selection

Vegetation indices play a crucial role in enhancing spectral disparities by combining
and transforming wavebands, making them extensively utilized in crop disease remote
sensing detection studies. In this research, we curated 39 VIs associated with pigment,
structure, physiology, and water content from the pertinent literature for the early de-
tection of powdery mildew in rubber trees, drawing upon previous studies. Table 2
presents a detailed summary of these 39 features, complete with definitions, descriptions,
and references.

Table 2. Vegetation indices selected in the study.

Category Index/Spectral
Feature Definition Description or Formula Reference

Pigment

ARI Anthocyanin reflectance index (R550)−1 − (R700)−1 [25]
AntGitelson Anthocyanin (Gitelson) (1/R550 − 1/R700) × R780 [25]

CIgreen Green chlorophyll index (R750 − R550)/R550 [25]
CIred-edge Red-edge chlorophyll index (R750 − R705)/R705 [26]

CARI Chlorophyll absorption ratio
index

(|(a × 670 + R670 + b)|/(a2 + 1)1/2) ×
(R700/R670)

a = (R700 − R550)/150, b = R550 − (a × 550)
[27]
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Table 2. Cont.

Category Index/Spectral
Feature Definition Description or Formula Reference

Pigment

TCARI
Transformed chlorophyll

absorption and reflectance
index

3 × [(R700 − R670) − 0.2 × (R700 −
R500)]/(R700/R670) [28]

MCARI Modified chlorophyll
absorption ratio index

[(R701 − R671) − 0.2 × (R701 −
R549)]/(R700/R670) [29]

NRI Nitrogen reflectance index (R570 − R670)/(R570 + R670) [30]

NPCI Normalized pigment chlorophyll
index (R680 − R430)/(R680 + R430) [31]

PSSRa Pigments specific simple ratio a R800/R680 [32]
PSSRb Pigments specific simple ratio b R800/R635 [32]

PRI Photochemical/physiological
reflectance index (R531 − R570)/(R531 + R570) [33]

PSRI Plant senescence reflectance
Index (R680 − R500)/R750 [34]

PPR Plant pigment ratio (R550 − R450)/(R550 + R450) [35]
RGI Red green index R690/R550 [36]

RARSa Ratio analysis of reflectance
spectra a R675/R700 [37]

RARSb Ratio analysis of reflectance
spectra b R675/(R700 × R650) [37]

RARSc Ratio analysis of reflectance
spectra c R760/R500 [37]

OSAVI Optimized soil-adjusted
vegetation index

(1 + 0.16) ×(R800 − R670)/(R800 + R670
+ 0.16) [38]

SIPI Structure insensitive pigment
index (R800 − R445)/(R800 + R680) [31]

Structure

NDVI Normalized difference
vegetation index (R800 − R670)/(R800 + R670) [39]

NBNDVI Narrow-band normalized
Difference vegetation index (R850 − R680)/(R850 + R680) [40]

ReNDVI Red-edge normalized difference
vegetation index (R750 − R705)/(R750 + R705) [41]

GNDVI Green normalized difference
vegetation index (R750 − R540 + R570)/(R750 + R540 − R570) [42]

GI Greenness index R554/R677 [36]
SR Simple ratio R900/R680 [43]
TVI Triangular vegetation index 0.5 × [120(R750 − R550) − 200(R670 − R550)] [44]

MTVI Modified triangular vegetation
index 1.2 × [1.2(R800 − R550) − 2.5(R670 − R550)] [45]

RVSI Red-edge vegetation stress
Index [(R712 + R752)/2] − R732 [46]

Physiology

FRI1 Fluorescence ratio index 1 R690/R630 [47]
FRI2 Fluorescence ratio index 2 R750/R800 [48]
FRI3 Fluorescence ratio index 3 R690/R600 [49]
FRI4 Fluorescence ratio index 4 R740/R800 [49]
FCI Fluorescence curvature index R2

683/(R675 × R691) [47]

mRESR Modified red-edge simple ratio
index (R750 − R445)/(R705 + R445) [50]

NPQI Normalized Pheophytization
Index (R415 − R435)/(R415 + R435) [51]

PhRI Physiological reflectance index (R550 − R531)/(R531 + R550) [33]

Water
content

WI Water Index R900/R970 [52]

WSCT Water Stress and Canopy
Temperature (R970 − R850)/(R970 + R850) [53]

Note: Rx represents the reflectance at a wavelength of x nm.
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The aforementioned four types of vegetation index features may not all contribute
to early detection. Reducing redundancy and selecting optimal features will enhance the
model’s accuracy. Therefore, the ReliefF algorithm was utilized in this study to compute
the weight of each feature, retaining a small number of important features.

The ReliefF algorithm is widely employed as a feature weighting method, assigning
distinct weights to features depending on their correlation with the classes [54]. Features
with weights below a specific threshold are eliminated, making this approach suitable for
handling data with two or more classes. The algorithm first chooses a sample R at random
from the training sample set D, then retrieves k nearest neighbor samples H from the set of
samples belonging to the same class as R, and k nearest neighbor samples M from the set of
samples belonging to different classes than R. Subsequently, it updates the weight of each
feature. The following formula is used to determine the feature weight:

W[A] = W[A]−
k

∑
j=1

di f f
(

A, Ri, Hj
)
/mk + ∑

C ̸=class(Ri)

[
P(C)

1 − P(class(Ri))

k

∑
j=1

di f f
(

A, Ri, Mj(C)
)]

/mk, (1)

where di f f
(

A, Ri, Hj
)

represents the Euclidean distance between sample Ri and Hj on
feature A; class(Ri) denotes the class label to which sample point Ri belongs; P(C) denotes
the probability of occurrence of class C; P(class(Ri)) denotes the probability of occurrence
of the random sample R; and m denotes the number of sampling times.

2.3.2. Optimal Wavelengths Selection

Rubber tree leaf hyperspectral reflectance data contains rich spectral information,
which aids in disease identification. The original spectral data cover a range from 350 to
2500 nm, with a total of 2151 wavelengths. Due to the data’s high dimensionality, spectral
redundancy and collinearity exist, which not only increase the complexity of the models
but also affect their computational efficiency. Therefore, it is essential to extract the sensitive
wavelengths for powdery mildew before conducting early disease detection, to diminish the
dimensionality of the original spectral information, and to amplify the spectral disparities
between samples. For this study, the OWs were chosen using the CARS algorithm.

The CARS algorithm [55], rooted in the Darwinian principle of “survival of the fittest”,
is an iterative statistical information-based method used for selecting variables, widely
utilized for selecting characteristic spectral wavelengths in crop disease detection. This
algorithm integrates Monte Carlo sampling with an exponential decay function in the
partial least squares (PLS) model. It retains wavelength points with larger absolute re-
gression coefficients in the PLS while discarding those with smaller weights. Through
cross-validation, it identifies the subset of wavelength variables with the lowest root mean
square error of cross-validation (RMSECV) as the best feature wavelengths.

2.3.3. Continuous Wavelet Transform and Features Extraction

CWT [56] is a signal processing technique rooted in the Fourier transform, allowing
for the simultaneous analysis of signals in both the frequency and time domains. Utilizing
CWT, the correlation analysis of original spectral curves and Gaussian functions at various
positions and scales produces a set of continuous wavelet energy coefficients. As a newly
emerging spectral analysis approach, it has been applied to the detection and identification
of crop diseases.

The principle of CWT involves transforming hyperspectral reflectance data f (λ) into a
set of wavelet coefficients through the application of a mother wavelet function. Continuous
wavelets ψa,b(λ) are obtained by shifting and scaling the mother wavelet function ψ(λ),
with a general form as follows:

ψa,b(λ) =
1√
a

ψ

(
λ − b

a

)
, (2)
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where “a” denotes the scaling factor, indicating the width of the wavelet, while “b” rep-
resents the shifting factor, signifying the position of the wavelet. The output during the
transformation process is as follows [57]:

W f (a, b) =
∫ +∞

−∞
f (λ)ψa,b(λ)dλ, (3)

where W f (a, b) represents the wavelet coefficients that constitute a scalogram; f (λ) denotes
the reflectance spectrum, λ = 1, 2, . . ., m, with m representing the number of bands—here,
we set m as 2151. We selected the Mexican hat wavelet (mexh) as the foundational mother
wavelet function due to its analogous vegetation absorption properties [58]. To optimize
computation while maintaining the effectiveness of CWT, we focused on wavelet powers
at specific scales known as dyadic scales (i.e., 2n, n = 1, 2, . . ., 10) [59].

In this study, based on CWT, we conducted a correlation analysis between the calcu-
lated wavelet energy coefficients and disease. Multiple significant results were observed
across various wavebands and scales. Then, using principal component analysis (PCA) to
decrease the dimensionality of the significant results relying on specific contribution rates,
the resulting features from this procedure are called WFs. MATLAB 2016a was employed
for all analyses of CWT.

2.4. Model Construction

In this study, the extracted VIs, OWs, WFs, and their combinations with PFs (VIs + PFs,
OWs + PFs, WFs + PFs) were employed as feature variables. Six classes of feature variables
were combined with support vector machine (SVM), random forest (RF), and logistic
regression (LR) to establish early detection models for rubber tree powdery mildew.

SVM, a supervised learning algorithm [60], employs a kernel function to implicitly
transform vectors of inputs into a high-dimensional feature space [61]. Subsequently,
it seeks the best hyperplane in this feature space to accurately classify data, allowing
for the modeling and classification of intricate data relationships [62]. SVM efficiently
mitigates overfitting and has exceptional performance with small sample numbers and in
high-dimensional spaces. Even when faced with limited training data, it is still capable
of producing robust models. RF is a classifier rooted in bagging ensemble learning [63]
that consists of a collection of independent, unpruned decision trees. Through random
sampling with replacement, multiple sample sets are generated, and classification trees are
built via a fully split method. A majority vote of the classifications from each individual
binary decision tree determines the final classification result. It demonstrates relatively
simple parameter tuning, good anti-overfitting characteristics, and increased robustness.
LR is a classical supervised learning algorithm [64]. Assuming data follows a Bernoulli
distribution, LR utilizes the Sigmoid function to constrain the results of linear regression
within the (0,1) interval, representing the probability of a sample belonging to a certain
class. By maximizing the likelihood function using gradient descent to solve parameters,
LR achieves the objective of classifying data. LR is characterized by its simplicity, good
interpretability, low computational cost, robustness to small noise in the data, and immunity
to minor multicollinearity effects.

2.5. Accuracy Assessment

In order to more thoroughly assess the precision and stability of the models mentioned
above, the study employed a 60:40 stratified sampling on the original dataset, dividing it
into 60% for the training set and 40% for the testing set based on sample categories. The
grid search method was utilized for hyperparameter tuning on the training set. The models
were trained and validated using k-fold cross-validation, where the dataset was randomly
partitioned into five folds. In each iteration, four folds were allocated for training and one
fold was set aside for validation. To ensure comprehensive assessment, this procedure was
carried out five times, with each fold acting as the validation set once. Ultimately, model
performance was depicted by computing the average of evaluation metrics. The optimized
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models were then tested on the testing set, and a confusion matrix was created utilizing
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), with
overall accuracy (OA) computed as an evaluation metric to gauge model performance.
Given the mild data imbalance, F1-Score was also incorporated into the study to provide a
more comprehensive evaluation. The Python machine learning library scikit-learn version
0.24.2 was utilized for both model development and data analysis [65].

3. Results
3.1. Spectral and Physiological Responses of Rubber Tree Powdery Mildew

The elucidation of the spectral and physicochemical response mechanisms of rubber
tree powdery mildew leaves forms the basis for detecting rubber tree powdery mildew
using spectral and physicochemical parameter features. Figure 4a,b present the average
spectral reflectance curves of healthy and early-stage rubber tree leaf samples, along
with the spectral reflectance ratio between the two. The spectral reflectance curves of
healthy and early-stage samples generally exhibit a similar trend, exhibiting reflection
peaks near 550 nm and absorption troughs near 670 nm in the visible light region, followed
by a sharp increase after 700 nm, stabilizing at a plateau of reflection shoulder around
1000 nm, and subsequently showing moisture absorption bands at 1450 nm and 1950 nm
in the near-infrared region. Simultaneously, the ratio of reflectance between healthy and
early-stage samples indicates that the overall spectral reflectance of early-stage diseased
samples is slightly lower than that of healthy samples, with minor differences observed
only in the visible light region from 400 to 670 nm and near 1950 nm in the near-infrared
region, as well as beyond 2400 nm. The possible reasons for these differences may be
as follows: The spectral reflectance in the visible region is primarily associated with leaf
pigments [66]. Infection with powdery mildew can lead to chlorotic and necrotic leaf
surfaces, causing a decrease in chlorophyll content and thus reducing leaf reflectance in
the visible region. The near-infrared region of reflectance is predominantly affected by
the internal leaf structure, involving water absorption, proteins, and carbohydrates [67].
Powdery mildew infection disrupts the internal and surface structures of leaves, increasing
water loss and consequently decreasing near-infrared reflectance.
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The spectral changes in the early stages of powdery mildew infection are relatively
subtle, making early detection challenging. In contrast, the response of physicochemical
parameters exhibits a more rapid response. The changes in leaf physicochemical parameters
are illustrated in Figure 5. The chlorophyll content of leaves shows a decreasing trend,
while the anthocyanin content shows an increasing trend.

Remote Sens. 2024, 16, 1634 11 of 19 
 

 

 

Figure 4. (a) Average spectral reflectance curves of healthy and early-stage diseased samples and 

(b) spectral reflectance ratio between the two. 

The spectral changes in the early stages of powdery mildew infection are relatively 

subtle, making early detection challenging. In contrast, the response of physicochemical 

parameters exhibits a more rapid response. The changes in leaf physicochemical parame-

ters are illustrated in Figure 5. The chlorophyll content of leaves shows a decreasing trend, 

while the anthocyanin content shows an increasing trend. 

 

Figure 5. Physiochemical parameter responses: (a) chlorophyll; (b) anthocyanin. 

3.2. Optimal Feature Extraction Results for Rubber Tree Powdery Mildew 

3.2.1. Vegetation Indices 

The weights of each feature were computed using the ReliefF algorithm, as illustrated 

in Figure 6. With a threshold of 0.03, a total of nine VIs (NPCI, PRI, PSRI, GNDVI, FRI1, 

FRI3, FRI4, WI, and WSCT) with high weights were selected for model construction and 
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3.2. Optimal Feature Extraction Results for Rubber Tree Powdery Mildew
3.2.1. Vegetation Indices

The weights of each feature were computed using the ReliefF algorithm, as illustrated
in Figure 6. With a threshold of 0.03, a total of nine VIs (NPCI, PRI, PSRI, GNDVI, FRI1, FRI3,
FRI4, WI, and WSCT) with high weights were selected for model construction and further
identification. Among these, NPCI, PRI, and PSRI are related to leaf pigment deposition,
GNDVI is sensitive to leaf cell structure, FRI1, FRI2, and FRI4 are associated with leaf
physiological responses, while WI and WSCT are both correlated with leaf moisture content.
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3.2.2. Optimal Wavelengths

Due to the stochastic nature of CARS sampling, this study ran the code 100 times to
select the wavelength combination with the minimum RMSECV as the OWs. The process
of selecting the OWs and the distribution of the selected wavelengths are illustrated in



Remote Sens. 2024, 16, 1634 12 of 18

Figure 7. As shown in Figure 7b, the lowest RMSECV value was observed when the Monte
Carlo sampling was at the 31st iteration, indicating that information irrelevant to rubber
tree powdery mildew detection had been removed. However, after the 31st iteration, the
RMSECV gradually increased, suggesting the elimination of wavelength bands sensitive to
rubber tree powdery mildew detection. Consequently, the 25 wavelength combinations
obtained from the 31st iteration were selected as the feature wavelength variables, as
illustrated in Figure 7c. These selected wavelengths predominantly reside in regions where
there is a significant disparity between the spectral curves of samples in the visible and
near-infrared regions. The proportion of the selected OWs to the total number of bands is
1.16%, significantly reducing the redundancy of the spectral dataset.
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3.2.3. Wavelet Features

In order to determine the presence of significant correlations between the two vari-
ables, the study computed p-values to assess the link between wavelet energy coefficients
across various scales and disease. Features demonstrating statistically significant correla-
tions (p < 0.05) were retained, yielding 64 significant features. Dimensionality reduction
through PCA was subsequently implemented on these features, aiming for a cumulative
contribution rate of 90%. This process selected a total of 24 features, as illustrated in
Figure 8.
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3.3. Comparison of the Performance of Models with Different Features

Table 3 provides a summary of the confusion matrices, OAs, and F1-Scores of the
early detection models constructed by combining different features with three machine
learning classification methods. When employing the selected nine VIs with higher weights
(NPCI, PRI, PSRI, GNDVI, FRI1, FRI3, FRI4, WI, and WSCT) as inputs, the detection models
constructed using SVM, RF, and LR algorithms exhibited OAs of 68.9%, 71.6%, and 69.8%,
and F1-Scores of 0.740, 0.758, and 0.738, respectively, indicating suboptimal performance
for early detection of powdery mildew. Using OWs as input achieved detection accuracy
exceeding 80% and F1-Score exceeding 0.8 for LR models but yielded poorer results for the
RF model, demonstrating the feasibility of early detection of rubber tree powdery mildew
using OWs. Compared to the full set of wavelengths, the input variables were reduced
by 98.84%, resulting in a significant enhancement in modeling speed. Employing WFs as
input yielded promising results, with detection rates exceeding 90%, the detection accuracy
reached 92.5% and the F1-Score reached 0.934 when using the SVM model, far surpassing
models constructed using VIs and OWs as inputs. For the same type of input features,
models based on SVM, RF, and LR achieved the highest OAs when using WFs, VIs, and
OWs as inputs, respectively. Different classification algorithms have distinct mechanisms;
thus, selecting an appropriate classification algorithm to construct detection models has a
significant impact on improving the accuracy of crop disease detection.

Table 3. Model accuracy for powdery mildew early detection based on different features and
algorithms.

Input Feature SVM RF LR

H E OA(%) F1-Score H E OA(%) F1-Score H E OA(%) F1-Score

VIs
H 47 14

68.9 0.740
47 14

71.7 0.758
45 16

69.8 0.738E 19 26 16 29 16 29

VIs + PFs
H 47 14

70.8 0.752
51 10

74.5 0.791
45 16

71.1 0.750E 17 28 17 28 14 31

OWs
H 48 13

77.4 0.800
47 14

65.1 0.718
51 10

80.2 0.829E 11 34 23 22 11 34

OWs + PFs
H 51 10

80.2 0.829
47 14

67.9 0.734
52 9

82.1 0.846E 11 34 20 25 10 35

WFs
H 57 4

92.5 0.934
58 3

87.7 0.899
56 5

91.5 0.926E 4 41 10 35 4 41

WFs + PFs
H 59 2

94.3 0.952
55 6

90.6 0.917
56 5

93.4 0.941E 4 41 4 41 2 43

Simultaneously, the OAs and F1-Scores of the VIs + PFs, OWs + PFs, and WFs + PFs
combined feature schemes were superior to those of models based on single features.
Among them, the model combining WFs and PFs performed the best, achieving OAs of
94.3%, 90.6%, and 93.4% and F1-Scores of 0.952, 0.917, and 0.941 on the SVM, RF, and
LR algorithms, respectively. Compared to using WFs alone as inputs, the OAs increased
by 1.9%, 2.8%, and 1.9%, and the F1-Scores increased by 0.017, 0.017, and 0.016, respec-
tively. Moreover, the enhancement in OA for the VIs + PFs and OWs + PFs models also
surpassed 1.9%.

The above results demonstrate that models combining spectral and physiochemical
parameter features outperform those based on single-feature models, highlighting the
potential of PFs for early disease detection. Among all early detection models, the com-
bination of WFs + PFs with SVM demonstrates the highest performance, achieving an
OA of 94.3% and an F1-Score of 0.952. This may be attributed to the relatively subtle
spectral changes in the early stages of powdery mildew infection. While the combination
of bands enhances the amplification of spectral differences, the multiscale decomposition
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generated by CWT at various positions provides finer spectral variations across multiple
frequency regions, yielding more detailed information. In addition, when combined with
PFs measured by experimental instruments, it exhibits a more rapid response.

4. Discussion

This study presents a novel model for the early detection of powdery mildew in
rubber trees. It combines WFs and PFs along with SVM, which marks the first instance of
integrating remote sensing technology for the early detection of powdery mildew in rubber
trees. The optimal early detection model achieved an OA of 94.3% and an F1-Score of 0.952,
demonstrating the substantial potential of integrating WFs and PFs for the early detection
of rubber tree powdery mildew.

Hyperspectral data cover a wide range of wavelengths, providing abundant spectral
information. However, this also leads to a significant amount of redundancy in the process
of constructing spectral features through band combination transformation. Therefore, the
selection of spectral feature variables is crucial for making model detection more efficient
and improving classification accuracy. In this study, we employed the ReliefF algorithm,
CARS, and PCA to select sensitive features. VIs selected using the ReliefF algorithm
achieved an OA of 71.7% and an F1-Score of 0.758, indicating suboptimal performance
for early detection of powdery mildew. OWs selected using CARS attained a detection
accuracy of 80.2% and F1-Score of 0.829 in the LR model, with selected wavelengths
predominantly located in regions where there is a significant disparity between the spectral
curves of samples in the visible and near-infrared regions. These wavelengths accounted
for only 1.16% of all bands, demonstrating the effectiveness and feasibility of using OWs for
early detection of rubber tree powdery mildew. Previous studies have also utilized CARS
to select OWs for crop disease detection, achieving promising results [68]. The detection
accuracy of the model based on WFs reached 92.5%, representing approximately 20.8%- and
12.3%-higher accuracy compared to models based on VIs and OWs, respectively. This may
be attributed to the relatively subtle spectral changes in the early stages of powdery
mildew disease. The multiscale decomposition of spectral information by CWT at different
positions allows for a more sensitive capture of spectral variations associated with moisture,
pigments, morphology, and structure caused by powdery mildew. Additionally, integrating
PCA helps to select the best positions and scales by reducing the complexity of the data.

Many previous studies have primarily utilized spectral features for powdery mildew
identification, while this study focuses on integrating spectral features with physiochemical
parameter features. The proposed models based on feature combinations (VIs + PFs,
OWs + PFs, and WFs + PFs) achieved higher accuracy compared to models solely based
on spectral features. For the combination of WFs and PFs, the OA increased by 1.9% and
the F1-Score increased by 0.017 compared to using WFs alone as inputs. Additionally, the
models combining VIs, OWs, and PFs all showed improvements in OA exceeding 1.9%
and F1-Score exceeding 0.012. This demonstrates the potential of PFs as complementary
features to enhance early disease detection accuracy. This may be attributed to the relatively
subtle spectral changes in the early stages of the disease, where PFs exhibit more rapid
responses to changes. Although PFs contributed to the model accuracy improvement, the
enhancement was modest, possibly due to the limited selection of features, which only
included chlorophyll and anthocyanin. Future research will explore different methods to
extract additional PFs from leaves to construct superior rubber tree powdery mildew early
detection models.

Our study combined WFs with PFs to achieve early detection of rubber tree powdery
mildew at the leaf scale, laying the groundwork for detecting powdery mildew at larger
scales such as canopy level. In recent times, the swift advancements in unmanned aerial
vehicle (UAV) technology have made significant progress in applications related to pest and
disease detection [69,70]. In comparison to proximal spectral measurement devices, UAVs
equipped with hyperspectral imaging systems can rapidly and non-invasively capture
hyperspectral images of entire rubber tree farms, facilitating deeper investigation into
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canopy structure, texture, and other information. Therefore, in future research, integrating
spectral and physiochemical parameter features obtained from UAV-acquired hyperspectral
images and delving deeper into canopy structure, texture, and other information concerning
rubber trees is anticipated to notably enhance the efficacy and precision of early detection
for rubber tree powdery mildew.

5. Conclusions

In this study, leveraging hyperspectral data and physiochemical parameters of rubber
tree powdery mildew, we employed the ReliefF algorithm, CARS, and CWT to extract VIs,
OWs, and WFs from spectral characteristics, respectively. These features were combined
with PFs and utilized to construct early detection models for rubber tree powdery mildew
using SVM, RF, and LR methods. The conclusions drawn are as follows, based on the
obtained results: Upon powdery mildew infection, chlorophyll content in rubber tree
leaves exhibited an increasing trend, while anthocyanin content showed a decreasing trend.
The overall spectral reflectance of early disease samples was slightly lower than that of
healthy samples, with minor differences observed only in the visible range (400–670 nm)
and near-infrared regions around 1950 nm and beyond 2400 nm. Models based on WFs
demonstrated excellent performance, achieving identification rates exceeding 90%. The
SVM model, in particular, exhibited a detection accuracy of 92.5%, surpassing models
constructed with VIs and OWs as inputs. Additionally, models based on combined features
outperformed those based on single features. The model combining WFs and PFs showed
the best performance, achieving OAs of 94.3%, 90.6%, and 93.4%, and F1-Scores of 0.952,
0.917, and 0.941 on SVM, RF, and LR models, respectively. Compared to using WFs alone
as inputs, the OAs increased by 1.9%, 2.8%, and 1.9%, and the F1-Scores increased by 0.017,
0.017, and 0.016, respectively. Additionally, the models combining VIs, OWs, and PFs all
showed improvements in OA exceeding 1.9% and in F1-Score exceeding 0.012. Among all
early detection models, the model combining WFs and PFs with SVM exhibited the best
performance, achieving an OA of 94.3% and an F1-Score of 0.952. This demonstrates the
effectiveness of integrating wavelet features and physiochemical parameter features for the
early detection of rubber tree powdery mildew. Additionally, it lays the groundwork for
larger-scale detection, such as at the canopy level. In future studies, we will explore the
combination of spectral and physicochemical parameter characterization of hyperspectral
images acquired using UAV technology for application in the early disease detection of
rubber tree powdery mildew at the field scale.
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