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Abstract: We propose an air gap fiber Bragg grating (g-FBG) sensor that can measure strain and
temperature simultaneously. The sensor is made by aligning two fiber Bragg gratings (FBGs), and an
air gap exists between these two sub-gratings. This sensor’s architecture allows it to form a spectrum
with phase-shifted fiber Bragg grating (PSFBG) spectroscopy and Fabry–Perot interference (FPI)
spectroscopy. Since the sensitivity of PSFBG and FPI spectra is different for strain and temperature,
it is possible to measure both strain and temperature by measuring one of the reflected dips of
PSFBG and the interference dip of FPI. The experimental results show that the strain sensitivity
is about 11.95 pm/µε via the dip wavelength detection of FPI, and the temperature sensitivity is
about 9.64 pm/◦C via the dip wavelength detection of PSFBG. The g-FBG sensor demonstrates
a resolution of approximately ±3.7 µε within the strain range of 0 to 1000 µε and about ±0.6 ◦C
within the temperature range of 25 ◦C to 120 ◦C. The proposed g-FBG sensor, characterized by its
simple structure, compact size, and cost-effectiveness, exhibits significant potential in the field of
multi-parameter measurements.

Keywords: optical fiber sensors; strain measurement; temperature measurement; Fabry–Perot
interference; fiber Bragg grating

1. Introduction

Optical fiber has attracted much attention in the field of sensor applications because of
its advantages of small size, high sensitivity, and anti-electromagnetic interference [1–3]. In
order to design sensors with low complexity, simple structures, and low cost, achieving the
measurement of multiple physical quantities has been identified as a crucial research focus
in the field of optical fiber sensing. The cross-sensitivity is a key issue for a fiber sensor
used in multi-parameter sensing [4–6]. The fiber Bragg gratings (FBGs) are sensitive to
temperature and strain [7]. However, it is difficult to discriminate between these variables
because they simultaneously influence the Bragg wavelength [8]. To address the issue of
temperature cross-sensitivity in sensors, a common approach is to employ a sensing matrix
method to achieve the simultaneous measurement of temperature and strain. The designed
sensor typically consists of two different optical fiber structures with different sensitivities
to physical quantities. Simultaneous measurement is achieved by detecting the wavelength
shifts in each structure. A great deal of effort has been devoted and several approaches
have been demonstrated for simultaneous strain and temperature measurement. Dan
Su et al. [9] proposed a measurement scheme for dual-parameter measurements using a
double-fiber grating written by a single-mode fiber and a thin-core fiber. Furthermore,
there are several other approaches such as polarization-maintaining few-mode Bragg
gratings [10], sawtooth stressor-assisted highly birefringent FBG [11], cascaded long-period
fiber grating or Bragg grating [12,13], multimode fiber chirped long-period grating [14],
superstructure FBG [15], misaligning splicing a thin core fiber between two SMFs [16],
combining few-mode fiber and FBG [17,18], combining FBG and multimode fiber [19],
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tilted FBG [20], specially packaged FBG [21], π-phase-shifted FBG [22], and a combination
of different types of interferometers and FBG [23–26]. However, there are some flaws such
as relatively high complexity, difficult fabrication process, or low sensitivity in some of
those approaches, which restrict their practical applications.

X. P. Dong et al. [27] proposed a novel phase-shifted fiber Bragg grating (PSFBG),
which reacts when the air gap of two fiber grating changes, and can be used for strain
measurement. However, the Fabry–Perot interference (FPI) between the facets of the two
aligning fibers was overlooked. Y. H. Yang et al. found the FPI of this kind of PSFBG
and designed a g-FBG-based tunable fiber laser [28]. Using the FPI and PSFBG spectra, it
is possible to simultaneously demodulate the strain and the temperature. Furthermore,
PSFBG has a narrower window bandwidth than that of normal FBG [29], so it provides a
relatively high detection accuracy of wavelength shift.

In this paper, we demonstrate the unique spectrum of g-FBG, which combines two
different types of spectra, PSFBG reflective spectrum and FPI spectrum. A g-FBG sensor is
designed and tested. In the integrated sensor, the strain and the temperature are simultane-
ously measured via FPI dip wavelength and PSFBG dip wavelength. This proposed g-FBG
sensor exhibits the advantages of relatively simple structure, compact size, and low error.

2. Sensor Structure and Sensing Principle

Figure 1 depicts the schematic diagram of the g-FBG sensor, a fiber optic sensor. The
sensor structure comprises two sub-gratings cut from the original fiber Bragg grating (FBG),
positioned in the middle of a quartz tube and fixed within it through fusion splicing. An air
gap exists between these two sub-gratings. Together, these two sub-gratings with air gaps
constitute a PSFBG and an FPI. Fiber processing involves the use of an inclined cutting
method to minimize back-reflections from the fiber-cutting surfaces. This design allows the
sensor to respond to variations in strain and temperature in the environment. Monitoring
the changes in the reflected spectra in two different states enables the measurement of
these physical quantities. Figure 2 illustrates the schematic representations of the sensor’s
reflected spectra in two distinct states.
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The phase difference at the dip position in the FPI adhere to the following
conditions [30]:

4πn0d
λm

= (2m + 1)π (1)

In the given expression, n0 is the refractive index between two FBGs, and d is the
length of the cavity. The integer m corresponds to the order of interference, and λm is the
central wavelength of the mth-order interference dip.

The calculation of the free spectral range (FSR) SF is expressed as follows:

SF ≈ λ2
m

2n0d
(2)

For an FPI-type sensor, its spectrum of reflection linearly shifts with variations in
strain (∆ε) and temperature (∆T). The wavelength shift ∆λFPI of its dip can be expressed by
the following equation [31]:

∆λFPI = KFPIε∆ε + KFPIT∆T (3)
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where KFPIε and KFPIT are the strain and temperature sensitivities of the FPI, respectively.
Like FPI, PSFBG exhibits a linear relationship between the wavelength shift of its

reflection spectrum and the variations in strain (∆ε) and temperature (∆T). The wavelength
shift ∆λPSFBG of its dip can be described by the following formula [22]:

∆λPSFBG = KPSFBGε∆ε + KPSFBGT∆T (4)

where KPSFBGε and KPSFBGT are the strain and temperature sensitivities of PSFBG, respec-
tively.

From Equations (3) and (4), it can be seen that the wavelength shift ∆λFPI of FPI and
∆λPSFBG of PSFBG are both functions of strain change ∆ε and temperature change ∆T. As
a result, when the ambient temperature and external strain change, the troughs that they
correspond to shift. The wavelength shifts of the dip to which they correspond can be
expressed as Equation (5):[

∆λFPI
∆λPSFBG

]
=

[
KFPIε KFPIT

KPSFBGε KPSFBGT

][
∆ε
∆T

]
(5)

Once the sensitivities mentioned above are determined, it is possible to derive a
sensitivity matrix for the simultaneous measurement of strain and temperature through
matrix transformations, expressed as Equation (6):[

∆ε
∆T

]
=

1
M

[
−KPSFBGT KFPIT

KPSFBGε −KFPIε

][
∆λFPI

∆λPSFBG

]
(6)

where M = KPSFBGεKFPIT − KFPIεKPSFBGT is the determinant of the coefficient matrix.

3. Experimental Results and Discussion
3.1. Experimental System

Figure 3 shows a physical picture of the g-FBG sensor. The parameters of the sample
g-FBG sensor are L = 15 mm and LFBG = 10 mm, where L is the length of the quartz tube,
LFBG is the length of the initial FBG. The spectra of the FBG used are shown in Figure 4a,
and the Bragg wavelength (λB) of the used FBG is about 1559.376 nm. The spectrum of
the g-FBG sensor under different gap spacings is shown in Figure 4b. When d = 55 µm,
the FSR is about 21.241 nm, and the contrast is about 24.56 dB. As the gap decreases, the
FSR of the FPI increases. When d = 25 µm, the FSR is about 46.932 nm, and the contrast is
about 21.42 dB. As can be seen from Figure 4b, the dip of FPI is sharper, so the sensor with
d = 55 µm is selected for the experiment of simultaneous temperature and strain sensing.

Micromachines 2024, 15, x FOR PEER REVIEW 4 of 12 
 

 

where KFPIε and KFPIT are the strain and temperature sensitivities of the FPI, respectively. 
Like FPI, PSFBG exhibits a linear relationship between the wavelength shift of its re-

flection spectrum and the variations in strain (Δε) and temperature (ΔT). The wavelength 
shift ΔλPSFBG of its dip can be described by the following formula [22]: ∆𝜆 = 𝐾 Δ𝜀 + 𝐾 ∆𝑇 (4)

where KPSFBGε and KPSFBGT are the strain and temperature sensitivities of PSFBG, respec-
tively. 

From Equations (3) and (4), it can be seen that the wavelength shift ΔλFPI of FPI and 
ΔλPSFBG of PSFBG are both functions of strain change Δε and temperature change ΔT. As 
a result, when the ambient temperature and external strain change, the troughs that they 
correspond to shift. The wavelength shifts of the dip to which they correspond can be 
expressed as Equation (5): ∆𝜆∆𝜆 = 𝐾 𝐾𝐾 𝐾 ∆𝜀∆𝑇  (5)

Once the sensitivities mentioned above are determined, it is possible to derive a sen-
sitivity matrix for the simultaneous measurement of strain and temperature through ma-
trix transformations, expressed as Equation (6): ∆𝜀∆𝑇 = 1𝑀 −𝐾 𝐾𝐾 −𝐾 ∆𝜆∆𝜆  (6)

where M = KPSFBGεKFPIT − KFPIεKPSFBGT is the determinant of the coefficient matrix. 

3. Experimental Results and Discussion 
3.1. Experimental System 

Figure 3 shows a physical picture of the g-FBG sensor. The parameters of the sample 
g-FBG sensor are L = 15 mm and LFBG = 10 mm, where L is the length of the quartz tube, 
LFBG is the length of the initial FBG. The spectra of the FBG used are shown in Figure 4a, 
and the Bragg wavelength (λB) of the used FBG is about 1559.376 nm. The spectrum of the 
g-FBG sensor under different gap spacings is shown in Figure 4b. When d = 55 µm, the 
FSR is about 21.241 nm, and the contrast is about 24.56 dB. As the gap decreases, the FSR 
of the FPI increases. When d = 25 µm, the FSR is about 46.932 nm, and the contrast is about 
21.42 dB. As can be seen from Figure 4b, the dip of FPI is sharper, so the sensor with d = 
55 µm is selected for the experiment of simultaneous temperature and strain sensing. 

 
Figure 3. Physical picture of the g-FBG sensor and its partially enlarged image. Figure 3. Physical picture of the g-FBG sensor and its partially enlarged image.



Micromachines 2024, 15, 140 5 of 12Micromachines 2024, 15, x FOR PEER REVIEW 5 of 12 
 

 

 

 
Figure 4. Reflection spectra of the FBG and the g-FBG sensor: (a) the original reflection spectrum of 
the FBG and (b) spectral diagram of the g-FBG sensor corresponding to different gap spacings. 

Figure 5 illustrates the schematic diagram of the experimental setup designed for the 
simultaneous detection of changes in strain and temperature. An optical sensing interro-
gator (SM125, Micron Optics, with a spectral range from 1510 nm to 1590 nm and a spec-
tral resolution of 1 pm) is utilized to monitor the reflection spectrum of the g-FBG sensor. 

 

Figure 4. Reflection spectra of the FBG and the g-FBG sensor: (a) the original reflection spectrum of
the FBG and (b) spectral diagram of the g-FBG sensor corresponding to different gap spacings.

Figure 5 illustrates the schematic diagram of the experimental setup designed for
the simultaneous detection of changes in strain and temperature. An optical sensing
interrogator (SM125, Micron Optics, with a spectral range from 1510 nm to 1590 nm
and a spectral resolution of 1 pm) is utilized to monitor the reflection spectrum of the
g-FBG sensor.
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The g-FBG sensor is positioned within a heating system to measure temperature char-
acteristics. Both ends of the sensor are fixed on two longitudinal displacement platforms
with an accuracy of 0.01 mm, enabling the control of the changing of the strain on the
sensor. In this setup, one platform remains stationary while the other moves vertically at
a low loading speed, thereby inducing axial strain on the sensor. In Figure 6, the black
line illustrates the reflection spectrum of the g-FBG sensor under no applied strain at room
temperature. It is observed that the edge contrast of the FPI exceeds 20 dB. Measurement
indicates an FSR of 21.241 nm, and calculation using Equation (2) yields a cavity length (d)
of approximately 55 µm.
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3.2. Strain Measurement Test

The strain test for this sensor was conducted at room temperature (approximately
25.4 ◦C). The movable platform was adjusted in increments of 0.05 mm until it reached
0.5 mm, with a spacing of about 500 mm between the two fixed points. Figure 5 illustrates
the partial spectrum of the g-FBG under the strain test. As the applied strain increased,
both the FPI and the PSFBG exhibited a ‘red shift’ in their tilted wavelengths. However, it
is noteworthy that the rate of change differed between the interference tilt of the FPI and
the reflection tilt of the PSFBG.

To analyze the reflective spectral shift of the sensor, the reflective slope of the PSFBG
and the interference slope of the FPI were monitored, as depicted in Figure 6. Figure 7
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illustrates the wavelength shifts of the FPI and the PSFBG as the strain increased. The
PSFBG’s tilted wavelength linearly moved from 1559.375 nm to 1559.513 nm as the strain
increased, corresponding to the fitting sensitivity KPSFBGε of only 0.14 pm/µε. In contrast,
the FPI’s dip wavelength linearly shifted from 1531.148 nm to 1542.892 nm. Through fitting,
the strain sensitivity of the FPI, KFPIε, was determined to be 11.95 pm/µε, approximately
85 times greater than KPSFBGε.
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3.3. Temperature Test

The temperature response of the g-FBG sensor is investigated by means of placing
it into a heating system. The precise temperature is measured by a temperature monitor.
The temperature at the heating system rises gradually from 30 to 120 ◦C with a step of
approximately 10 ◦C and maintains about 30 min during each temperature point. The parts
of g-FBG’s spectra for different temperatures are shown in Figure 8. Because the thermal
expansions of FBGs and the quartz tube are almost equal, the gap length thermal change is
relatively insignificant. Thus, the FPI dip wavelength shift is relatively insignificant.
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Figure 8. Experimental results of g-FBG sensor with different temperatures: (a) g-FBG sensor
reflective spectra with different temperatures and (b) zoom in of dash rectangle, i.e., PSFBG reflective
spectra of g-FBG.

As shown in Figure 8b, the reflective dip wavelength of PSFBG shifts toward a longer
wavelength when temperature rises. The measurement resolution can be relatively high
owing to a narrow bandwidth (~58 pm@3 dB) of the reflective dip of PSFBG. Figure 9
illustrates the trend of the center wavelength of the dip as a function of temperature.
The center wavelength of the dip shifts slightly from 1531.187 nm to 1531.298 nm, with
a corresponding temperature sensitivity KFPIT of only 1.22 pm/◦C. Simultaneously, the
center wavelength of the peak linearly shifts from 1559.385 nm to 1560.275 nm, with a
corresponding temperature sensitivity KPSFBGT of 9.64 pm/◦C, approximately eight times
greater than KFPIT.
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3.4. Simultaneous Measurement of Strain and Temperature

To concurrently measure strain and temperature, we utilize the obtained strain and
temperature sensitivities and apply them in Equation (6).[

∆ε
∆T

]
=

1
−115.03

[
−9.64 1.22
0.14 −11.95

][
∆λFPI

∆λPSFBG

]
(7)

Hence, in accordance with Equation (7), by measuring the reflected dip of PSFBG
and the interference dip of FPI, it is possible to simultaneously determine both strain
and temperature.

To validate the stability of the sensor, two experiments were conducted. Firstly, under
constant temperature conditions, strain was continuously applied to the sensor; then, under
constant strain conditions, temperature was continuously applied to the sensor. The red
points and blue lines in Figure 10 represent the calculated and applied values, respectively.
Additionally, to better simulate the actual situation, synchronous measurements under
a fixed initial state (30 ◦C, 400 µε), of both strain and temperature, were simultaneously
varied. The green and blue points in Figure 10 correspond to the calculated and applied
values. It is observed that there is a minimal difference between the calculated values
obtained through the sensing matrix and the actual applied values. We speculate that this
difference may arise from uncertainties in measuring the applied values, such as the output
of the digital temperature gauge in the heating system and the wavelengths recorded by
the optical interrogator for FPI and PSFBG.
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Figure 10. Experimental results of simultaneous measurement of strain and temperature.

Table 1 shows a comparison of the performance of the sensor in this paper with other
fiber optic sensors that measure strain and temperature simultaneously. Compared with
other fiber optic sensors, the sensor proposed in this paper has advantages in terms of
strain sensitivity and temperature sensitivity. The proposed g-FBG sensor may exhibit a
great potential in fields requiring multi-parameter measurement due to its simple structure,
cost-effectiveness, and compact size.
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Table 1. Comparison of the performance of the sensor in this paper with other fiber optic sensors that
measure strain and temperature simultaneously.

Configuration Maximum Strain Sensitivity
(pm/µε)

Maximum Temperature
Sensitivity (pm/◦C) Reference

Dual FBGs sensor 3.25 13.05 [9]
Separated micro-bend long period gratings −2.41 8.8 [32]

Hybrid configuration of FPI/FBG 2.1 7.82 [33]
Cascaded-cavity FPIs 2.97 10.45 [34]

TCF based in-fiber MZI −1.99 54.95 [35]
Spheroidal-cavity-overlapped FBG 3.76 8.4 [36]

Hybrid configuration of
EPFI/FBG Not mentioned 11.655 [37]

TCRF 1.08 10.4 [38]
Hybrid structure with two FPIs 5.2 13 [39]

Dual SPR effect in PCF 1.3 −6.83 [40]
TPMF −2.37 91.84 [41]

Hybrid configuration of fiber taper/LPFG −2.96 47.4 [42]
π-PSFBG sensor 0.7837 14.15 [22]

Femtosecond laser + FBG + DMF 1.24 9.3 [43]
Proposed 11.95 9.64 This work

4. Conclusions

In this paper, a novel g-FBG sensor for the simultaneous measurement of strain and
temperature is proposed. The performance of g-FBG sensors in strain and temperature
measurements was investigated. By demodulating the two spectra of the g-FBG sensor (the
PSFBG spectrum and the FPI spectrum), the simultaneous measurements of both strain and
temperature can be achieved. The strain is measured with a sensitivity of 11.95 pm/µε via
the dip wavelength of FPI. The temperature is measured with a sensitivity of 9.64 pm/◦C,
ranging from 25 to 120 ◦C via the dip wavelength of PSFBG. The resolutions of the g-FBG
sensor in measuring strain and temperature are estimated to be ±3.7 µε and ±0.6 ◦C,
respectively, in the range from 0 to 1000 µε and from 25 to 120 ◦C. The proposed g-FBG
sensor may exhibit a great potential in fields requiring multi-parameter measurement due
to its simple structure, cost-effectiveness, and compact size.
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