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Abstract: This article proposes a novel design for an in-memory computing SRAM, the DAM SRAM
CORE, which integrates storage and computational functionality within a unified 11T SRAM cell and
enables the performance of large-scale parallel Multiply—Accumulate (MAC) operations within the
SRAM array. This design not only improves the area efficiency of the individual cells but also realizes
a compact layout. A key highlight of this design is its employment of a dynamic aXNOR-based
computation mode, which significantly reduces the consumption of both dynamic and static power
during the computational process within the array. Additionally, the design innovatively incorporates
a self-stabilizing voltage gradient quantization circuit, which enhances the computational accuracy of
the overall system. The 64 x 64 bit DAM SRAM CORE in-memory computing core was fabricated
using the 55 nm CMOS logic process and validated via simulations. The experimental results show
that this core can deliver 5-bit output results with 1-bit input feature data and 1-bit weight data, while
maintaining a static power consumption of 0.48 mW/mm? and a computational power consumption
of 11.367 mW/mm?. This showcases its excellent low-power characteristics. Furthermore, the
core achieves a data throughput of 109.75 GOPS and exhibits an impressive energy efficiency of
21.95 TOPS/W, which robustly validate the effectiveness and advanced nature of the proposed
in-memory computing core design.

Keywords: in-memory computing; SRAM; self-stabilizing voltage; ultra-low power

1. Introduction

At present, neural networks face significant challenges pertaining to the storage capac-
ity and computational energy consumption of mobile devices, especially within resource-
constrained and power-sensitive environments. Owing to advancements in Al technology,
the storage requirements and computational intensity of complex models such as Convo-
lutional Neural Networks (CNNs) and Deep Neural Networks (DNNs) have increased
significantly, leading to substantial memory occupancy due to an abundance of parameters
and frequent data transfers; these, in turn, lead to the expenditure of considerable quantities
of energy. As depicted in Figure 1, when executing the Multiply—Accumulate (MAC) oper-
ations characteristic of CNNs or DNNs, the conventional Von Neumann architecture [1]
requires data to be fetched from the memory to the Central Processing Units (CPUs) or
Graphics Processing Units (GPUs), thereby increasing the latency and power consump-
tion [2—4]; this limits the real-time performance and sustained operation capabilities of
these models on mobile platforms.
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Figure 1. The “Memory/Power Wall” bottlenecks of the Von Neumann architecture. The Von
Neumann bottleneck introduces substantial power consumption and transmission latency, which are
caused by the movement of data.

Neural network models may encompass millions or even billions of parameters, not
only occupying vast amounts of memory space but also generating frequent and substantial
demands for data migration during read, computation, and update processes. Furthermore,
traditional CPU- or GPU-based computing architectures are not inherently well suited
to the parallelism and high computational density of deep learning tasks, with power
efficiency issues being particularly pronounced when handling intricate Convolutional
Neural Networks and Deep Neural Networks. Even with the deployment of low-power
specialized hardware accelerators, without effective strategies for the optimization of
energy efficiency, the problem of energy loss incurred by the extensive movement of data
during large-scale computations remains inadequately addressed.

In response to the pressing demand for storage resources and energy consumption
presented by contemporary neural network computations, particularly the “power wall”
and “memory wall” [5] challenges encountered in mobile device applications, this paper
introduces a novel DAM SRAM in-memory computing core intellectual property (IP). This
IP integrates the storage capability of a 6T SRAM cell with the computational prowess of a
5T dynamic aXNOR structure, thus effectively performing single-bit multiplication tasks.
To mitigate the issue of high power consumption during large-scale parallel computations,
it specifically incorporates a dynamic aXNOR computing mode (aXNOR-based computing
involves analog current-based bitwise XOR operations within units, which substitutes
unit-level multiplications with XORs, simplifying unit design; current computation is used
because, per Kirchhoft’s laws, current accumulation in a bus adds up individual unit
results, facilitating MAC operations within the array), which reduces both the static and
computational power consumption of the DAM SRAM core.

As illustrated in Figure 2, the proposed DAM SRAM core’s overall architecture com-
prises a 64 x 64 in-memory computing array (DAM SRAM ARRAY), 64 Gradient Voltage
Quantization and Encoder circuits distributed per column, a control unit, decoder circuitry,
driver circuits, and input/output buffers. Fabricated using SMIC 55 nm process technology,
it exhibits a superior energy efficiency of 21.95 TOPS/W, a data throughput of 109.75 GOPS,
and an output precision of 5 bits while operating at a frequency of 500 MHz. This design
successfully maps various algorithmic steps of binary neural networks onto the in-memory
computing architecture, thus significantly reducing the overheads of DSP circuits and
optimizing the cell area and layout in order to increase the integration density and en-
ergy efficiency ratio. The contributions of this work are summarized as follows: (1) The
development of an innovative 11T SRAM cell that integrates storage and computational
functionalities, enables large-scale parallel Multiply—Accumulate (MAC) operations to be
performed within a memory SRAM array, and achieves ahigh utilization of area and a
compact layout; (2) the implementation of a dynamic aXNOR computation mode that
drastically decreases both the computational and static power consumption of the array;
and (3) the design of a voltage gradient quantization circuit that is able to enhance the
operational accuracy.
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Figure 2. The overall macroscopic structure of the DAM SRAM computational module comprises

@

several integral components: a 64 x 64 array of DAM SRAM cells, 64 Gradient Voltage Quantization
and Encoder (GVQE) circuits distributed along the column lines, a control unit, decoder circuits for
address translation, driver circuits, and input/output buffer (BUFF) circuits, among others.

2. Design and Analysis
2.1. The 11T DAM SRAM Cell

As shown in Figure 3, in the proposed DAM SRAM cell design, the 5T aXNOR
structure achieves physical separation between the computation and data storage, while
maintaining logical synergy. The inclusion of computation transistors generates analog
computation currents, denoted as unit current IMAC, which do not engage in any direct
signal interaction or electrical pathway interference with the original data stored in the
conventional 6T SRAM cell. During high-speed computational cycles, there is no electrical
coupling effect between the computation transistors executing the computational tasks
and the storage transistors holding the data; this ensures that fluctuations in the current
generated by the computation transistors cannot propagate through word lines or bit lines
into the storage region. Consequently, this design effectively prevents unintended state flips
from occurring in the data in neighboring storage cells due to transient voltage variations
on the word or bit lines, thereby fundamentally avoiding the appearance of unnecessary
data write errors caused by potential interference factors during word line read operations.
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Figure 3. The DAM SRAM bit cell integrates the storage capability of a 6T SRAM cell
with the computational prowess of a 5T dynamic aXNOR structure, effectively performing
single-bit multiplication tasks.

Under normal operations, the 11T SRAM cell benefits from its unique decoupled
design of storage word lines and computation word lines, enabling dual-mode functionality:
the standard SRAM storage mode and computation mode. In the traditional SRAM storage
mode, the 11T SRAM cell retains the fundamental storage and retrieval characteristics of a
6T SRAM unit, storing critical weight information W in a binary form for neural networks
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or other data-intensive applications. This ensures that these weights can be accessed
and updated rapidly and reliably in response to read requests from a host processor or
associated computational components.

In the computation mode, arrays of 11T SRAM units enable large-scale parallel comput-
ing capabilities to be achieved. Via the integrated aXNOR computation transistor structure,
they perform dynamic analog Multiply—Accumulate (MAC) operations on external input
signals X and internally stored weight data W. When receiving the real-time varying ex-
ternal input signal X, each 11T SRAM cell immediately performs parallel computation
against its stored weight W; this fuses the storage and computation functions to generate a
unit current output that is directly proportional to the MAC operation on the pair (X, W).
Before delving into a detailed analysis of the MAC current generation, let us discuss the
re-encoding logic applied to Feature port input signals. The proposed analog multiplication
design redefines the binary representation of the complementary signal pair {X, XB}: when
{X, XB} takes the value {1, 0}, the Feature signal represents a positive attribute with a Feature
value of +1; conversely, when {X, XB} is {0, 1}, the Feature value is defined as —1. Similarly,
the Weight storage values in the DAM SRAM cell adopt a comparable binary redefinition
strategy, where the complementary signal pair {Q, QB} yields a Weight value of +1 when
{Q, QB} is {1, 0}, and a weight value of —1 when {Q, QB} is {0, 1}.

In the SRAM storage mode, the dynamic aXNOR enable signal is passed through the
COMLEN port, setting the CEN signal to 0; this causes the MOSFET controlled by the CEN
to be turned off, thus preventing any effective current path from being established and
ensuring that the DAM SRAM unit does not execute any analog MAC computations. How-
ever, upon switching to the computation mode, the CEN signal is set to 1; this turns on the
MOSEFET and allows the Feature input signal X to interact with the Weight signal Q stored
in the DAM SRAM cell for analog multiplication. As shown in Figure 4, four distinct signal
configuration combinations exist, and each corresponds to a unique multiplication result.

Feature X Weight = -1 or CEN = 0, no lyac

Feature X Weight= 1 X 1 = 1

(a) Feature x Weight = —1 or CEN =0, no Imac. (b) Feature x Weight = 1, Imac = 1.

Feature Weight
X [x8] @ [oB

Feature X Weight = -1 X -1 = 1 CEN Iyac | MAC

o . @] 0 x -
EFeature=-1 ® 1 1 0 1 0 v 1
' ol 1|1 ]o o 1| x]a
@ | 1 0 1 1 0 v 1
® | 1 0 1 0 1 x -1

Definition: (1) Feature={X,XB}={1, 0}=+1,
Feature = { X, XB}={0, 1}= -1;

(2) Weight={Q,QB}={1, 0}=+1,
Weight = { Q, QB} = {0, 1}= -1,

(c) Feature x Weight =1, Imac = 1. (d) True table of the results.

Figure 4. In academic circuitry terms, each DAM SRAM cell admits four distinct configurations with
respect to external input signals, with each configuration yielding a unique multiplication outcome.

(1) When the Feature signal pair {X, XB} has a value of {1, 0} (corresponding to +1)
and the Weight signal pair {Q, QB} has a value of {1, 0} (also +1), the analog multiplication
produces a result of +1, generating a mirrored current IC that is proportional to the analog
MAC current IM on RBL.
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(2) If the Feature signal pair {X, XB} has a value of {0, 1} (representing —1) and the
Weight signal pair {Q, QB} has a value of {0, 1} (also —1), although both are negative, their
product is still +1, resulting in a mirrored current IC on RBL.

(3) When the Feature signal pair {X, XB} has a value of +1 and the Weight signal pair {Q,
QB}J has a value of —1, the analog multiplication result becomes —1, theoretically leading to
no generation of an analog multiplication result current; hence, no corresponding mirrored
current is observed on RBL.

(4) Lastly, if the Feature signal pair {X, XB} has a value of —1 and the Weight signal
pair {Q, QB} has a value of +1, the analog multiplication again results in —1; similarly, no
reflected analog current would represent the multiplication outcome on RBL.

The truth table of the 11T SRAM cell exhaustively records all possible combinations
of the input signal X and weight data W, as well as the corresponding unit current output
values for each combination.

2.2. The Voltage Gradient Quantization Circuit

To address the non-linearity issues [6] that arise from accumulated analog currents,
this design further incorporates a voltage gradient quantization circuit. In practical opera-
tions, the MAC results in the manifestation of the analog domain as accumulated analog
currents, which, if left unprocessed, may introduce non-linearity into the output current
and compromise the accuracy of the final computational results due to source voltage
drift and other factors. The voltage gradient quantization circuitry converts these analog
currents in real-time into stable voltage gradients, ensuring a high level of output precision
throughout the computational process.

A system consisting of 64 voltage gradient quantization circuit units, designed based
on the aXNOR-based in-memory computing principle of the DAM SRAM array, is arranged
in a matrix-like column layout, closely aligned and corresponding one-to-one with each
column in the DAM SRAM array. This array efficiently translates the large-scale analog
cumulative currents that are generated during the parallel distributed computation of the
DAM SRAM array into a high-fidelity sequence of voltage gradient signals. As shown in
Figure 5, each voltage gradient quantization circuit consists of a quantization resistor (Rg),
a set of voltage divider MOSFETs (NM1 and NM2), and a self-stabilizing loop (SSL, ZFET1,
and ZFET2. During multi-row MAC operations, individual memory cells within the same
column perform multiplication with their stored states against the accumulating result,
with the resultant currents progressively summed up on the RBL; this eventually forms
voltage changes that are representative of data states and appear as voltage drops across
the RBL and its complementary line RBLB. As an increasing number of inputs participate
in the MAC operations and their corresponding weight coefficients, the signal margin of
the system exhibits a marked exponential tendency to decay, which affects the accuracy of
the analog readout when the margin falls below the inherent offset threshold of the analog
readout circuits, sense amplifiers (SAs), or analog-to-digital converters (ADCs).

GVQ Circuit
VDD
) z
Slcady State _E
Loop
ZFETZ
VRBL

Figure 5. The voltage gradient quantization circuit consists of a quantified resistance (Rg), a set of
partial voltage MOS tubes (NM 1 and NM 2), and a steady-state loop (SSL, ZFET 1, and ZFE 2). The
input is the MAC current IMAC for the current accumulation bus RBL, and the output is the gradient
quantization voltage of the quantified resistance to the IMAC.
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The voltage gradient quantization circuit proposed in this paper addresses the non-
linear attenuation issue of voltage gradients caused by the effect of current accumulation
on RBL through a self-stabilizing operating mechanism. While the self-stabilizing loop
does not directly solve for the voltage drift phenomenon on the RBL current accumulation
bus, it compensates for the non-linearity of the MAC currents by elevating the bias voltage
of ZFET1 via the following steps: (1) As shown in Figure 6a, as the number of contributing
inputs and their corresponding weight coefficients increase during MAC operations, the
non-linear attenuation effect of the accumulated current intensifies; this causes a non-linear
drift in the voltage VRBL on the current accumulation bus RBL, as depicted by the dashed
line in Figure 6d. (2) The bias voltage of ZFET2 originates from the voltage VRBL on
the current accumulation bus RBL. As shown in Figure 6b, when the VRBL undergoes
non-linear drift downward, the current IST in the right half of the self-stabilizing circuit
branch decreases correspondingly, which raises the source voltage VT1 of ZFET2, as shown
in Figure 6c. (3) As illustrated in Figure 6a, the bias voltage of ZFET1 originates from the
source voltage VI1 of ZFET2. When VT1 is increased, the MAC current IMAC on the
current accumulation bus RBL receives non-linear compensation, maintaining a linearly
increasing trend, as depicted in Figure 6d; this solves the problem regarding the non-linear
attenuation of the output voltage gradient Vg. The gradient voltage signals processed by
the voltage gradient quantization circuits are fed into a gradient voltage encoding module,
which meticulously analyzes and accurately quantizes these signals, thereby generating
multi-bit-wide digital output signals. This voltage gradient quantization circuit significantly
enhances the ability of the in-memory computing system to perform linearization for analog
current accumulation results, thereby improving the overall computational accuracy and
long-term stability of the system.

500

VgeL (MV) 590 V1 (mV)

585

580

VRBL
VT1

400 575

(a) . (c)

80 —— I (UA) 100 Iyac (UA) /

80
60
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20 (b) 20
2 4 6 8 10
Unit of Cell

Figure 6. (a—d) The proposed voltage gradient quantization circuit addresses the non-linear at-
tenuation issue of voltage gradients caused by the current accumulation effect on RBL through a
self-stabilizing operating mechanism. While the self-stabilizing loop does not directly solve for the
voltage drift phenomenon on the RBL current accumulation bus, it compensates for the non-linearity
of the MAC currents by elevating the bias voltage of ZFETT1.

2.3. The Pre-Processing Strategy of Data Storage

Before executing a convolutional layer operation, the DAM SRAM core enters the
SRAM mode, loading image-relevant weight data column-wise into the DAM SRAM core
array. Both the weights stored in the DAM SRAM cells and input signals are represented in
binary format, consisting only of 1 s and 0 s; meanwhile, the original convolution kernel
elements use signed binary values of +1 and —1. A pre-processing strategy, depicted
in Figure 7a, is proposed; here, the convolution kernel is vectorized and decomposed.
Using the mathematical transformation Kernel = IN1 — IN2, the kernel is converted into
two complementary parts, IN1[8:0] and IN2[8:0], to meet the operational requirements of
the DAM SRAM core. These two subsets, IN1 and IN2, are independently fed into the
DAM SRAM array in a nine-line parallel manner and stored in nine consecutive rows
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within the same column, for example, rows 8 to 0; this is followed by the performance
of synchronous weighted accumulation operations based on XOR logic upon input data.
After the weight loading phase, the DAM SRAM system transitions from the storage mode
to the computation mode. The overall computational process is detailed in Figure 7b.
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ARRAY
(a) The pre-processing strategy of the loading weight data. (b) The computation mode of the DAM SRAM system.

Figure 7. Before executing a convolutional layer operation, the DAM SRAM core enters the SRAM
mode, loading image-relevant weight data column-wise into the DAM SRAM core array. A pre-
processing strategy in which the convolution kernel is vectorized and decomposed is proposed.
After the weight loading phase, the DAM SRAM system transitions from the storage mode to the
computation mode.

The first step involves the input of feature data F [8:0] from external I/O interfaces
and the performance of pre-processing by the CWL driver circuitry. This circuit converts
the feature data F [8:0] into a pair of complementary binary sequences, namely X [8:0]
and XB [8:0], which are then separately sent to the DAM SRAM array to match the rows
storing IN1 and IN2, respectively. In the second step, the CWL driver circuitry, along
with the address decoder, assigns addresses to X [8:0] and XB [8:0]; this spatially pairs the
complementary binary data sequences {X [8:0], XB [8:0]} with the corresponding two parts
of the decomposed convolution kernel {IN1[8:0], IN2[8:0]} stored in the DAM SRAM array.
The third step sees the simultaneous activation of the computation enable signals for rows
8 through 0. Setting the CEN signal high via the COM_EN port triggers the execution
of MAC operations in the respective rows, thus performing row-wise multiplication and
accumulation operations between {X [8:0], XB [8:0]} and IN1[8:0] and IN2[8:0]. Finally, the
current-based results obtained from the Multiply-Accumulate operations are converted
into digital outputs via integrated voltage gradient quantization and the gradient voltage
decoding circuits. The subtraction of these digital values yields the final four-bit digital
output result O [3:0].

2.4. The ADC and Output Stage

As shown in Figure 8, the implementation of a gradient voltage encoding circuit is
employed for both the ADC and output stage, comprising two high-speed clocked latch-
type comparators, a dual-bit Vin voltage encoding register (R1 and R2), a reference voltage
selector, and a “2-bit parallel-to-serial output” encoder. The high-speed clocked latch-type
comparators serve to output the comparison result between the selected reference voltage
and Vin during each cycle. The Vin voltage encoding registers, R1 and R2, temporarily
store the comparator outputs and provide voltage selection enable signals to the reference
voltage selector. The reference voltage selector utilizes the voltage selection signals from
the encoding registers to choose the appropriate reference voltage for the high-speed
comparators. Lastly, the “2-bit parallel-to-serial output” encoder converts the numerical
values stored in the voltage encoding registers into a serial output format.
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Figure 8. In the present design, the implementation of a gradient voltage encoding circuit is employed
for both the ADC and output stage, comprising two high-speed clocked latch-type comparators,
a dual-bit Vin voltage encoding register (R1 and R2), a reference voltage selector, and a “2-bit
parallel-to-serial output” encoder.

At the onset of a complete conversion cycle within the gradient voltage encoding
circuit, the Vin voltage encoding registers undergo reset and initialization. During this ini-
tialization process, all bits within the registers adhere to a binary-split principle, configuring
themselves to an intermediate reference voltage level encoding value that is symmetrically
distributed relative to the full-scale reference voltage. This intermediate level corresponds
to one-half of the quantized reference voltage range, effectively presetting an initial refer-
ence voltage. This preconfiguration serves to swiftly bracket the likely dynamic range of
the analog input voltage Vin during the subsequent analog-to-digital conversion process.
Once the initial reference voltage benchmark is set in the Vin voltage encoding registers, the
two high-speed clocked latch-type comparators commence alternating operations. Using
the reference voltage selected during initialization, these comparators periodically compare
the target analog input voltage Vin. If the comparison indicates that Vin is higher than
the initially locked reference voltage threshold, the state-holding register R1 maintains a
logical high state (“1”), signifying that the current reference voltage estimate is lower than
the actual Vin. Consequently, the reference voltage Vref needs to be incremented towards
a higher voltage domain. Conversely, if Vin is lower than the chosen reference voltage
Vref, R1 is driven to a logical low state (“0”), indicating that the current Vref selection is
too high and requires downward adjustment. With each clock pulse, Vin is successively
compared against COMP1 and COMP2 comparator units in an alternating fashion. The
resulting comparison outputs drive alternating updates in the states of R1 and R2. Based
on the previous state decision made by R1, the reference voltage selection circuit selects the
reference input voltage level for the next comparison cycle.

2.5. The Low-Power Design of DAM SRAM

The computation structure of the DAM SRAM unit, particularly the aXNOR portion,
incorporates an in-unit current isolation mechanism that significantly reduces the system’s
consumption of computational power. On one hand, this programmable in-unit current
isolation mechanism enables the DAM SRAM array to perform flexible block dormancy;,
thereby decreasing the consumption of static power in the DAM SRAM CORE blocks
that do not participate in computations. On the other hand, the high-speed dynamic
nature of the in-unit current isolation mechanism effectively minimizes the consumption of
computational power in DAM SRAM blocks during the computation mode, realizing the
low-power operation of the DAM SRAM CORE.

In the block dormancy mode, as shown in Figure 9, when Block 1 in the DAM SRAM
array is instructed to enter dormancy, the entirety of Block 1’s COM_EN port sets the
CEN signal to a low level, thus disabling the internal computational pathways of all DAM
SRAM units within the block. The node voltage VK within the aXNOR structure is pulled
down, preventing the formation of a current path in the left branch of the voltage gradient
quantization circuit; this leaves only a small static current IST in the right branch, thus
enabling the block to achieve a low-power sleep mode.
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CWL Decoder SET CEN = 1

CWL Decoder SET CEN

Figure 9. In the block dormancy mode, when Block 1 in the DAM SRAM array is instructed to enter
dormancy, the entirety of Block 1’s COM_EN port sets the CEN signal to a low level, disabling the
internal computational pathways of all DAM SRAM units within the block.

In the computation mode, when the DAM SRAM array performs computations, the
COML_EN control ports corresponding to the rows with active data are prompted to set
the CEN signal to a high level. This action activates the computational pathways within
the DAM SRAM units of the engaged block. The node voltage VK within the aXNOR
logic structure of each DAM SRAM unit rises to a preset higher voltage level, consequently
activating the in-unit current mirror connected to it. The current mirror regulates the unit
current intensity during analog computations. Simultaneously, the left branch of the voltage
gradient quantization circuit forms a continuous current path, generating gradient voltages
according to the state differences within the unit data. In the actual computation mode, the
DAM SRAM array can simultaneously activate up to 16 independent rows for calculations.
Assuming that all DAM SRAM units in a given row contribute a computational result of +1
during a calculation cycle, the left branch of the voltage gradient quantization circuit will
accumulate basic computation currents from 16 units, resulting in a total current output of
up to 160 uA. In order to conserve energy and prevent the unnecessary accumulation of
power, the system dynamically controls the COM_EN port to revoke the high-level CEN
signal during the calculation cycle; this restores it to a low level and thereby cuts off the
computational current path in the left branch of the voltage gradient quantization circuit.
As shown in Figure 10, by ensuring that the computational period is only 1/10th of the total
cycle, the dynamic enabling signal can reduce the array’s consumption of computational
power to merely 10%.

One Cycle

CLKJ \_

T T

1/10 Cycle 200pS
-/__\,,. Compute
CEN

T T

ﬂ Low Power Range
IMAC L A,

. Weight Update

T

0 1 2 (ns)

Figure 10. In order to conserve energy and prevent the unnecessary accumulation of power, the
system dynamically controls the COM_EN port to revoke the high-level CEN signal during the
calculation cycle; this restores it to a low level, thereby cutting off the computational current path in
the left branch of the voltage gradient quantization circuit. By ensuring that the computational period
is only 1/10th of the total cycle, the dynamic enabling signal can reduce the array’s consumption of
computational power to merely 10%.
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3. Analysis and Simulation
3.1. Binary Convolutional Neural Network [7] Computation

In the proposed design, the voltage gradient quantization circuit utilizes a self-
stabilizing voltage operating mechanism, which addresses the non-linear decay caused by
the effects of RBL current accumulation; this allows the accumulated analog current signals
to be accurately quantified and ensures that the gradient of the output voltage Vg remains
linear, thereby mitigating the occurrence of non-linear decay phenomena. As shown in
Figure 11, three critical parameters are considered in the voltage gradient quantization
circuit: (1) the channel length (L1) of ZFET1, (2) the channel width (M1 and W1) of ZFET1,
and (3) the aspect ratio (WN/LN) of NM1/NM2 transistors; these parameters have a
significant impact on the performance of the circuit, including its quantization precision
(computational linearity), consumption of static and computational power consumption
per unit area, and circuit area.

The W/L of the primary transistors

VDD

NM,
w1 S
M1 x Iz }
ZFET,

Figure 11. In order to conserve energy and prevent the unnecessary accumulation of power, the

system dynamically controls the COM_EN port to revoke the high-level CEN signal during the
calculation cycle; this restores it to a low level, thereby cutting off the computational current path.

ZFET represents a super-low-threshold voltage transistor, distinguished from con-
ventional CMOS FETs by virtue of its significantly lower threshold of voltage, or turn-on
voltage, and the ability to maintain stable currents even under minute variations in gate
voltage. When the current in the left branch of the GVQ circuit becomes insufficient due to
an inadequate number of computational units, ZFETs excel in enabling a rapid response
from the GVQ circuit.

3.1.1. The Channel Length (L1) of ZFET1

Considering a unit channel width of 500 nm for ZEFT1, with M1 denoting a finger
count of 20, and an aspect ratio of 120 nm /300 nm for the NM1/NM2 transistors, this
study investigated the impact of varying the channel length L1 of the ZEFT1 transistor on
the quantization precision and minimum (with only one computational unit current) to
maximum (with eight computational units of current) computational power consumption
of the voltage gradient quantization circuit. As depicted in Figure 12, while increasing L1
led to improvements in the minimum and maximum computational power consumption
of the 64 x 1 array circuit, it simultaneously reduced the precision and linearity of the
accumulated current quantization. Consequently, taking into account the circuit area, power
consumption (minimum computational power < 0.55 mW/mm?, maximum computational
power < 11.5 mW/mm?), and linearity (linearity > 98% with eight computational units),
the channel length L1 of the ZEFT1 transistor was set at 300 nm.

In the experiment assessing calculation linearity, as per Figure 12a, channel lengths
were divided into ten groups ranging from 150 to 600 nanometers. For each group, measure-
ments were taken of the unit output current when the circuit was driven by an eight-unit
computational current output, the IMAC current in the current accumulation bus, and the
output voltage of the GVQ circuit. Calculation linearity was determined by calculating the
ratio of the IMAC current in the accumulation bus to the theoretical total IMAC current.
The specific data obtained are presented in Table 1.
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Figure 12. While increasing L1 improves the computational power consumption of the 64 x 1 array
circuit, it concurrently decreases the precision and linearity of the accumulated current quantization.

Table 1. Calculating linearity and the channel length of ZFET1.

Unit Current Channel Length MAC Current Theoretical MAC
(uA) (uA) Current (uA) Linearity(%)
Ip L/n Inac Inac L

150 66.1 99.63
200 65.8 99.80
250 653 9905
300 64.75 982

804 350 64.39 65.92 97.67
400 63.95 97.01
450 63.61 9649
500 63.35 %10
550 63.03 95.62
600 62.79 95.25

3.1.2. The Channel Width (M1 and W1) of ZFET1

Owing to ZEFT1’s fixed channel length L1 of 300 nm and unit channel width W1
of 500 nm, the effect of changing the total channel width M1 x W1 via modifying the
number of fingers (M1) on the precision of quantization and consumption of computational
power per unit area was examined. As shown in Figure 13, with M1 increased, under the
same number of computing units, both the quantization precision and consumption of
computational power per unit area increased. As can be seen from the blue curve that, when
there were 16 computing units, the quantization precision approached 80%; at M1 = 10,
the precision dropped below 80%. To ensure the precision of the system while limiting the
number of simultaneously computed units to 16 or fewer, M1 was set as 20. This balanced
the increase in computational precision against the rising consumption of computational
power per unit area.
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Figure 13. As M1 increases, under the same number of computing units, both the quantization
precision and consumption of computational power per unit area increase. It is evident from the blue
curve that, when there are 16 computing units, the quantization precision approaches 80%, and that
at M1 = 29, the precision drops below 80%.

3.1.3. The Aspect Ratio (WN/LN) of NM1/NM2

The aspect ratio WN /LN of NM1/NM2 governs the static current within the right
branch array of the voltage gradient quantization circuit, thereby influencing its static
power consumption per unit area and the minimum computational power consumption.
As shown in Figure 14, experimental observations revealed that WN/LN had a relatively
minor impact on the static current, maintaining a range of between 100 nA and 105 nA.
Consequently, the determination of WN/LN for NM1/NM2 was primarily guided by the
minimum computational current. With the objective of maintaining the minimum compu-
tational power consumption at below 0.5 mW/mm?, WN/LN was set at 120/350. During
the experiment aimed at measuring the minimum computational power consumption, the
primary focuses were twofold: ensuring a power level below 0.5 mW/mm? and minimiz-
ing the circuit area while preserving symmetry. Given that each column of the SRAM is
equipped with a GVQ circuit, circuit area optimization became a crucial consideration,
necessitating a compact design that would not compromise the desired power threshold.
Simultaneously, maintaining symmetry in the circuit layout was deemed vital for both
functional efficacy and manufacturability. Based on these dual objectives, an aspect ratio
of 120/350 was selected as it effectively strikes a balance between achieving the targeted
low minimum computational power consumption and retaining a compact, symmetrical
circuit layout, thereby satisfying both requirements and ensuring the overall efficiency and
practicality of the design.

Static Power VS NM1/NM2
0.6 The W/L of NM1 & NM2

VDD

o
wn

Static Power (mW/mmg2)

4
120/200 120/250 120/300 120/350 120/400
Wy/Ly of NM1/NM2

Figure 14. The aspect ratio WN/LN of NM1/NM2 determines the static current in the right branch
array of the voltage gradient quantization circuit, hence affecting its consumption of static power per
unit area.
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Based on the data obtained from the above simulations, we compiled the final values
of the three core parameters of the voltage gradient quantization circuit in Table 2. Concur-
rently, we made a comprehensive record of the circuit’s performance under these parameter
settings, which is presented in Table 3.

Table 2. The parameter values of the SSL.

ZFET1 ZFET2 NM1/NM2
Parameter
W1/L1 M1 W2/12 M2 WN/LN
Parameter 55 /300 1y 20 500 /200 n 5 120 /350 n
Values

Table 3. The performance of the SSL.

Performance Pgt (mW/mm?) Pypac (mW/mm?) Linearity (%)
Unit of Cell - 8 8 16
Performance Value 0.48 11.367 98.22 80.60

3.2. Binary Convolutional Neural Network Computation Analysis

In order to perform convolutional layer computations in a Binary Neural Network
using DAM SRAM, the following steps must be implemented: (1) Matrix Reshaping:
A5 x 5 feature input matrix and a 3 x 3 convolution kernel require 52 vector multipli-
cations for convolution. Thus, the feature input matrix is reshaped into a sequence of
one-dimensional vectors that have a dimension of 25 and that contain nine elements each;
these are input into the array over 52 cycles for the performance of MAC operations with
weight data (convolution kernel). This reshaping process is accomplished through software
compilation. (2) Weight Data Writing and Address Space Mapping: The input directions of
the reshaped feature matrix vectors are along WL, which necessitates the remapping of the
storage address space for weight data (convolution kernels); this is from the BL direction
to the WL direction in the DAM SRAM array. A 16-channel 3 x 3 convolution kernel is
divided into 16 regions for storage, which are arranged in 16 columns, and the remapping
process is performed via software compilation. (3) Feature Matrix Input and Convolution
Operation: After reshaping, the feature input matrix vectors undergo full-column parallel
MAC operations using each row block of the remapped weight data storage areas in each
cycle. Because the remapped storage area for the convolution kernel is in a single row
block, completing the convolutional layer computation for the entire feature matrix and all
channels requires 52 cycles. The CWL driver circuits and address decoding circuits within
the DAM SRAM handle the matrix input process.

3.3. Binary Convolutional Neural Network Computational Simulation

Our convolutional layer computational simulation experiment proceeded as follows:
Two convolutional layer computations were simulated, namely Cov L1 and Cov L2; these
involved 8064 and 516,096 MAC operations, respectively. A conventional Von Neumann
architecture served as the control group, where the CPU performs the convolutional layer
computations with data that are stored in SRAM memory (MEM) interfaced with a 32-bit
bus; this requires three clock cycles for a single read /write operation. The test group used
a CPU+MEM+DAM SRAM setup, where DAM SRAM operates with eight parallel cores at
500 MHz under CPU control; here, the convolution computations are executed by the DAM
SRAM CORE. The results showed that using the DAM SRAM CORE in conjunction with
the CPU reduced the movement of data by more than 95% and correspondingly decreased
the consumption of power by 95% during convolutional layer computations. Meanwhile,
speedup improvements of 97.2% for L1 and 99.72% for L2 were achieved. Table 4 presents
a comparison with prior related work, demonstrating that due to the adoption of dynamic
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low-power computation modes and low-power computation unit designs, we achieved
significantly greater energy efficiency compared to other in-memory computing designs.

Table 4. A comparison with other work.

ISSCC JSSC ISSCC Electronics

2020 [8] 2021 [9] 2021 [10] 2024 [11] This Work
Technology 28 nm 65 nm 28 nm 65 nm 55 nm
Bit Cell(T) 6 6 6 9T1C 11
Array Size 64 Kb 512 x 256 384 Kb 32 x 32 64 x 64
Frequency 120 MHz - 138 MHz 50 MHz 50 MHz
Bit Precision
(Input/Weight/Output) 8/8/20 4/1/7 8/8/20 4/4/7 1/1/5
Throughput (GOPS) 30.48 573.4 - 102.4 109.75
Energy Efficiency(TOPS/W) 16.63 494 15.02~22.75 33.6 21.95
4. Results

References

In this paper, a novel design for the DAM SRAM CORE in-memory computation IP
core has been presented, encompassing the overall architecture, details of the implementa-
tion of the main modules, and comprehensive simulation performance metrics. The IP core,
designed around a dynamic aXNOR-based computing scheme within SRAM cells, supports
single-bit Multiply-Accumulate (MAC) operations and features several key innovations:
(1) The development of an 11T SRAM cell that integrates both storage and computation
capabilities, enabling the performance of large-scale parallel MAC operations within the
memory SRAM array. This cell demonstrates an efficient utilization of area and a compact
layout. (2) The implementation of a dynamic aXNOR computation mode, which signifi-
cantly reduces both the computational and static power consumed by the array. (3) The
design of a self-stabilizing voltage gradient quantization circuit that enhances the system’s
operational accuracy. Numerous simulations were performed using the 64 x 64-bit DAM
SRAM CORE in-memory computation IP core, which was fabricated using a 55 nm CMOS
logic process; these substantiated the efficacy of the proposed design. Under conditions
of 1-bit input feature data, 1-bit weight data, and 5-bit output results, this chip exhibited
low-power operation with a static power dissipation of 0.48 mW/mm? and a computational
power consumption of 11.367 mW /mm?. Furthermore, it achieved a data throughput of
109.75 GOPS and an energy efficiency of 21.95 TOPS/W, demonstrating its potential for
application in high-performance, energy-efficient computing.
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