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Simple Summary: We summarize the current knowledge of the signaling pathways involved in
anticancer drug-induced cell death. We discuss the common signaling pathways of apoptotic cell
death, antiapoptotic pathways, non-apoptotic cell death mechanisms (autophagic, necrotic, and
other), signaling pathways involved in the death of drug-sensitive and -resistant tumor cells (with
emphasis on c-Jun/activator protein 1 and crosstalk with mitochondrial and endoplasmic reticulum
pathways), and therapeutic implications of the modification of signaling pathways leading to cell
death (with emphasis on cell death-related gene targeting, interactions of drug resistance factors
in drug-resistant cells, and the unfolded protein response pathway). We provide suggestions for
the restoration of these altered signaling pathways to potentially restore the drug sensitivity of
tumor cells.

Abstract: Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types.
The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ
between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the
c-Jun/activator protein 1 (AP-1)/p53 signaling pathway leading to apoptotic death is altered. Cancer
cells treated with anticancer drugs undergo c-Jun/AP-1–mediated apoptotic death and are involved
in c-Jun N-terminal kinase activation and growth arrest- and DNA damage-inducible gene 153
(Gadd153)/CCAAT/enhancer-binding protein homologous protein pathway induction, regardless of
the p53 genotype. Gadd153 induction is associated with mitochondrial membrane permeabilization
after anticancer drug treatment and involves a coupled endoplasmic reticulum stress response. The
induction of apoptosis by anticancer drugs is mediated by the intrinsic pathway (cytochrome c, Cyt c)
and subsequent activation of the caspase cascade via proapoptotic genes (e.g., Bax and Bcl-xS) and
their interactions. Anticancer drug-induced apoptosis involves caspase-dependent and caspase-
independent pathways and occurs via intrinsic and extrinsic pathways. The targeting of antiapoptotic
genes such as Bcl-2 enhances anticancer drug efficacy. The modulation of apoptotic signaling by
Bcl-xS transduction increases the sensitivity of multidrug resistance-related protein-overexpressing
epidermoid carcinoma cells to anticancer drugs. The significance of autophagy in cancer therapy
remains to be elucidated. In this review, we summarize current knowledge of cancer cell death-related
signaling pathways and their alterations during anticancer drug treatment and discuss potential
strategies to enhance treatment efficacy.

Keywords: anticancer drug; signaling pathway; cell death; antitumor immunity; cancer cell

1. Introduction

The hallmarks of cancer cells include persistent growth signaling, growth inhibitor
evasion, resistance of cell death, unlimited replication capacity, angiogenesis, genomic
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instability, unleashed phenotypic plasticity, and the evasion of immune destruction [1].
These features allow cancer cells to continue to proliferate, invade neighboring tissues, and
spread to other organs to establish metastatic sites. During these processes, the alteration
of signaling pathways in cancer cells affects their sensitivity and resistance to anticancer
agents and antitumor immunity, making cancer treatment more difficult and less curative.

Anticancer drug-induced cell death can be classified into at least three forms according
to morphological and biological criteria: apoptosis, autophagy, and necrosis [2]. Whereas
apoptosis and necrosis are irreversible, autophagy is reversible and can lead to cell death or
immune escape. The induction of apoptotic cancer cell death is an important component of
the therapeutic effects of anticancer drugs [3], and its attenuation correlates with resistance
to these drugs [4]. The molecular mechanisms of the intrinsic and extrinsic signaling
pathways mediated by mitochondrial outer membrane permeabilization (MOMP) and
death receptors (DRs) such as Fas and DR4/5 have been investigated extensively in research
on anticancer drug-induced apoptotic cell death [5,6]. The regulation of these pathways
is mediated by proapoptotic and antiapoptotic B-cell lymphoma 2 (Bcl-2) family proteins.
Their modulation through the activation of proapoptotic proteins such as Bax and the
inhibition of antiapoptotic proteins such as Bcl-2 enhances the therapeutic efficacy against
cancer cells [7]. Necrosis and autophagy are also involved in the therapeutic effects of
anticancer drugs [8], but the interaction and relationship between apoptotic and autophagic
cell death (ACD) in this context remain to be elucidated [9].

Cancer cells’ development of multidrug resistance (MDR) is a consideration in suc-
cessful cancer treatment. MDR is caused by multiple factors, including the overexpression
of transmembrane proteins as drug efflux pumps via ATP-binding cassette transporters
such as P-glycoprotein and multidrug resistance-related protein (MRP), increased levels
of detoxification enzymes such as glutathione S transferase, the alteration of DNA target
enzymes such as topoisomerase I/II, and the attenuation of DNA damage responses and
apoptotic signaling pathways [10,11]. The examination of changes in the signaling path-
ways leading to apoptosis in drug-resistant cells provides a deeper understanding of the
molecular mechanisms underlying the therapeutic effects of anticancer drugs.

Transcription factors such as activator protein 1 (AP-1) and p53 play important roles
in the signaling pathway leading to apoptotic cell death [12]. Activated c-Jun N-terminal
kinase (JNK) phosphorylates c-Jun, which heterodimerizes with the c-Fos family as AP-1 and
activates DNA damage-inducible genes [growth arrest- and DNA damage-inducible gene
153 (Gadd153)/CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP)],
Bak, Bim, and p53 to promote apoptotic cell death [13]. The attenuation or alteration of
signaling pathways involved in transcription factor-mediated apoptotic cell death can lead
to drug resistance in cancer cells [14]. The attenuation of the DNA damage response by
anticancer drugs leads to a decrease in antitumor immune activity due to a reduction in
immunogenic cell death (ICD). The induction of ICD activates the ICD signaling pathway by
releasing damage-associated molecular patterns (DAMPs) from dying tumor cells, leading
to the activation of tumor-specific immune responses, and providing for the long-term
efficacy of anticancer drugs [15,16].

In this review, we summarize the current knowledge of the signaling pathways in-
volved in anticancer drug-induced cell death. We will discuss common signaling pathways
of apoptotic cell death and antiapoptotic pathways; non-apoptotic cell death mechanisms;
signaling pathways involved in the death of drug-sensitive and -resistant tumor cells
(including an emphasis on c-Jun/AP-1, apoptotic pathways in breast and gastric cell mod-
els that highlight these pathways, and crosstalk with mitochondrial and ER pathways);
therapeutic implications of the modification of signaling pathways leading to cell death
(cell death-related gene targeting, interactions of drug resistance factors in drug resistant
cells, and the UPR pathway); and suggestions as to how restoration of these altered sig-
naling pathways may restore drug sensitivity to the tumor cells. We hope to contribute to
the understanding of the molecular mechanisms of cell death and provide insights into
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overcoming cancers’ resistance to therapy, with the overall goal of improving the efficacy
of therapy.

2. Common Pathways of Apoptotic Cell Death
2.1. Intrinsic (Mitochondrial) Pathway

The signaling pathways induced by anticancer drugs are summarized in Figure 1. Mi-
tochondria play a pivotal role in the regulation of anticancer drug-induced apoptotic cancer
cell death. In the intrinsic pathway, increased MOMP leads to the release of molecules
such as Cyt c, second mitochondria-derived activator of caspase (Smac)/direct inhibitor of
apoptosis binding protein with low isoelectric point (DIABLO), and Omi/HtrA2 from the
inner mitochondrial space and the activation of a caspase cascade via the activation of the
proapoptotic protein Bax/Bak [17–21]. Cyt c activates caspase 9/3 via apoptosomes com-
posed of apoptotic peptidase activating factor 1 (Apaf-1) and procaspase 9 in the presence
of deoxy-ATP or ATP [22]. Smac/DIABLO and Omi/HtrA2 activate the caspase cascade by
inhibiting the inhibitor of apoptosis protein (IAP), leading to apoptotic cell death [18–20].
p53 regulates the transcription of downstream proapoptotic target genes such as Bax, Noxa,
Puma, and Fas and binds to antiapoptotic proteins such as Bcl-2 and Bcl-xL to increase
Bcl-2 homology domain 3 (BH3)-only proteins such as Bid and Bim, thereby regulating the
Bax/Bad-mediated apoptotic cell death pathway [23]. Bcl-xS inhibits Bcl-xL, resulting in the
activation of the Bax/Bak-mediated pathway [24].

JNK is required for the release of Cyt c from mitochondria in apoptotic cell death [25].
Activated JNK promotes the dissociation of Bax from this protein by translocation from
the cytosol to the mitochondria via phosphorylation of 14-3-3, the cytoplasmic anchor of
Bax [26]. Mouse embryonic fibroblasts (MEFs) derived from JNK1−/− JNK2−/− mice resist
apoptosis in response to diverse genotoxic and cytotoxic stresses, providing evidence that
JNK is involved in apoptotic signaling [27,28]. Growth factor-induced antiapoptotic JNK
activation is rapid and transient, whereas γ-ray-induced proapoptotic JNK activation is
delayed [29]. JNK activation by anticancer drugs is sustained long term in drug-sensitive
cells and transient in drug-resistant cells [30]. The transfection of a dominant-negative
JNK allele inhibited JNK activity and blocked anticancer drug-induced apoptosis in drug-
sensitive cells [30].

JNK contributes to the phosphorylation of p53 family proteins in the apoptosis signal-
ing pathway [31], which likely involves the p53-mediated upregulation of proapoptotic
genes such as Bax and Puma [32]. JNK activation induced by DNA damage also stabi-
lizes and activates p73, a member of the p53 family that induces genes such as Bax and
Puma [33,34]. Cisplatin-induced p73-mediated apoptosis requires JNK, which phospho-
rylates p73. Mutations at the p53 phosphorylation site of JNK inhibit p73 stabilization
by cisplatin and reduce p73 transcriptional activity, thereby reducing cisplatin-induced
apoptosis [33]. JNK induces the expression of proapoptotic genes and decreases the ex-
pression of prosurvival genes through multiple transcription factors in a cell type- and
stimulus-specific manner.
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Figure 1. Common intrinsic and extrinsic apoptotic signaling pathways induced by anticancer drugs.
In the intrinsic pathway, anticancer drugs activate JNK via mitogen-activated protein kinase kinase
(MKK)4/7, which phosphorylates the 14-3-3 protein, dissociates Bax, and activates Bak. Bax and Bak
translocate to the mitochondrial outer membrane and release Cyt c. Cyt c then forms apoptosomes
containing apoptotic protease activating factor 1 (Apaf-1) and procaspase-9, activating the caspase
cascade that leads to apoptotic cell death. JNK phosphorylates Bid (jBid) and migrates through the
mitochondria to release second mitochondria-derived activator of caspases (Smac)/high temperature
requirement A2 (HtrA2), which inhibits the X-linked inhibitor of apoptosis protein (XIAP) and cellular
inhibitor of apoptosis protein (c-IAP), resulting in the activation of caspase-8 and the caspase cascade.
JNK also phosphorylates B-cell lymphoma 2 (Bcl-2) and inhibits its function. In the extrinsic pathway,
anticancer drugs activate death receptors that recruit the Fas-associated death domain (FADD), tumor
necrosis factor (TNF) receptor-associated death domain (TRADD), and procaspase-8 to form a death-
induced signaling complex, which in turn activates caspase-8. Caspase-8 cleaves, generating truncated
Bid (tBid), which translocates to the mitochondria, releasing proapoptotic proteins such as Cyt c and
Smac/HrtA2. JNK activates c-Jun/activator protein 1 (AP-1), which induces apoptosis-promoting genes
such as Bak, TNF-α, and Fas L, in turn activating the caspase cascade leading to apoptotic cell death.
Abbreviation: TF, transcription factor. This figure was custom-made by Wiley Editing Services based on
our freehand drawing.

2.2. Extrinsic (Death Receptor-Mediated) Pathway

MOMP induced by Bax/Bak activation promotes apoptotic cell death, and Bid activates
Bax/Bak following activation by caspase-8. Caspase-8, in turn, is activated by the binding
of Fas and DR4/5 to the death factor receptor Fas L and tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL), which recruits the tumor necrosis factor receptor
1 (TNFR1) death domain protein (TRADD), Fas-related death domain protein (FADD),
and procaspase-8 and forms an intracellular death-induced signaling complex (DISC)
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that activates procaspase-8 [35]. Following TRAIL activation, FADD is recruited after
TRADD dissociates and forms complexes with the receptor-interacting protein (RIP) and
tumor necrosis factor receptor–associated factor 2 (TRAF2), which mediate cell survival
and death through nuclear factor–kappa B (NF-κB) and JNK1, respectively. Caspase-8
proteolytically cleaves Bid to form tBid, activating the Bax/Bak-mediated mitochondrial
pathway [36]. TNF-α activates caspase-8, which induces JNK to activate Bid (jBid) through
phosphorylation-mediated cleavage and promote the release of Smac and Omi [37]. The
inhibition of cellular IAP 1 by Smac and X-linked inhibitor of apoptosis protein (XIAP) by
Smac and Omi leads to the activation of the execution factors caspases-3 and -7, leading
to apoptosis [38]. Caspase-8 directly activates caspase-3 without amplification of the
mitochondrial pathway [39] but also induces lysosome-associated non-apoptotic cancer
cell death [40].

JNK is activated by cisplatin treatment, and its sustained activation induces c-Jun
activation, in turn stimulating Fas L, a downstream gene associated with apoptosis, in
sensitive ovarian cancer cells [41]. The inhibition of cisplatin-induced JNK activation
prevents this form of apoptosis, and this activation is transient in drug-resistant cells [41].
Stimulation by the selective adenovirus-mediated delivery of mitogen-activated protein
kinase kinase 7 (MKK7) or MKK3, upstream activators of JNK, reactivated Fas L expression
and increased the susceptibility of resistant cells to apoptotic cell death [41]. TNF-α induced
apoptotic cell death in breast cancer cells and mouse fibroblasts via JNK activation, despite
the absence of an antiapoptotic inhibitor of the nuclear factor–kappa B (I-κB)/NF-κB
pathway, and the inhibition of JNK activation suppressed this process [42]. The duration
of JNK activation by anticancer drugs may be important for the induction of apoptotic
cell death.

2.3. Antiapoptotic Pathway

The release of apoptotic small molecules by MOMP via Bax/Bak is an essential event
in the caspase-dependent and caspase-independent apoptotic pathways and is inhibited by
antiapoptotic proteins such as Bcl-2 and Bcl-xL [43]. These proteins inhibit the migration and
oligomerization of Bax before it is inserted into the mitochondrial outer membrane. Bcl-xL
inhibits DISC formation and Bid activation by caspase-8, suggesting that it regulates not only
the mitochondrial pathway but also the upstream receptor-dependent pathway [44]. Bcl-2
partially inhibits DR-dependent pathways. MOMP proceeds via the loss of mitochondrial
membrane potential, which depends on the death trigger and generates reactive oxygen
species (ROS) that in turn activate lysosomal enzymes involved in non-apoptotic cell
death [45]. Bcl-2 and Bcl-xL prevent the loss of mitochondrial membrane potential and
subsequent production of ROS, partially through the antioxidant function of Bcl-2 [44].

The antiapoptotic phosphoinositide 3-kinase (PI3K)/Akt pathway plays important
roles in tumor development and progression [46]. Akt is a serine-threonine kinase com-
posed of three homologous proteins and is activated by hormones and growth factors. It
regulates apoptosis-promoting proteins such as Bax and Bad; Bax is phosphorylated to pro-
mote heterodimerization with myeloid leukemia cell 1 (MCL1) and Bcl-xL, which inhibits
its translocation to mitochondria, and Bad is dephosphorylated to bind and inactivate 14-3-
3 [47,48]. Akt also regulates Bcl-2 expression via cAMP response element binding protein
(CREB) and directly inhibits caspase-9 [49,50]. It inhibits p53 function via the activation of
murine double minute 2 (MDM2) [51]. I-κB is phosphorylated by Akt and activates NF-κB
as an inhibitor of apoptosis [52]. NF-κB activates important antiapoptotic proteins such as
Bcl-xL, XIAP, and cellular FLICE-inhibitory protein [53]. It inhibits p27 and induces ABCB1
(MDR1) and matrix metalloproteinase-9, which is involved in cancer cell cycle regulation,
drug resistance, and metastasis [54–56]. NF-κB prevents TNF-α-induced apoptotic cell
death by inhibiting the JNK cascade, including the caspase inhibitor XIAP [57], via its
antioxidant function, which reduces TNF-α-induced ROS accumulation. The antiapoptotic
activity of NF-κB is regulated by the inhibition of ROS accumulation and the regulation of
JNK cascade activation [53].
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3. Non-Apoptotic Cell Death
3.1. Autophagic Cell Death (ACD)

Autophagic cell death has recently been classified into three types [58,59]: autophagy-
dependent cell death, which is independent of apoptosis and necrosis; autophagy-associated
cell death, in which autophagy causes other types of cell death; and autophagy-mediated
cell death, which involves standard cell death mechanisms such as autophagy-induced
apoptotic cell death. Autophagy is a cytoprotective phenomenon activated by triggers
such as nutrient starvation, differentiation, and development of the cell and organism [60].
Tumor cells induce it to escape immunity, promoting tumor progression and metastasis [61].
As an adaptation to metabolic stress, autophagy involves the degradation of various cy-
toplasmic components in cells and cell organelles for recycling and turnover. It begins
with the formation of autophagosomes (double-membrane vesicles) in the cytoplasm; these
vesicles engulf organelles and fuse with lysosomes, which break down their contents for re-
cycling into amino acids [62]. ACD occurs when cellular stresses, such as starvation, exceed
the basal level of autophagy under normal physiological conditions. Autophagosome for-
mation is mediated by a series of autophagy-related genes (ATGs) [62]. Among mammalian
ATG orthologs, Beclin-1 plays an important role in the formation of autophagosomes and
the progression of autophagy; Beclin-1+/– mutant mice developed various tumors sponta-
neously, suggesting that it has a tumor suppression function [63]. In contrast, Beclin-1−/−

embryonic stem cells had a strongly altered autophagic response but normal apoptotic
responses to serum removal and UV light [63]. Many Beclin-1 monoallelic deletions have
been observed in breast, ovarian, and prostate cancers; the disruption of both Beclin-1 alleles
results in the suppression of cell proliferation and autophagy in vivo [64]. Given that other
tumor suppressors, such as death-associated protein kinase and phosphatase and tensin
homolog (PTEN), induce ACD, defects in autophagy are implicated in tumorigenesis [65].
Defects in lysosome-mediated autophagy promote carcinogenesis, and the induction of
ACD by γ-irradiation or anticancer drugs is associated with the activation of the lysosomal
pathway. Autophagy promotes cancer cell adaptation and survival during tumor growth
in the tumor microenvironment, but it proceeds to ACD in certain circumstances [66].
ACD in response to anticancer drugs has been reported, for example, in breast, colon, and
ovarian cancer tissues [67,68]. Tamoxifen induces ACD in breast cancer cells in associa-
tion with Akt downregulation; conversely, autophagy is involved in tamoxifen resistance
via the activation of the PI3K/Akt/mammalian target of rapamycin (mTOR) signaling
pathway [69]. Histone deacetylase inhibitors induce mitochondria-mediated apoptosis
and caspase-independent ACD in multiple human cancer cell types [70]. Autophagy is
regulated by the mTOR pathway, which in turn has been shown to be regulated by growth
factors via the class I PI3K/Akt signaling pathway and by the downregulation of nutrient
transporters upon growth factor withdrawal [71]. The activation of epidermal growth
factor by extracellular signal-regulated kinase and Akt blocks ACD through crosstalk be-
tween the PI3K/Akt and Ras/extracellular signaling pathways [72]. In contrast, PTEN, a
negative regulator of autophagy, stimulates ACD in colon cancer cells. Akt is downstream
of class I PI3Ks and inhibits autophagy by activating the mTOR kinase [73]. Class I PI3K
signaling inhibits autophagy by activating it through growth factor receptors, whereas class
III PI3Ks promote autophagy by enhancing the sequestration of cytoplasmic components.
The presence of autophagic vacuoles in cancer cells killed by anticancer drugs indicates
the occurrence of ACD, but the extent to which ACD is involved in the therapeutic effects
of these drugs is unclear. When these drugs induce cancer cell cytotoxicity, autophagy
is activated and has a protective effect via the degradation of damaged cells. When the
cytoprotective response of autophagic vacuoles exceeds the threshold of cytoprotective
agents, cancer cells undergo ACD, in which the Golgi apparatus and ER are degraded
before nuclear destruction occurs. The treatment of Bax/Bak-deficient mice with growth
factor abolished ACD in interleukin-3 (IL-3)-dependent Bax−/−/Bak−/− myeloid cells, but
these cells underwent ACD after IL-3 deprivation [74]. This reversal of cell viability with
the addition of IL-3 suggests that autophagy is a self-limiting survival strategy, rather
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than an irreversible death program. In Bax−/− Bak−/− fibroblasts, however, etoposide
(VP-16) treatment induced ACD [75]. Growth factor deprivation and drug treatment acti-
vate autophagy in Bax/Bak-deficient MEFs, with significant differences in the expression
of ATGs such as Atg5 and Atg6 between the conditions [76]. Low levels of these genes
during autophagy result in survival, and high levels result in cell death. The molecular
mechanisms of energy crisis and ACD induced by cytotoxic agents may differ, given that
autophagy-dependent cell death may have different molecular mechanisms depending on
the situation and cell type, and the elucidation of the regulatory mechanisms occurring in
these settings is important.

JNK regulates events at various levels in the nucleus and cytoplasm. In the nucleus,
it has been shown to upregulate the expression of several ATGs (e.g., Atg5, Atg7, light
chain 3, and Beclin-1) in response to certain pro-death stimuli [77]. JNK activation and
JNK-mediated ATG expression are required for ACD activation by caspase-8 inhibitors and
TNF-α in various cell types. JNK can also activate c-Jun, suggesting that AP-1 is involved
in JNK-mediated ATGs upregulation [77]. The antiapoptotic Bcl-2/Bcl-xL protein complex
sequesters Beclin-1 and inhibits autophagy [78]. When the ACD reaction occurs, activated
JNK phosphorylates Bcl-2/Bcl-xL, releasing Beclin-1 to promote autophagy [79]. Sustained
Bcl-2 phosphorylation leads to Beclin-1–mediated ACD. Bim inhibits autophagy by recruit-
ing Beclin-1 in microtubules, whereas activated JNK phosphorylates Bim, releasing Beclin-1
and inducing autophagy [80]. The extent to which ACD contributes to the therapeutic
effects of anticancer drugs, and how it crosstalks with and compensates for other cell death
types (e.g., apoptotic cell death), remains unclear.

3.2. Necrotic Cell Death (NCD)

Necrosis is unscheduled cell death caused by the loss of ATP or dysfunction of the
mitochondrial membrane pumps [81]. It is characterized by organelle swelling and cell
membrane rupture and is induced by apoptosis (secondary necrosis) [82]. DRs induce not
only apoptosis but also non-apoptotic cell death. TNF and TRAIL induce both ACD and
NCD, in the former case in wild-type MEFs when caspases are inhibited [83]. TNF-induced
necrosis, of which RIP, FADD, and TRAF2 are important components, is mediated by
TNFR1 and suppressed by NF-κB. It increased intracellular ROS levels in wild-type, but
not RIP−/−, FADD−/−, or TRAF2−/−, MEFs [83]. Anticancer agents such as ethacrynic
acid and cytochalasin B induce the necrosis of cervical cancer cells [84]. DNA-alkylating
agents, such as cisplatin and other cytotoxic drugs, induce NCD in the absence of p53, Bax,
and Bak, regardless of apoptotic defects [85]. In the solid tumor microenvironment, ATP
depletion leads to NCD under hypoxic and anoxic conditions, which in turn promotes
tumor growth through inflammatory cytokine production rather than having a therapeutic
effect. Hypoxia is a hallmark of solid tumors such as gastrointestinal cancers, and Bcl-
2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a proapoptotic protein of the
Bcl-2 family, regulates hypoxia-induced cell death triggered by hypoxia-inducible factor 1
(HIF1) [86]. BNIP3 induces the reduction in the mitochondrial membrane potential and
NCD without releasing Cyt c [87]. However, given that the silencing and downregulation
of the BNIP3 gene has been observed in gastric and colorectal cancers, as 5′ CpG island
DNA methylation occurs frequently, the inactivation of BNIP3 is considered to play an
important role in gastrointestinal cancer progression [88]. Hypoxia induces the expression
of antiapoptotic proteins such as IAP-2 and downregulates the expression of proapoptotic
protein Bax [86]. In hematopoietic tumors such as acute lymphoblastic leukemia, acute
myelogenous leukemia, and multiple myeloma, BNIP3 expression is suppressed by the
abnormal methylation of 5′ CpG islands and histone deacetylases [89]. To escape hypoxia-
induced cell death, cancer cells with more aggressive phenotypes that are resistant to
anticancer drugs through the inhibition of proapoptotic proteins are selected.
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3.3. Other Non-Apoptotic Cell Death

Several other forms of non-apoptotic cell death, including ferroptosis, pyroptosis,
and necroptosis, are of interest in the context of the eradication of drug-resistant tumor
cells. As cancer cells can resist innately programmed and drug-induced apoptosis, effective
cancer treatment also requires the identification and targeting of non-apoptotic cell death,
although the degree to which these mechanisms act in the anticancer drug resistance
of tumor cells is unclear, especially when considered in the context of the mechanisms
discussed above. This type of cell death is not mediated by the caspase cascade in the
absence of chromatin condensation, nuclear fragmentation, and membrane exudation,
which are typical morphological features of apoptosis. Ferroptosis is characterized by
the accumulation of iron ions and lipid peroxidation by ROS, and it has morphological
and biochemical features that differ from those of apoptosis and autophagy, including
mitochondrial contraction, increased membrane density, and the reduction or loss of
mitochondrial cristae [90,91]. In certain cancer cell types, ferroptosis-inducing agents
reverse drug resistance [92]. The targeting of ferroptosis in cancer cells can reverse resistance
to immune checkpoint inhibitors (ICIs), and the interferon-γ signaling pathway is critical
for the modulation of treatment outcomes in this context [93]. Necroptosis is characterized
by the resistance of apoptotic cell death and involves DRs and RIP kinases; it leads to the
rupture of the cell membrane and activation of the immune response [94]. The molecular
mechanism of necroptosis depends on receptor-interacting serine/threonine kinase 1 (RIP1),
RIP3, and mixed-lineage kinase domain-like pseudokinases, regardless of the trigger [95].
Pyroptosis is a form of programmed cell death characterized by inflammation and is
mediated by the gasdermin family [96]. It occurs when certain inflammasomes promote
caspase-1 activation, which leads to gasdermin cleavage and the activation of cytokines
such as IL-18 and IL-1β [97]. Pyroptosis induces a strong inflammatory response and tumor
regression [98]. Crosstalk occurs among apoptosis, necroptosis, and pyroptosis [99]. Again,
as indicated, the role(s) of these other non-apoptotic cell death mechanisms in anticancer
drug resistance, especially clinical anticancer drug resistance, is unclear.

4. Signaling Pathways Involved in the Death of Drug-Sensitive and -Resistant Cells
4.1. c-Jun/AP-1

AP-1 plays important roles in cancer cell proliferation, differentiation, and death,
depending on the cell type and trigger [100]. Research on c-Jun/AP-1 activation and its
association with apoptotic cancer cell death is summarized in Table 1. The first report of
increased c-Jun expression in human myeloid leukemia cells after anticancer drug treatment
was published more than three decades ago; the authors suggested that this increase
occurred along the differentiation signaling pathway via a drug-induced transcription
mechanism [101]. Subsequent studies showed that anticancer drug (VP-16, camptothecin,
cytosine arabinoside, and cisplatin)-induced increases in c-Jun expression are associated
with apoptotic leukemia cell death [102–106]. Some drugs that increase c-Jun expression
co-induce c-Fos expression to a lesser extent, although this expression is not essential for
apoptosis [107]. Increased c-Jun expression induced by gemcitabine has been associated
with apoptotic pancreatic cancer cell death [108]. The activation of JNK and increased
expression of c-Jun have been associated with the apoptotic death of human leukemia
cells treated with paclitaxel (PTX) and epidermoid carcinoma cells treated with PTX and
vinblastine (VBL) [109–112]. In one study, PTX induced JNK activation and increased
c-Jun expression, but the activated JNK did not phosphorylate c-Jun, suggesting that PTX-
induced apoptotic epidermal cancer cell death has an AP-1–independent pathway [112]. In
epidermoid carcinoma cells treated with VBL, doxorubicin, and VP-16, JNK activation was
associated with apoptotic cell death, but only VBL induced the phosphorylation of c-Jun
and activation of AP-1 [113]; JNK activation was also associated with apoptotic cell death
in head and neck squamous cell carcinoma cells treated with PTX [114].
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We demonstrated some time ago that increased c-Jun expression and AP-1 activation
were associated with apoptotic death after VM-26 treatment in drug-sensitive leukemia cells
but were attenuated according to the degree of VM-26 resistance [115]. We further found
that the dimerization partner of c-Jun in AP-1 activation was Fra-1 in drug-sensitive cells
but Fra-2 in drug-resistant cells, suggesting that the signaling pathway associated with AP-1
activation is altered, leading to apoptotic death, in the latter [115]. Similarly, AP-1 activation
and dimerization with c-Jun and Fra-1 were observed in epidermoid carcinoma cells upon
VBL treatment, suggesting that Fas L, TNF-α, Bak, insulin-like growth factor binding protein
4, and glutathione s-transferase 3 are target genes [110,111]. In contrast, the dimerization
partners of c-Jun in AP-1 activation in human B lymphoblasts after PTX treatment were Jun
B and Jun D [109]. Attenuated JNK/c-Jun/AP-1 activation during apoptosis was observed
in cisplatin-resistant human cervical cancer cells [116]. JNK activation was also attenuated
in non-small cell lung cancer cells with acquired resistance to gemcitabine [117]. AP-1
activation has been associated with apoptotic cell death induced by anticancer agents such
as docetaxel (in gastric cancer cells) [118] and VBL (in epidermal cancer cells) [110,111].
Treatment with doxorubicin, VP-16, or PTX did not activate AP-1 in epidermoid carcinoma
cells, suggesting the existence of AP-1-dependent and -independent pathways after JNK
activation [112,113]. AP-1 activated by docetaxel appears to target Gadd153/CHOP in
gastric cancer cells [119] and that activated by VBL appears to target Fas-L, TNF-α, and Bak
in epidermoid carcinoma cells [111]. Another study suggested that Bim was a target gene
for apoptotic death in pancreatic cancer cells treated with gemcitabine [108].

Table 1. Associations between increased c-Jun/AP-1 activity and anticancer drug-induced apoptosis
in human cancer cells.

Anticancer Drug Cell Line/Origin JNK/c-Jun AP-1 Activity/Dimer
with c-Jun

Potential Target
Genes

Apoptosis
Correlation Year [Ref.]

VP-16 HL-60 and U-937/
myeloid leukemia cells ND/mRNA increase ND ND Yes 1991 [102]

Camptothecin U-937/
myeloid leukemia cells

ND/mRNA increase
Co-increase in c-Fos ND ND Yes 1991 [103]

Ara-C U-937/
myeloid leukemia cells

ND/mRNA increase
Co-increase in c-Fos ND ND Yes 1991 [104]

Cisplatin HL-60, U-937, and KG-1/
myeloid leukemia cells

ND/mRNA increase
Co-increase in c-Fos ND ND Yes 1992 [105]

VP-16 K562 and HL-60/
leukemia cells ND/mRNA increase ND ND Yes 1994 [106]

Gemcitabine Panc-1 and SW1990/
pancreatic cancer cells ND/increase ND Bim Yes 2015 [108]

Paclitaxel RPMI-1788/
B lymphoblast leukemia Activation/increase Increase/Jun B, Jun D ND Yes 1998 [109]

Vinblastine KB-3/
epidermoid carcinoma cells Activation/increase Increase/Fra-1 Fas-L, TNF-α Yes 2001 [110]

Vinblastine KB-3/
epidermoid carcinoma cells Activation/increase Increase/ND TNF-α, Bak,

IGFBP4, GST3 Yes 2001 [111]

Vinblastine
Paclitaxel

KB-3/
epidermoid carcinoma cells Activation/increase No increase ND Yes 2008 [112]

Vinblastine
Doxorubicin

VP-16

KB-3/
epidermoid carcinoma cells Activation/ND

Increase by vinblastine
but not by doxorubicin

and VP-16/ND.
ND Yes 2003 [113]

Paclitaxel
OEC-M1/

head and neck squamous cell
carcinoma cells

Activation/ND ND ND Yes 2021 [114]

VM-26
CEM, CEM VM-1, and CEM

VM-1-5/
lymphoblastic leukemia cells

ND/increase

Increase and
attenuation in resistant

cells/Fra-1; Fra-2 in
resistant cells

ND Yes 1994 [115]
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Table 1. Cont.

Anticancer Drug Cell Line/Origin JNK/c-Jun AP-1 Activity/Dimer
with c-Jun

Potential Target
Genes

Apoptosis
Correlation Year [Ref.]

CDDP Hela and CDDP resistant
cells/cervical carcinoma cells

Activation/increase,
attenuation in
resistant cells

Increase, attenuation
in resistant cells/ND ND Yes 2004 [116]

Gemcitabine H1299/non-small cell lung cancer
cells

Activation,
attenuation in

resistant cells/ND
ND ND Yes 2005 [117]

Docetaxel
MKN-1, 28, 45, 74, HSC-39,

KATO-III, OKAJIMA, and SH
101/gastric cancer cells

ND Increase/ND Gadd153/CHOP Yes 1999 [118]

Abbreviations: AP-1 = activator protein 1; JNK = c-Jun N-terminal kinase; ref. = reference; VP-16 = etoposide;
ND = not done; Ara-C = cytarabine; TNF-α = tumor necrosis factor-α; IGFBP4 = insulin-like growth factor binding
protein 4; GST3 = glutathione s-transferase 3; VM-26 = teniposide; CDDP = cisplatin; Gadd153 = growth arrest-
and DNA damage-inducible gene 153; CHOP = CCAAT/enhancer-binding protein homologous protein.

Overall, these data suggest that c-Jun-associated AP-1 activation, while prominent,
is not universal in anticancer drug-induced apoptotic cell death but varies depending on
the triggering drug and cancer cell type. Nevertheless, the activation of AP-1 dimerized
with c-Jun and Fra-1 and the subsequent activation of proapoptotic proteins may play an
important role in at least some signaling pathways leading to anticancer drug-induced
apoptosis. In drug-resistant cells, these signaling pathways are attenuated. Clearly, these
signaling pathways provide insights and potential targets in anticancer drug-resistant
tumor cells.

4.2. Apoptotic Pathways Induced by Anticancer Drugs: Gastric and Breast Cancer Cell Models

The following text is summarized in Figure 2. A gastric cancer cell model of the
signaling pathway of anticancer drug-induced apoptotic cell death suggests that increased
AP-1 activity plays an important role and is associated with Gadd153 induction, regardless
of the p53 genotype [118]. This finding is consistent with the increased sensitivity of gastric
cancer cells to various anticancer drugs upon Gadd153 introduction, in association with
apoptotic cell death and with no alteration of the effects of other drug sensitivity-related
factors, such as drug-targeting enzymes and efflux pumps [119]. Another anticancer drug-
induced signaling pathway involved in AP-1 activation involves Bax induction, which
activates the caspase cascade and causes apoptotic cell death. In gastric cancer cell lines,
the induction levels of Bax and Bcl-xS are associated significantly with anticancer drug-
induced apoptotic cell death [120]. Bax transfection into gastric cancer cells increased
their drug sensitivity and co-induced Bcl-xS in association with apoptosis [120]. Bax co-
induction was also observed in gastric cancer cells transfected with Bcl-xS, suggesting that
the interaction between Bax and Bcl-xS induces anticancer drug-induced apoptotic cell
death [120]. The enhanced drug sensitivity of Bax-transfected cells involves the activation
of JNK and caspase-3, which leads to apoptotic cell death [121]. Anticancer drug-induced
apoptotic death in gastric cancer cells proceeds by caspase-dependent and -independent
pathways [122], as protease inhibitors partially block the internucleosomal DNA ladder
but not the release of Cyt c. In addition, combination therapy with anticancer drugs
and antisense (AS) Bcl-2 enhanced the therapeutic effect by downregulating Bcl-2 and
upregulating Bax, activating a caspase cascade that led to apoptotic cell death [123].
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Figure 2. Schematic descriptions of the apoptotic death pathways induced by anticancer drugs in
gastric and breast cancer cells. (A) In gastric cancer cells, anticancer drugs activate c-Jun N-terminal
kinase (JNK)/activator protein 1 (AP-1), induce Bax, release Cyt c, and activate the caspase cascade
leading to apoptotic cell death via an intrinsic pathway. AP-1 activation is involved in growth arrest-
and DNA damage-inducible gene 153 (Gadd153) induction. Induced Bax and B-cell lymphoma (Bcl)-
xS interact to promote this death, which involves caspase-dependent and -independent pathways.
Combination therapy with anticancer drugs and antisense (AS) Bcl-2 enhances the therapeutic effect
by downregulating Bcl-2 and upregulating Bax, activating a caspase cascade leading to apoptotic
cell death. (B) In breast cancer cells, anticancer drugs activate extrinsic pathways via death receptor
(DR)4/5 and Fas, leading to the activation of caspase-8 and Bax, release of Cyt c, activation of the
caspase cascade, and ultimately apoptotic cell death. In drug-resistant cells, anticancer drugs block
extrinsic pathways but activate intrinsic pathways involving the induction of Bax, Cyt c, and the
caspase cascade, leading to apoptosis. Combination therapy with anticancer drugs and AS Bcl-
2 enhances therapeutic efficacy through the downregulation of Bcl-2 and phosphorylated (p)Akt
and upregulation of Bax, which activates the caspase cascade and leads to apoptotic cell death.
Abbreviations: Casp, caspase; UPR, unfolded protein response; ER endoplasmic reticulum. This
figure was custom-made by Wiley Editing Services based on our freehand drawing.

In breast cancer cells, anticancer drug treatment activates the extrinsic pathway via
DR4/5 and Fas-mediated caspase-8, which, in combination with the activation of the intrin-
sic pathway by Bax induction, Cyt c release, and caspase cascade, leads to apoptosis [124].
In drug-resistant breast cancer cells, the activation of the extrinsic pathway by caspase-8
via DR4/5 and Fas was inhibited and the activation of the intrinsic pathway by Bax, Cyt
c release, and the caspase cascade was induced, suggesting that resistance to apoptotic
signaling pathways is regulated independently [124]. Combination therapy with anticancer
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drugs and AS Bcl-2 enhanced therapeutic efficacy through the downregulation of Bcl-2 and
pAkt and upregulation of Bax, which activated the caspase cascade leading to apoptotic
cell death [125,126].

4.3. Crosstalk with Mitochondria and ER Pathways and the Role of GADD153

Anticancer agents induce ER stress, to which cancer cells respond via two pathways
leading ultimately to survival or death. In the case of survival, cancer cells contribute
to the acquisition of anticancer drug resistance [127]. Solid tumor cells are exposed to
ER stress due to hypoxia and glucose starvation in the tumor microenvironment, which
activates the unfolded protein response (UPR) [128]. This response is mediated by three
sensors in the membrane that detach from the sensor inhibitor chaperone protein, glucose-
regulated protein 78 (GRP78), upon ER stress: inositol-requiring 1 (IRE1), double-stranded
RNA-activated protein kinase-like ER kinase (PERK), and activating transcription factor 6
(ATF6) [128]. IRE1 are activated by ER inhibitors such as tunicamycin and thapsigargin
and lead to apoptotic cell death when ER damage exceeds a certain threshold. The IRE1
signaling pathway mediates the activation of caspase-12, which is synthesized as an inactive
proenzyme and activated only in response to ER stress, via IRE1’s recruitment of TRAF2
to interact with it, forming the IRE1/TRAF2/caspase-12 complex, which in turn is linked
to the activation of caspases 9 and 3 in the mitochondrial signaling pathway [129]. JNK
is activated following this TRAF2 recruitment and phosphorylates and inactivates Bcl-
2, inducing apoptotic cell death. JNK induces and phosphorylates Bim through IRE1
activation in ER stress-induced apoptosis [130]. The activation of caspase-9 by ER stress
occurs without the release of Cyt c and Apaf-1, suggesting that caspase-12 is the direct
trigger of caspase-9 activation leading to apoptotic cell death [131]. However, other studies
have revealed a link between mitochondria and ER-induced cell death, suggesting that
caspase-12 accumulates apoptosis-promoting small molecules such as Smac/DIABLO and
Omi/HtrA2 in the cytoplasm and plays important roles in caspase activation and the
countering of IAPs [132].

Unresolved excessive anticancer drug-induced ER stress causes structural changes in
the ER membrane via Bax and Bak, allowing Ca2+ to migrate into the cytosol, increasing
the cytosolic Ca2+ level, and activating calpain, a Ca2+-dependent cysteine protease [133].
Subsequently, calpain cleaves procaspase-12 and activates the caspase cascade. Increased
cytosolic Ca2+ induces MOMP, resulting in the release of Cyt c, which in turn activates
apoptosomes via Apaf-1, causing apoptosis. Caspase-12 is the only caspase that has
been associated with ER-mediated cell death. Upon activation, it is released into the
cytoplasm and cleaves procaspase-9. Despite the absence of functional caspase-12 in most
humans [134], ER stress-mediated apoptosis is common in human neurodegenerative
diseases [135].

The transcription factor GADD153 plays an important role in the regulation of ER
stress-induced cell death, as Gadd153-deficient cells are resistant to such death [136].
Gadd153 transcription is increased in response to ER stress, and Gadd153 overexpression in-
duces cell cycle arrest and apoptotic cell death [137]. ER stress activates PERK/ATF4, IRE1,
and ATF6 after dissociation from GRP78. Gadd153 is induced by the heterodimerization
of ATF4 and C/EBP-β and regulates Bcl-2 family proteins such as Bcl-2 and Bax [138,139].
It suppresses Bcl-2 expression by dimerizing with CREB, and Akt/CREB dimerization
induces Bcl-2 expression [49,139]. The suppression of Bcl-2 and induction of proapoptotic
proteins by Gadd153 may increase the susceptibility of cancer cells to the mitochondria-
dependent apoptotic pathway. The inhibition of Bcl-2 by Gadd153 depletes intracellular
glutathione, which generates ROS [139]. ER stress-induced apoptotic cell death via Gadd153
involves mitochondria-dependent and -independent pathways. Gadd153 is involved in
suppressing neuronal death caused by cerebral ischemia, and the induction of its expression
by DNA damage is part of the ER stress response to cell death, but this process depends on
the death trigger and cell type [140].
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Gadd153 expression is induced by the activation of JNK/AP-1, which dimerizes with
c-Jun to promote apoptotic cell death in response to ER stress. JNK/AP-1 activation in
response to DNA damage activates Bax/Bak, which in turn increases MOMP and activates
a caspase cascade leading to apoptosis [141]. Docetaxel treatment increases AP-1 binding
activity and induces Gadd153 expression, leading to apoptotic cell death in gastric cancer
cells [118], and the induction of Gadd153 expression sensitizes calls to anticancer agents
such as VP-16 and cisplatin, leading to apoptosis via the coactivation of Bax and JNK
and the downregulation of Bcl-2 [119]. The induction of Gadd153/c-Jun expression by
anticancer drugs has been associated with enhanced drug sensitivity and apoptotic cell
death in vitro and in vivo in a variety of human cancer cells: cisplatin in ovarian [142–144],
melanoma, and head and neck cancer cells [142,145]; PTX in ovarian cancer cells [142];
VP-16 in leukemia cells [146]; 5-fluorouracil and cisplatin in gastric cancer cells [147]; and
doxorubicin in breast cancer cells [148]. The relationship of Gadd153/c-Jun activation to
drug sensitivity is summarized in Table 2.

Table 2. Associations between Gadd153/c-Jun increase and anticancer drug sensitivity in human
cancer cells.

Anticancer Drug Cell Line/Origin/Xenograft,
Clinical Sample

Gadd153/c-Jun Expression
and Others

Drug Sensitivity
Correlation

Apoptosis
Correlation

Clinical
Response

Correlation
Year [Ref.]

CDDP
Ovarian carcinoma 2008 cells/
Melanoma and head and neck

xenografts

Increase in Gadd153
mRNA/ND

Increase in vitro and
in vivo ND NA 1994 [142]

CDDP, PTX Ovarian carcinoma 2008 cells Increase in Gadd153
mRNA/ND Increase in vitro ND NA 1996 [143]

CDDP Ovarian carcinoma 2008 cells
and resistant subclones

Increase in Gadd153 mRNA
in sensitive cells/no

significant difference in
maximum expression of

c-Jun mRNA

Increase in vivo ND NA 1997 [144]

VP-16 U937, HL-60/
leukemic cells Increase in Gadd153 mRNA Increase in vitro Yes NA 1997 [145]

CDDP

UMSCC10b/
head and neck carcinoma

cells/
stage III/IV head and neck

cancer

Increase in Gadd153 mRNA Increase in vitro and
in vivo ND Yes 1999 [146]

5-FU, CDDP
TMK-1, MKN-45, 74/gastric

cancer cells/stage IIIB/IV
advanced gastric cancer

Increase in Gadd153 and
c-Jun mRNA

Increase in vitro and
in vivo ND Yes 2007 [147]

DOX, tunicamycin
4T1 mouse and MDA-MB-
468/triple-negative breast

cancer cells

Increase in Gadd153/CHOP
protein associated with

GRP78

Increase in vitro and
in vivo Yes NA 2014 [148]

Abbreviation: Gadd153 = growth arrest- and DNA damage-inducible gene 153; ref. = reference; CDDP = cisplatin;
ND = not done; NA = not applicable; PTX = paclitaxel; VP-16 = etoposide; 5-FU = 5-fluorouracil;
DOX = doxorubicin; CHOP = CCAAT/enhancer-binding protein homologous protein; GRP78 = glucose-regulated
protein 78.

4.4. A Summary Model Featuring the Central Role for JNK/c-Jun/AP-1 Signaling Pathways

The above description of signaling pathways involved in the death of drug-sensitive
and -resistant tumor cells is summarized in Figure 3. Central to all is the activation
of the JNK/c-Jun/AP-1 signaling pathways. DNA and microtubule damage caused by
anticancer drugs activates JNK, which in turn activates the c-Jun/AP-1 signaling pathway
and induces target genes such as Bax/Bak and Fas L, resulting in apoptotic cell death via the
activation of the caspase cascade. JNK phosphorylates Bcl-2/xL to inactivate its function,
promotes the oligomerization of Bax in apoptosis, and phosphorylates Bcl-2/Beclin-1 to
induce autophagic cell death. It and p53 activate Gadd153, leading to ER-mediated apoptotic
cell death. The JNK/c-Jun/AP-1 pathway plays multifunctional roles in cell proliferation,
differentiation, and death, and is known to be involved in tumor progression and metastasis,
depending on the circumstances. It can result in cell survival or death, depending on the
target gene activated by the magnitude of the death trigger in the tumor microenvironment.
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Figure 3. A summary model for the c-Jun N-terminal kinase (JNK)/c-Jun/activator protein 1 (AP-1)-
mediated signaling pathway in anticancer drug-induced cell death. Anticancer drugs that damage
DNA and tubulin activate JNK, causing c-Jun/AP-1 to dimerize predominantly with Fra-1 and activate
target genes such as Bax/Bak and Fas L, which activate the caspase cascade in an AP-1-dependent
pathway leading to apoptotic cell death. JNK phosphorylates and inactivates antiapoptotic proteins
such as B-cell lymphoma (Bcl)-2 and Bcl-xL, which in turn activate Bax and cause apoptotic cell death.
JNK also activates growth arrest- and DNA damage-inducible gene 153 (Gadd153), which is induced
by AP-1-dependent and -independent pathways in endoplasmic reticulum (ER)-mediated cell death.
ER stress and p53 induction by anticancer drugs activates Gadd153 and causes ER-mediated cell
death. JNK phosphorylates Beclin-1, dissociates from Bcl-2, and induces autophagic cell death. The
JNK-mediated upregulation of autophagy-related genes (ATGs) involves the AP-1 transcription factor
complex. In response to DNA damage, JNK mediates apoptosis by phosphorylating p53, stabilizing
p73, dimerizing p53 and p73, and promoting the expression of proapoptotic target genes such as
Bax and Puma. Abbreviations: VBL, vinblastine; PTX, paclitaxel; DTX, docetaxel; UV, ultraviolet;
RT, radiation therapy; UPR, unfolded protein response; IRE1, inositol-requiring 1; PERK, protein
kinase-like ER kinase; ATF6, activating transcription factor 6; CHOP, CCAAT/enhancer-binding
protein homologous protein; DR, death receptor; DISC, death-induced signaling complex; Mcl-1,
myeloid cell leukemia 1. This figure was custom-made by Wiley Editing Services based on our
freehand drawing.

5. Therapeutic Implications of the Modification of Signaling Pathways Leading to
Cell Death
5.1. Cell Death-Related Gene Targeting

Based on the above considerations, one can conceive of the introduction of apoptotic
genes or the inhibition of antiapoptotic genes to promote apoptotic cell death, all to enhance
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the therapeutic effects of anticancer drugs. Preclinical studies have shown that the transfec-
tion of proapoptotic genes such as wild-type p53, Bax, and Gadd153 into esophageal and
gastric cancer cells increases their sensitivity to anticancer drugs [119,121,149]. However, a
major obstacle to the progression to clinical trials is that no safe, specific, and efficacious
means of target gene introduction using a virus or non-viral vector has been established.
Antisense (AS) Bcl-2 oligonucleotides and small-molecule BH3 domain mimetics that func-
tion as Bcl-2/Bcl-xL inhibitors have been employed for the inhibition of antiapoptotic genes
such as Bcl-2 in preclinical and clinical trials [150,151]. These have demonstrated some
clinical efficacy against hematological malignancies and melanoma, but not against solid
tumors such as breast and gastrointestinal cancers [152]. Several clinical trials have failed
due to the adverse effects and limited efficacy of these approaches, despite the potential
of this technology in cancer treatment. The targeting of apoptosis-related genes has so far
generally failed to advance to the clinical setting as expected and remains aspirational but
encouraged by the recent FDA approval of the Bcl-2-specific inhibitor venetoclax for the
treatment of chronic lymphatic leukemia (CLL) and acute myeloid leukemia (AML) [153].
Venetoclax was developed as a BH3-mimetric drug, a highly selective Bcl-2 inhibitor that
induces apoptosis in Bcl-2-expressing hematological malignancies [154]. Venetoclax was
highly effective in patients with relapsed or refractory CLL, and the combination of veneto-
clax with the anti-CD20 monoclonal antibody, rituximab, resulted in complete remissions
in 51% of CLL patients and disease-free survival for up to 2 years after completion of
therapy [155]. A phase II clinical trial in high-risk relapsed/refractory AML patients treated
with venetoclax showed complete response/complete response with incomplete blood
recovery in 19% of patients [156]. The clinical benefits of venetoclax are promising not only
when used as a monotherapy but also in combination with anticancer drugs as standard
therapy. On the other hand, navitoclax, the first BH3-mimetic drug to inhibit Bcl-2, Bcl-xL,
and Bcl-W, showed clinical efficacy in CLL patients in clinical trials, but because platelet
survival is dependent on Bcl-xL, dose-limiting thrombocytopenia has hampered drug de-
velopment in the clinical setting [157]. Thus, currently, the clinical use of Bcl-xL specific
inhibitors is not approved due to their on-targeted toxicity to platelets. Several Mcl-1 spe-
cific inhibitors have entered clinical trials, but because Mcl-1 is critical for cardiomyocyte
survival, these trials have been halted due to on-targeted cardiac toxicity [158,159].

Efforts have been made to enhance the therapeutic effects of anticancer drugs by
inhibiting autophagy. Although preclinical studies of autophagy-inhibiting quinolones and
hydroquinone have shown therapeutic effects, the results of clinical trials conducted with
such inhibitors are inconclusive [160]. Findings suggest that the inhibition of autophagy
alone does not necessarily enhance the therapeutic effects of inhibitors used alone or in
combination with anticancer agents. Whether the induction or inhibition of autophagy
enhances the therapeutic effects of anticancer drugs in terms of apoptotic cell death remains
a matter of debate, given the abundance of contradictory data obtained with the use of
different triggers and cancer cell types [161].

5.2. Interplay of Drug Resistance Factors in Resistant Cancer Cells

Efficient means of regulating and manipulating the multiple factors contributing to
anticancer drug resistance (i.e., efflux pumps, detoxification and target enzymes, and
cell death signaling) to overcome this resistance or restore drug sensitivity remain to be
elucidated. Anticancer drug treatments lead to the activation of the PERK/eukaryotic
initiation factor 2α (eIF2α)/CHOP signaling pathway in response to ER stress; when
signaling does not lead to cell death, however, increased ABCC1/MRP expression has been
observed in ER stress-resistant breast cancer cells [162]. Furthermore, the transcription
factor C/EBP-β was found to activate ABCB1/P-glycoprotein in breast cancer cells [163].
These findings suggest that survival signaling via ER stress in drug-resistant cells results
in crosstalk with the induction of other resistance factors, such as drug efflux pumps.
However, the drug resistance of ABCC1/MRP-overexpressing epidermoid carcinoma
cells was found to be due to both reduced drug accumulation and Bcl-xS expression
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during apoptotic cell death [164]. Drug sensitivity was partially restored to these cells
by Bcl-xS transduction, with no effect of the decreased accumulation of vincristine and
doxorubicin [164]. These findings suggest that apoptosis-inducing signals and drug efflux
pumps interact independently in resistant cells. The interaction of these factors and drug-
targeting enzymes needs to be elucidated to determine their effects on each other and
the extent of independent functioning. At least one resistance factor can be modulated
independently to partially restore the drug sensitivity of resistant cells, but the acquisition of
one drug resistance factor may lead to the acquisition of others, resulting in a multifactorial
phenotype of resistance. Consistent with this concept, we demonstrated that resistance
to apoptotic cell death induced by VM-26 was accompanied by attenuated c-Jun/AP-1
activation and a lack of DNA damage-induced responses by constitutively mutant p53 in
the apoptotic signaling pathway in atypical multidrug resistance (at-MDR) leukemia cells
with altered topoisomerase IIα [115,165]. Figure 4 is a schematic interpretation of drug
resistance factor interactions. Finally, any role(s) of such ABC transporters in the clinical
resistance of patients’ tumors to anticancer drugs must be tempered by the fact that there is
little compelling evidence that they are responsible for this clinical phenomenon [166].
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Figure 4. A model for the interaction of drug resistance-related factors in drug-resistant cancer
cells. (A) Altered signaling pathways for apoptotic cell death mediated by c-Jun N-terminal kinase
(JNK)/activator protein 1 (AP-1) and mutant p53 (mp53) in lymphoblastic leukemia cells with atypical
multidrug resistance (at-MDR). at-MDR is defined by the mutation and reduced expression of topoi-
somerase IIα (Topo IIα) without drug efflux pump overexpression. Teniposide (VM-26) treatment
suppresses c-Jun/AP-1 activation in proportion to the degree of drug resistance. Activated AP-1 con-
sists of a c-Jun/Fra-1 dimer in drug-sensitive cells and c-Jun/Fra-2 and, to a lesser extent, c-Jun/Fra-1
dimers in drug-resistant cells. mp53 induction is more stable and the DNA damage-induced p53
response is attenuated after VM-26 treatment in resistant cells compared with those in sensitive cells.
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In resistant cells, alterations in apoptotic cell death signaling pathways and target enzymes are
regulated independently. (B) Alteration of apoptotic cell death signaling pathways upon the reduc-
tion in the proapoptotic protein B-cell lymphoma (Bcl)-xS in ABCC1/multidrug resistance protein
(MRP)-overexpressing epidermoid carcinoma cells. The introduction of Bcl-xS promotes apoptotic
cell death and partially restores drug sensitivity in resistant cells without affecting the reduction
in drug accumulation. The attenuation of the apoptotic cell death pathway via the reduction in
Bcl-xS expression and drug accumulation by MRP are regulated independently in resistant cells.
Abbreviations: DOX, doxorubicin; VCR, vincristine. This figure was custom-made by Wiley Editing
Services based on our freehand drawing.

5.3. Targeting the UPR Pathway and Immune Activation

In general, a mild and chronic ER stress-induced UPR leads to tumor progression and
drug resistance, a terminal or threshold-exceeding UPR leads to ER-mediated cell death,
and a below-threshold UPR does not promote the acquisition of drug resistance [61]. To
enhance the therapeutic effect against various types of cancer and non-cancerous diseases,
the use of several inhibitors with small molecules targeting ER sensors such as IRE1, PERK,
and ATF6 (in combination with anticancer drugs in the case of cancer) has been investigated
in preclinical and clinical studies [167,168]. As the UPR signaling pathways mediated by
these three sensors are interconnected, the inhibition of one is promptly compensated
by another. Thus, the inhibitor target according to the cancer type and the timing of
administration to cancer cells, as well as the specificity and toxicity of such approaches,
need to be elucidated.

The relationship between antitumor immune activation and the UPR is another im-
portant factor. Antitumor immune activation via ICD induced by anticancer drugs such as
anthracyclines plays a crucial role in the elimination of cancer cells [169]. ICD is character-
ized by spatiotemporal surface rearrangements of danger molecules and DAMPs that occur
simultaneously with cell death. DAMPs are endogenous molecules that have housekeeping
functions in unstressed cells but act as danger signals sensed by the immune system when
exposed to cellular stress or injury [170]. They stimulate the adaptive immune system by
binding to homologous receptors on innate immune cells such as dendritic cells (DCs), elic-
iting tumor antigen-specific CD8 T cell-mediated immune responses, thereby eliminating
residual cancer cells and establishing immunological memory. The major DAMPs associ-
ated with ICD include calreticulin (CRT), ATP, and high mobility group box 1 (HMGB1).
The UPR sensor transports key DAMPs such as CRT and ATP to ICD-stressed cancer cell
surfaces, alerting the immune system. Three modules are activated simultaneously upon
such exposure of CRT in response to the ICD inducers anthracycline and PTX: (i) the ER de-
cay kinase PERK is activated, causing the phosphorylation of the translation initiation factor
eIF2α, followed by the partial activation of caspase-8; (ii) caspase-8-mediated cleavage of
the ER protein B-cell receptor-associated protein 31 and structural activation of Bax and Bak
occur; (iii) and Golgi passage of CRT pools occurs via soluble N-ethylmaleimide-sensitive
factor activating protein receptor-dependent extravesicular secretion [171]. ATP is secreted
by annexin 1 and lysosome-dependent mechanisms. Although the UPR is mechanistically
linked to exposure to danger signals from stress-killed cancer cells, the choice of transport
mechanism utilized by ICD-induced factors is determined by intracellular damage and the
stress pathways. Nevertheless, ICD improves the low immunogenicity of tumor cells in the
tumor microenvironment, and the release of large amounts of DAMPs such as CRT, ATP,
and HMGB1 during ICD induction activates the ICD signaling pathway, in turn promoting
DC maturation and activating cytotoxic T lymphocytes (CTLs); thus, antitumor effects
are enhanced. ICD occurs in association with autophagy, ferroptosis, pyroptosis, and
necroptosis and promotes antitumor immunity [100]. The UPR and immune activation
described above are summarized in Figure 5.
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Figure 5. Molecular mechanisms of immunogenic cell death and tumor-specific immune activation
via unfolded protein response (UPR) activation by anticancer drugs. When anticancer drugs are
administered, cancer cells exceed the UPR threshold to the point of lethality, activating the double-
stranded RNA-activated protein kinase-like ER kinase (PERK) and inositol-requiring 1 (IRE1) signaling
pathways and activating transcription factor 4 (ATF4) and growth arrest- and DNA damage-inducible
gene 153 (Gadd153)/CCAAT/enhancer-binding protein homologous protein (CHOP) induction, which
in turn downregulates X-linked inhibitor of apoptotic protein (XIAP), decreasing antiapoptotic and
increasing proapoptotic B-cell lymphoma 2 (Bcl-2) protein expression, leading to cell death. In this
process, dying cancer cells externalize calreticulin (CRT) to the membrane surface and release damage-
associated molecular patterns (DAMPs) such as ATP, annexin 1, and high mobility group box 1 (HMGB1)



Cancers 2024, 16, 984 19 of 31

for immune activation. Dendritic cells (DCs) are recruited and activated by the secretion of ATP that
binds to P2RY2 and P2RX7 receptors. They are then homed by the binding of released annexin 1 to
formyl peptide receptor 1 (FPR1). CRT stimulates the phagocytosis of dying cancer cells by binding
to CD91 receptors on DCs. HMGB1 release stimulates DC recruitment via binding to receptor for
advanced glycation end products (RAGE) receptors and induces DC maturation via toll-like receptor
4 (TLR4) signaling. Mature DCs migrate to lymph nodes, where they cross-prime and cause the clonal
expansion of T cells, including interleukin 12 (IL-12) and type I interferon (IFN). IFN-γ-producing
T cells are recruited and exert cytotoxic responses to eradicate cancer cells. Tumor antigens (TAs)
released from dying cells are taken up by immature DCs, which then activate and mature. TAs and
tumor-associated antigens (TAAs) are processed in mature DCs and presented to CD8+ T cells as
major histocompatibility complex I (MHC I) molecules, generating cytotoxic T lymphocytes (CTLs)
for tumor-specific immune responses. This figure was custom-made by Wiley Editing Services based
on our freehand drawing.

5.4. Enhancement of Drug Sensitivity via Molecular Therapies Targeting Tumor Growth and
Antitumor Immunity

Drug sensitivity is conferred by multiple factors with altered signaling pathways
leading to the death of drug-resistant cells. Drug efficacy can be enhanced with therapies
targeting molecules involved in tumor growth. Several molecular therapies targeting
human epidermal growth factor receptor 2 (HER2) and cyclin-dependent kinases 4 and
6 (CDK4/6) have improved the efficacy of breast cancer treatment and the breast cancer
survival rate [172,173]. The clinical indication for the anti-HER2 antibody trastuzumab
has been expanded to gastric cancer [174]. A next-generation antibody–drug conjugate
(ADC) in which trastuzumab is combined with the topoisomerase I inhibitor deruxtecan (T-
DXd) has demonstrated remarkable therapeutic efficacy against HER2-positive advanced
metastatic breast cancer that is refractory to conventional HER2-targeting drugs [175].
This therapeutic effect has also been observed in patients with metastatic breast cancer
with low or no HER2 expression [176,177], possibly because T-DXd, a topoisomerase I
inhibitor, is not cross-resistant to previously administered drugs such as anthracyclines,
taxanes, and HER2-targeting agents. When trastuzumab binds to HER2-expressing tumor
cells, T-DXd is internalized and the payload is released into cancer cells, penetrating
neighboring cancer cells that do not express HER2 through a bystander effect, while
circulating HER2-expressing tumor cells also release deruxtecan and remained stable
in the periphery [178,179]. This process can cooperate with the activation of natural
killer (NK) cells through antibody-dependent cellular cytotoxicity interactions, thereby
exerting a therapeutic effect at the tumor site. The nature of interaction between tumor and
peripheral sites in the therapeutic response of HER2-expressing tumor cells is unknown.
The clinical application of T-DXd has been extended to the standard treatment of advanced
metastatic gastric cancer and HER2-expressing/mutated non-small cell lung cancer in the
United States [180,181]. Clinical trials are also being conducted to evaluate the therapeutic
efficacy of T-DXd against other advanced solid tumors, including ovarian, pancreatic,
cholangiocarcinoma, and bladder cancers. Furthermore, the HER3-targeting patritumab–
deruxtecan (HER3-DXd) conjugate has shown beneficial activity against hormone receptor
(HR)-positive/HER2-negative breast cancer [182]. Another molecularly targeted ADC is
sacituzumab govitecan, which consists of the anti-trophoblast antigen 2 (Trop-2) antibody
sacituzumab and the topoisomerase I inhibitor SN-38 [183]. Trop-2 is a cell surface protein
involved in tumor progression and metastasis that is expressed strongly in, for example,
breast and lung cancer cells [181]. Treatment with sacituzumab govitecan was shown to
improve the survival of patients with metastatic triple-negative breast cancer compared
with physicians’ choice of chemotherapy [184]; a similar survival benefit was observed for
patients with metastatic HR-positive/HER2-negative breast cancer, regardless of the Trop-2
expression level [185].
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The use of the CDK4/6 inhibitors palbociclib [186], ribociclib [187], and abemaci-
clib [188] as first- or second-line therapy confers survival benefits for patients with HR-
positive/HER2-negative advanced breast cancer. The postoperative adjuvant use of abe-
maciclib in combination with endocrine therapy (ET) has been shown to benefit survival,
regardless of neoadjuvant chemotherapy, in patients with node-positive high-risk breast
cancer [189]. Postoperative adjuvant ribociclib treatment for HR-positive/HER2-negative
early breast cancer is currently being evaluated in a phase III trial. CDK4/6 inhibitors
restore the efficacy of ET, thereby enhancing therapeutic efficacy against HR-positive/HER2-
negative breast cancer. The modulation of antitumor immunity via the abemaciclib-induced
activation of CTLs may also contribute to the eradication of residual tumor cells after surgi-
cal treatment [190].

Cancer stem cells (CSCs) have been hypothesized to regulate tumor growth hierarchi-
cally and resist anticancer drugs in the tumor microenvironment [191]. As drug-resistant
cells and CSCs are highly mutated and dynamically regulated by tumor microenvironmen-
tal factors, especially epigenetic and genetic changes, the characteristics of their resistance
factors may overlap. CSCs play important roles in cancer cell survival and tumor growth
by being maintained as drug-resistant cells or dormant cells [192]. Regardless of the mech-
anism by which they arise, their successful elimination by drug molecular targeting and
antitumor immune activation can improve therapeutic efficacy and potentially cure can-
cer [193]. CSCs have several cancer type-specific cell differentiation markers; they form
heterogeneous populations with ambiguous, dynamic biology in the contexts of tumor
progression and the microenvironment [192]. Specific targeted therapies against prolifera-
tive signaling pathways such as Wnt/β-catenin, Hedgehog, and Notch do not eliminate
CSCs or effectively improve therapeutic efficacy in terms of inhibitor specificity or low
toxicity [194].

Whether the HER2-signaling pathway of tumor growth is involved in the initiation
and progression to CSCs is unknown; cluster of differentiation (CD)44highCD24lowHER2low

breast CSCs respond poorly to trastuzumab alone, but the combination of trastuzumab
and pertuzumab is effective against these cells [195]. HER2low-expressing tumor cells at
peripheral sites may have CSC characteristics. This possibility is consistent with the finding
that pathological complete response after neoadjuvant chemotherapy is a prognostic factor
for patients with HER2-overexpressing breast cancer, but it is not a surrogate marker
for event-free survival or overall survival, which depends on the tumor size and nodal
status [196,197]. T-DXd may contribute to the elimination of CD44highCD24lowHER2low

breast CSCs and cure breast cancer. In addition, significant immune activation by CDK4/6
inhibitors and other anticancer drugs may play an important role in the elimination of
minimal residual disease, including breast CSCs after surgical treatment.

Although ICD induces antitumor immune responses via the activation of T and NK
cells, effective immune activation after anticancer therapy is not due simply to immuno-
suppressive networks in the tumor microenvironment [198]. In an immunosuppressive
process, programmed cell death ligand 1 (PD-L1) in tumor cells binds to programmed
cell death-1 (PD-1) in CTLs, preventing their attack. Normally, PD-L1 is expressed on
antigen-presenting cells (APCs) and interacts with PD-1 on T cells to reduce CTL activity
in the immune response; that expressed on tumor cells inhibits the interaction between T
cells and APCs, resulting in the evasion of CTL attack [199]. This immune evasion can be
blocked by the action of anti-PD-1 or anti-PD-L1 antibodies in the interaction between T
and tumor cells. Another immunosuppressant is the cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) molecule, which is recruited from the cytoplasm to the T-cell membrane
as a form of immune synapse. CTLA-4 competes with CD28 to bind ligands on APCs
but shows greater affinity for B7 family ligands, unbinding CD28 and CD80/86. When
CTLA-4 binds to ligands on APCs (CD80–B7-1 and CD86–B7-2), the T-cell response is
inhibited, T-cell proliferation is suppressed, and cytokine secretion is reduced, comprising
immunosuppression. In addition, high levels of CTLA-4 functionally reprogram helper
T cells into regulatory T cells with potent immunosuppressive properties. Anti-CTLA-4
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antibodies restore the suppression of the immune response and enhance T-cell activity by
inhibiting the competitive response of CTLA-4 [200].

The development of ICIs using anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies has
improved the therapeutic outcomes of anticancer drug treatments for various advanced
metastatic tumors [198]. The use of dual ICIs (containing anti-PD-1 or anti-PD-L1 and
anti-CTLA-4 antibodies) with or without other therapies increases drug-related adverse
events, but its therapeutic effects against melanoma and non-small cell lung cancer have
been studied [201]. The management of such events [202]; the exploration of predictive
factors such as the tumor mutational burden, DNA damage response pathways, the tumor
immune microenvironment, PD-L1 expression, circulating tumor cells, and microbiota [203];
and the elucidation of ICI resistance mechanisms such as tumor immunogenicity, tumor
microenvironmental factors, antigen presentation, and the immune response [204] are
necessary to improve treatment efficacy. In addition, several molecular targeting agents
have been developed using antibodies, ADCs, and small molecules that inhibit tumor
growth signaling. These approaches have the potential to break through partial drug
resistance and increase survival rates for patients with cancer [205]. The contents of this
session are summarized in Figure 6.
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drug conjugate (ADC) products, including topoisomerase I (Topo I) inhibitors such as trastuzumab
deluxecan (T-DXd) and patritumab deluxecan (HER3-DXd), have considerable antitumor effects in
patients who have undergone HER2-targeted therapy. These ADCs are internalized into cancer cells
and release Topo I inhibitors that are not cross-resistant to anthracyclines and taxanes, leading to
cell death. The released payload penetrates adjacent cancer cells through a bystander effect. The
ADC sacituzumab govitecan targets trophoblast antigen 2 (Trop-2), a surface protein bound to the
Topo I inhibitor SN-38, which is released intracellularly and extracellularly. Cell cycle inhibitors
targeting cyclin-dependent kinase 4/6 (CDK4/6) in the G1–S phase transition have shown promise
when used in combination with endocrine therapy for patients with hormone receptor (HR)-positive
HER2-negative breast cancer. The development of cancer stem cells (CSCs) with persisting drug
resistance is a major obstacle in chemotherapy. CSC-targeting therapies, which target several sig-
naling pathways involved in cancer survival, may be employed effectively in combination with
conventional therapy to eradicate residual tumor cells for the curing of cancer. The combined use of
anticancer drugs and immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1),
anti-programed cell death ligand 1 (PD-L1), and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4)
antibodies, enhances therapeutic efficacy by increasing antitumor immune activity. Abbreviations:
MHC, major histocompatibility complex; TCR, T-cell receptor; APC, antigen-presenting cell. This
figure was custom-made by Wiley Editing Services based on our freehand drawing.

In clinical practice, neoadjuvant therapy, adjuvant therapy, and anticancer drug ther-
apy for metastatic cancers are being delivered according to evidence-based regimens, which
provide an opportunity for shared decision-making with cancer patients. However, depend-
ing on the patient’s condition and background, it is necessary to select the most appropriate
therapy for each individual patient. It is also necessary to consider the molecular mecha-
nisms of cell death, activation of antitumor immune response, and adverse events caused
by anticancer drugs, and to use molecular targeted drugs in terms of prolonged survival
and curative effect for cancer patients. Regarding this latter point, we hope that this re-
view will help stimulate future therapeutic considerations that will eventually translate to
clinical practice.

6. Conclusions

Our goal in this review was to summarize the many different factors that contribute
to the resistance of tumor cells to therapy, focusing on the central role of JNK/c-Jun/AP-1
signaling in this phenomenon, signaling that leads to cell death. The diversity of and
variation in the signaling pathways of anticancer drug-induced cell death varies among
cancer types. However, the activation of apoptotic and non-apoptotic cell death may be a
common overlapping pathway for such death. Because of clinical limitations affecting the
modification of cell death signaling pathways via the external delivery of target molecules
such as antisense molecules and viruses, new drugs that molecularly target growth factor
receptors and immune checkpoints, as well as drugs without cross-resistance, are expected
to enhance the efficacy of chemotherapy. Successful initial trials and the introduction
of new agents for advanced metastatic cancer will lead to the development of curative
adjuvant therapy.

Although the development of anticancer drugs and molecular targeted therapies has
improved the survival rates of patients with cancer who undergo adjuvant and neoadjuvant
therapies, recurrence still occurs, even after curative resection and adequate chemotherapy,
due to the emergence of drug-resistant cancer cells and the survival of cancer stem cells
(CSCs). Strategies for complete tumor elimination depend on drug sensitivity and antitu-
mor immunity. Increased drug sensitivity results from the use of molecularly targeted and
non-cross-resistant drugs against tumor growth and CSCs, and it is associated with the
activation of antitumor immunity via ICD. However, the initial drug sensitivity and antitu-
mor immunity in the tumor microenvironment are likely to be individually determined
in patients with cancer. Cancer treatment requires the precise individual identification of
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target molecules for the enhancement of these features. As part of personalized cancer
therapy, genomic analysis may reveal predictive factors and lead to the identification of
drugs that will work for individual patients. A new approach to the development of mRNA
vaccines for personalized antitumor immune activation, used for the 2019 coronavirus
vaccine, is the administration of mRNA with neoantigens for individual cancers. Clinical
trials are being conducted to verify the therapeutic efficacy of the use of mRNA vaccines in
combination with ICIs or anticancer drugs. The activation of tumor immunity to eliminate
circulating tumor cells with molecularly targeted drugs, ADCs, ICIs, vaccines, chimeric
antigen receptor-T, and other therapeutic strategies will be the key to breakthroughs in
cancer therapy. Overall, we hope that this review has highlighted a number of nodes in
tumor cells that may be targets for therapeutic intervention to overcome their resistance
to therapy.
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