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Abstract: This article provides an overview of count data and count models, explores zero infla-
tion, introduces likelihood ratio tests, and explains how the Vuong test can be used as a model
selection criterion for assessing overdispersion. The motivation of this work was to create a Vuong
test implementation from scratch using the Python programming language. This implementation
supports our objective of enhancing the accessibility and applicability of the Vuong test in real-world
scenarios, providing a valuable contribution to the academic community, since Python did not have
an implementation of this statistical test.

Keywords: count data; machine learning; negative binomial regression; overdispersion; Poisson
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1. Introduction

Count data analysis is a statistical approach used to analyze data that consist of non-
negative integer values, representing the number of occurrences of a specific event within a
given context. This data type is commonly encountered in various fields, such as biology,
economics, social sciences, and engineering. However, count data pose unique challenges
due to their discrete nature, often exhibiting characteristics such as excessive zeros and
overdispersion [1,2].

Excessive zeros refer to an unusually high number of observations with a count of
zero, which cannot be adequately explained by standard statistical models. They require
specialized techniques to be appropriately accounted for in the analysis to avoid biased
model estimates [3–5]. Overdispersion occurs when the variance of the count data is higher
than expected, indicating that additional sources of variation need to be accounted for
beyond what the basic models can handle [2,6].

To address these complexities and effectively model count-based phenomena, special-
ized statistical models known as count models have been developed. Two commonly used
count models are Poisson regression and negative binomial regression. Poisson regression
is suitable for count data with low variability, assuming that the mean and variance of the
data are equal. However, in cases where overdispersion is present, Poisson regression may
not provide accurate results. Negative binomial regression, on the other hand, allows for
overdispersion and provides a more flexible approach to model counts [7].

In this article, we aim to provide a comprehensive overview of count data analysis
and count models. We explore the concept of zero inflation and its impact on count models,
demonstrating how it can lead to model misspecification if not properly addressed. In
addition, we introduce two statistical tests: the likelihood ratio test (LRT) and the Vuong
test [8]. LRT is used to compare nested models and assess the improvement in model
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fit when additional parameters are added. On the other hand, the Vuong test is a model
selection criterion that compares non-nested models, making it ideal for comparing count
models with and without zero inflation.

Furthermore, the article emphasizes the practicality of our approach by providing
the complete code we created that implements the Vuong test in the widely used Python
programming language. Unlike R, which already has the vuong() function in the pscl
package, and unlike STATA, which has the zip and zinb functions, Python had no imple-
mentation of the Vuong test. Python is renowned for its ease of use and extensive libraries,
making it an excellent choice for data analysts and researchers [9]. By creating a Python
implementation of the Vuong test, we enhance the accessibility and applicability of this
essential model selection technique in real-world scenarios, enabling readers to make in-
formed model selection decisions and perform robust analysis of count-based phenomena
in their projects.

2. Count Data

Count data refers to the observations made about events or items that are enumerated.
More specifically, in the context of statistics, count data refers to the number of occur-
rences of an event within a fixed period. It only contains positive integer values that go
from zero to some greater value, because an event cannot occur a negative number of
times [1,3,10]. Examples of count data include the number of speeding tickets received in
a year, the number of crimes on campus per semester, or the number of trips per year a
person makes.

Following the concept of count data, it is possible to define a count variable as a list or
array of count data [1]. Count variables indicate how many times something has happened,
and can be used as response variables in statistical modeling when the goal is to understand
or predict the factors influencing the count [3,11].

3. Count Models

In simple terms, a statistical model helps us understand how different variables are
related to each other. It provides a mathematical representation of how one variable or a
set of variables can explain or predict another variable. Specifically, when we have a count
variable, the statistical model helps us explain the counts using one or more explanatory
variables [1,12].

Statistical models are considered stochastic because they are based on probability
functions. This means that they take into account the uncertainty and variability inherent
in real-world data. Instead of providing exact predictions or explanations, the model
provides a probabilistic framework that describes the likelihood or probability of different
outcomes [13]. By utilizing statistical models, we can analyze and quantify the relationships
between variables, make predictions, and assess the statistical significance of explanatory
factors. These models allow us to gain insights into the underlying patterns and processes
driving the count variable, accounting for the inherent randomness and variability ob-
served in real-world phenomena. With respect to count data, those statistical models have
applications that exploit the full probability distribution of counts to provide comprehen-
sive predictions. This capability enhances our ability to interpret and utilize count data
effectively in various applications, such as forecasting, risk assessment, resource allocation,
and decision-making [12].

When using count variables in ordinary least squares (OLS) regression, there are po-
tential issues to consider. OLS regression, which has minimal assumptions about predictors,
allows count variables to be used as predictors, with one caveat. If the count variable has
very little variability, which can happen with count data having a small range, the regres-
sion coefficient associated with that predictor becomes unstable and has a large standard
error [14]. It is important to note that this instability is not unique to count predictors—any
predictor with low variability would result in an unstable regression coefficient.
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However, different problems arise when a count variable is used as the outcome or
dependent variable in OLS regression. When the average count value of the outcome
variable is relatively high, OLS regression can generally be applied without significant
difficulty. But when the mean of the outcome variable is low, OLS regression produces
undesirable outcomes, including biased standard errors and significance tests [10].

So, while count variables can be used as predictors in OLS regression with caution,
using count variables as outcome variables in OLS regression can result in inefficient,
inconsistent, and biased estimates. Even though there are situations in which the linear
regression model (LRM) provides reasonable results, it is much safer to employ regression
models specifically designed for count outcomes, as they offer improved statistical power
and appropriately handle the specific characteristics of count data [10,11]. Examples of
such models include Poisson regression, negative binomial regression (NB), and variations
of these models for zero-inflated counts (ZIP and ZINB). These models consider the discrete
nature of count variables, their variability, and the specific statistical assumptions needed
for accurate estimation and inference [6,11].

Generalized linear models offer a versatile method for addressing a wide variety
of response modeling issues. The most frequently used responses are normal, Poisson,
and binomial, but other distributions may also be employed [15,16]. When dealing with
count data, we typically begin by estimating the parameters using a Poisson regression
model because of its simplicity. In this scenario, the dependent variable in a Poisson
regression model should adhere to a Poisson distribution with the mean equaling the
variance [17]. However, this property is frequently violated in empirical research, as it
is common for there to be overdispersion, where the variance of the dependent variable
exceeds its mean. In such instances, we will estimate a negative binomial regression
model [2,18].

4. Poisson and Negative Binomial Models

The Poisson distribution is distinct from the normal distribution in several ways that
make it more appealing for representing the characteristics of count data. Firstly, the Poisson
distribution is a discrete distribution that only assumes probability values for non-negative
integers. This feature of the Poisson distribution makes it an ideal choice for modeling
count outcomes, which can only take on integer values of 0 or more [10]. The Poisson
distribution, for a given observation i, has the following probability of occurrence of a
count m (m = 0, 1, 2, . . .) in a given exposure:

p(Yi = m) =
e−λi .λm

i
m!

. (1)

In (1), λ is the expected number of occurrences or the estimated incidence rate ratio of
the phenomenon under study for a given exposure. In the Poisson distribution, the mean
and variance of the variable under study must be equal to λ. This characteristic is known
as the equidispersion of the Poisson distribution. If this condition is satisfied, a Poisson
regression model can be calculated, which is described as follows:

ln(Ŷi) = ln(λi) = α + β1.X1i + · · ·+ βk.Xki. (2)

In (2), α stands for the constant, β j (j = 1, 2, . . ., k) are the calculated parameters for each
explanatory variable, Xj are the explanatory variables (either metrics or dummies), and
the subscript i denotes each observation in the sample (i = 1, 2, . . ., n, where n is the size of
the sample).

The log-likelihood function, which must be maximized, can be written as:

LL =
n

∑
i=1

[−λi + (Yi).ln(λi)− ln(Yi!)]. (3)
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As previously noted, the data are assumed to have equidispersion. If this is not the
case, a negative binomial regression model could be used for estimation [1]. The NB
distribution uses an additional parameter to model overdispersion. In other words, an
NB-distributed random variable is equivalent to a Poisson random variable with a random,
Gamma-distributed mean, allowing it to model unobserved individual heterogeneity [4].

For a given observation i (i = 1, 2, . . ., n, where n is the sample size), the probability
distribution function of the variable vi will be given by the following:

p(vi) =
δψ.vψ−1

i .e−vi .δ

Γ(ψ)
. (4)

In (4), ψ is called the shape parameter (ψ > 0), δ is called the rate parameter (δ > 0)
and, for ψ > 0 and integer, Γ(ψ) can be approximated by (ψ − 1)!. The log-likelihood
function for the NB2 regression, which must be maximized, can be written as:

LL =
n

∑
i=1

[
Yi.ln

(
ϕ.ui

1 + ϕ.ui
− ln(1 + ϕ.ui)

ϕ

)
+ lnΓ(Yi +ϕ−1)− lnΓ(Yi + 1)− lnΓ(ϕ−1)

]
. (5)

For a more detailed discussion of both the Poisson and NB distributions, see [6,7,19–21].

5. Zero-Inflated Count Data Models

Simply testing for overdispersion and using an NB model may not be enough. It
is important to note that overdispersion can be caused by an excess of zeros in the data,
and this zero inflation may need to be accounted for in the model [4,5].

When data are zero-inflated, it is necessary to modify the Poisson or NB procedure to
prevent incorrect estimation of model parameters and standard errors, as well as incorrect
specification of the distribution of test statistics. Ignoring these misspecifications can lead
to incorrect conclusions about the data and introduce uncertainty into research and practice.
As a result, the use of zero-inflated Poisson (ZIP) and zero-inflated negative binomial
(ZINB) models has grown in popularity across a wide range of fields [22].

According to [23], zero-inflated regression models are considered a combination of a
count data model and a binary data model. They are used to investigate the reasons for
a certain number of occurrences (counts) of a phenomenon, as well as the reasons for the
occurrence (or not) of the phenomenon itself, regardless of the number of counts observed.

Facing this scenario, according to [24], the first step is to address potential overdisper-
sion in the distribution by comparing Poisson versus NB models, using statistical tests such
as the likelihood ratio test (LRT) and the Wald test. The next step is to assess whether the
distribution has an excess of zeros by comparing Poisson versus ZIP or NB versus ZINB
models, using the Vuong test [8]. If the zero-inflated version of the model fits the data
significantly better than the standard model, it is considered evidence that the data contain
an excess of zeros [4].

5.1. Zero Inflated Poisson Models

In the ZIP model, the probability p of observing zero counts for a given observation
i (i = 1, 2, . . . , n, where n is the sample size), or p(Yi = 0), is determined by combining
a dichotomous component with a count component. As a result, the probability Plogiti
of observing zero counts due solely to the dichotomous component must be established.
The probability of observing a specific count m (m = 1, 2, . . . ), or p(Yi = m), is determined
by the probability expression of the Poisson distribution, multiplied by (1 − Plogiti

) [7].
To sum up, for m = 1, 2, . . . , we have the following equations, on which Y ∼ ZIP (λ, Plogiti

):{
P(Yi = 0) = Plogiti

+ (1 − Plogiti
).e−λi ,

P(Yi = m) = (1 − Plogiti
). e−λi .λm

i
m! .

(6)
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It is evident that if Plogiti
= 0, the probability distribution in expression (6) simplifies

to the Poisson distribution, even for instances where Y = 0. In other words, ZIP regression
models have two processes that generate zeros. One is due to the binary distribution, which
generates what are known as structural zeros. The other is due to the Poisson distribution,
which generates count data, including what is known as sample zeros [7].

The log-likelihood function of a ZIP regression model (7) should also be maximized.

LL = ∑
Yi=0

ln
[

Plogiti
+(1−Plogiti

).e−λi

]
+ ∑

Yi>0

[
ln(1 − Plogiti

)− λi+Yi.ln(λi)− ln(Yi!)
]

. (7)

5.2. Zero-Inflated Negative Binomial Models

In the ZINB models, The probability of no counts for a given observation i, or p(Yi = 0),
is also calculated by adding a dichotomous component to a count component. The chance
of a specific count m (m = 1, 2, . . . ), or p(Yi = m), now follows the probability expression
of the Poisson-Gamma distribution [7]. In Equation (8), for m = 0, 1, 2, . . . , Y ∼ ZINB
(ϕ, u, Plogiti

), ϕ represents the inverse of the shape parameter of a given Gamma distribution.

P(Yi = m) = (1 − Plogiti
).
[(

m + ϕ−1 − 1
ϕ−1 − 1

)
.
(

1
1 + ϕ.ui

) 1
ϕ

.
(

ϕ.ui
ϕ.ui + 1

)m]
. (8)

The log-likelihood function of a ZINB regression model (9) should also be maximized.

LL = ∑
Yi=0

ln
[

Plogiti
+ (1 − Plogiti

).
(

1
1 + ϕ.ui

) 1
ϕ
]
+ ∑

Yi>0

[
ln(1 − Plogiti

)+

+ Yi.ln
(

1
1 + ϕ.ui

)
− ln(1 + ϕ.ui)

ϕ

]
+ lnΓ(Yi + ϕ−1)− lnΓ(Yi + 1)− lnΓ(ϕ−1).

(9)

6. Likelihood Ratio Tests for Model Selection: Vuong Test

The decision to use either conventional count regression or zero-inflated modeling
is based on the balance between avoiding overfitting and accurately representing the
empirical features of the data. One way to determine if a zero-inflated model is necessary
is to compare its fit to that of a standard count model. This test is important because
choosing the wrong model can have consequences. If the standard model is chosen when
the zero-inflated model is more appropriate, an important part of the data-generating
process may be overlooked. On the other hand, if the zero-inflated model is chosen when
it is not necessary, the model becomes unnecessarily complicated by adding an extra
equation [25–29].

With this dilemma in mind, researchers commonly use the Vuong test [8] to determine
whether the zero-inflated model fits the data statistically significantly better than count
regression with a single equation. The Vuong test is a method for comparing the fit of
two models to the same data using maximum likelihood. Its purpose is to test the null
hypothesis that the two models fit the data equally well. The models being compared need
not be nested, and one of them does not need to be the correct specification [25–29].

7. Vuong Test Implementation on Python

Python is currently experiencing a surge in popularity as a programming language,
and this can be attributed to several factors. Firstly, Python is known for its ease of use and
accessibility, making it an attractive option for beginners. Additionally, the learning curve
for Python is relatively fast, allowing new users to quickly become proficient. Another
major draw for Python is the vast array of high-quality packages available for data science
and machine learning applications.
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Several libraries in Python already support statistical and econometric analysis, such
as statsmodels [30] and pandas [31]. However, when it comes to general statistics, Python
lags behind the R programming language. As a result, many scientists continue to rely on
R for their statistical analysis [32].

In an effort to make Python more complete for statistical analysis, a gap was identified
in the Vuong test, which currently lacks an implementation in Python. So, we present
a code that implements the Vuong test in Python. In addition, we demonstrate its use
on a database [33]. Other machine learning and deep learning studies have already been
covered in the same journal, such as [34–36].

7.1. Corruption Database

According to [33], in an empirical approach developed for evaluating the role of both
social norms and legal enforcement in corruption by studying parking violations among
United Nations diplomats living in New York City, diplomatic immunity is a privilege that
allows mission personnel and their families to avoid paying parking fines. This was the
case until November 2002. Illegal parking can be considered an act of corruption, as it is
an abuse of power for personal gain. Comparing parking violations by diplomats from
different societies can serve as a measure of the extent of corruption norms or culture.

The data set contains the following information:

1. Country name
2. Code of the country
3. Number of parking violations
4. Number of UN Mission diplomats in 1998
5. Indicator (Yes/No) that the data are before or after the law enforcement
6. Corruption Index (CI) [37]

The data set is organized in a table as presented in Table 1. It contains data from
149 countries, and it has 298 rows, with each country having two rows (one for data before
law enforcement and the other for after law enforcement). Also, the histogram of the data
(counts per number of parking violations) is shown in Figure 1.

Table 1. Data set of corruption-First 10 rows [33].

Country Code Violations Staff Law CI

Angola AGO 50 9 no 1.048
Angola AGO 1 9 yes 1.048
Albania ALB 17 3 no 0.921
Albania ALB 0 3 yes 0.921
UAE ARE 0 3 no −0.780
UAE ARE 0 3 yes −0.780
Argentina ARG 5 19 no 0.224
Argentina ARG 0 19 yes 0.224
Armenia ARM 3 4 no 0.710
Armenia ARM 0 4 yes 0.710

7.2. Code Availability

The Python code that was developed to implement the Vuong test [8] is available in
Appendix A-Code. It is important to execute the following command before running the
code to update the statsmodel version required.

!pipinstallstatsmodels == 0.14.0

7.3. Computational Environment and Analysis Setup

The analysis was conducted on a notebook equipped with an Intel Core i5-1235U pro-
cessor (1.30 GHz, 12 cores, 12 threads), 20 GB of DDR4 RAM, and an Intel IRIS Xe graphics
card. The computer ran Windows 11 as the operating system. Analysis was performed
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using Python 3.11.3 with libraries including NumPy 1.26.3, pandas 2.2.0, statsmodels 0.14.1,
and scipy 1.12.0. No parallelization was utilized, as the algorithm ran efficiently on a
single processor.

Figure 1. Histogram of the data set—counts per number of parking violations.

7.4. Efficiency and Performance of the Algorithm

The algorithm employed in this study is not computationally demanding, as evidenced
by its smooth execution and negligible runtime. It ran effortlessly on the available hardware,
completing its tasks in a remarkably short amount of time.

8. Results

First, a preliminary diagnosis of equidispersion was elaborated (observation of pos-
sible equality between the mean and the variance of the dependent variable ’violations’).
As can be seen in Table 2, the mean (µ) and the variance (σ2) are very distant from each
other. Therefore, there is a preliminary indication of overdispersion.

Table 2. Mean (µ) and variance (σ2)—Number of parking violations.

Parameter Value

Mean (µ) 6.497
Variance (σ2) 331.618

The next step was to estimate the Poisson model, as can be seen in Figure 2. Then, it
was tested whether the data exhibited equidispersion [38]. The test can be seen in Figure 3.
As the p-value of the t-test corresponding to the β parameter of λ is less than 0.05, with a
value of 0.02, it can be stated that the data of the dependent variable present overdispersion,
making the estimated Poisson regression model inadequate. Then, we proceed to estimate
the negative binomial model, as can be seen in Figure 4.
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Figure 2. Poisson regression results.

Figure 3. Equidispersion test.

Figure 4. Negative binomial regression results.

By comparing the log-likelihood (LL) of the Poisson (Equation (3)) and negative
binomial models (Equation (5)), as shown in Figures 2 and 4, we can see that the NB has
a smaller LL than the Poisson. The log-likelihood is close to −567.4 for the NB model,
and close to −2071.79 for the Poisson model.

The next step is to estimate the zero-inflated Poisson model and the zero-inflated NB
model, which can be seen in Figures 5 and 6, respectively.
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Figure 5. ZIP regression results.

Figure 6. ZINB regression results.

By comparing the log-likelihood (LL) of the ZIP (Equation (7)) and ZINB (Equation (9))
models, it is possible to see, in Figure 7, that the ZINB has a smaller LL than ZIP. The
log-likelihood (LL) is close to −557.26 for the ZINB model, and close to −1781.31 for the
ZIP model.

Figure 7. Log-likelihoods: Poisson and negative binomial models.

After analyzing all the models regarding log-likelihood (LL), as can be seen in Figure 7,
it is possible to determine that the ZINB model is the best, considering that its LL is the
highest among all models.

After that, it is possible to apply the Vuong test that was developed to compare the
Poisson model (Figure 2) with the ZIP model (Figure 5) and to compare the NB model
(Figure 4) with the ZINB model (Figure 6).

The algorithm performs some checks, such as making sure that only the ZIP, ZINB,
Poisson, and negative binomial models are being used in the de f voung_test function.
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Other checks include ensuring that the dependent variables have the same number of
observations and ensuring that the dependent variables have the same values. Finally, the
developed algorithm follows the step-by-step process below:

1. Extracts the dependent variables (y) from each model.
2. Calculates the predicted probabilities for each model using Equation (1) for the Poisson

model, equation (4) for the negative binomial model, Equation (6) for the ZIP model,
and equation (8) for the ZINB model.

3. Calculates the logarithms of the predicted probabilities for each model.
4. Calculates the difference between the logarithms of the predicted probabilities of

both models.
5. Calculates the z-statistic of Vuong’s hypothesis test.
6. Calculates the p-value associated with Vuong’s hypothesis test.
7. Prints the hypothesis test value (z-statistic) and the p-value.

The code returns the outputs in Table 3.

Table 3. Vuong z-statistic and p-value: Poisson vs. ZIP and NB vs. ZINB.

Vuong Test [8] Poisson × ZIP NB × ZINB

Vuong z-statistic: ≈−2.993 ≈−1.947
p-value ≈0.0014 ≈0.0258

9. Discussion

In the Vuong test, positive and statistically significant values indicate the adequacy of
the ZIP or ZINB model. Negative and statistically significant values indicate the adequacy
of the traditional Poisson model or negative binomial model [7].

As previously discussed, the data are overdispersed, making the estimated Poisson
model inadequate. In this case, the Vuong test is used to choose between the NB model and
the ZINB model. Considering that the Vuong test resulted in −2.993, with a p-value < 0.05
(Table 3), the traditional NB model is a better option than the ZINB at a significance level
of 95%.

In Figure 8, a comparison of the models is shown. It includes the observed, predicted,
and fitted values, and the confidence intervals for Poisson, NB, ZIP, and ZINB. The fitted
values are different for each estimation. The NB and ZINB models are able to adjust better
to higher values of the y variable, which demonstrates their ability to estimate parameters
that exhibit long-tail behavior (overdispersion).

Figure 8. Comparison of the models—Observed, predicted, fit, and confidence interval.
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In terms of robustness and sensitivity analysis, the results discussed were obtained
considering a data set with 156 zeros among a total of 298 values for the variable ‘violations’,
as can be seen in the histogram in Figure 1. This would already represent a very imbalanced
data set, considering that around 52% of the values are zeros. Also, our data set was
relatively overdispersed, as can be seen in Table 2 and in Figure 3. We then sought to
modify our sample to evaluate our algorithm in terms of robustness and sensitivity analysis.
The following changes were made:

• We replaced the values 1 and 2 in ‘violations’ with zeros, increasing the number of
zeros to 207 out of 298, which represents a percentage of approximately 69.5%.

• Additionally, we also increased the overdispersion in the sample, expanding the
variance of our data set. In this new scenario, different from Table 2, our mean and
variance differ much more substantially, which can be seen in Table 4.

Table 4. Mean (µ) and variance (σ2)—Number of parking violations, modified data set.

Parameter Value

Mean (µ) 14.463
Variance (σ2) 2302.411

When modifying the sample in the way shown, it can be seen that, in addition to
the portion of zeros being much higher than for the initial set of data, there is also much
more significant overdispersion, as can be seen in Appendix B, Figure A1. Repeating all
the analyses performed for the original data set, we obtain the following output from the
Vuong test, as can be seen in Table 5.

Table 5. Vuong z-statistic and p-value: Poisson vs. ZIP and NB vs. ZINB—modified data set.

Vuong Test [8] Poisson × ZIP NB × ZINB

Vuong z-statistic: ≈−4.5607 ≈−1.2879
p-value ≈ 2.548 × 10−6 ≈ 0.0988

As previously discussed, the data are overdispersed, making the estimated Poisson
model inadequate. In this case, the Vuong test is used to choose between the NB model and
the ZINB model. Considering that the Vuong test resulted in −1.2879, with a p-value > 0.05
(Table 5), the ZINB model is a better option than the NB at a significance level of 95%.
Therefore, in the modified data set, we find that the ZINB model is preferable to the NB
model, the opposite of the output for the original data set.

Regarding the performance of the algorithm on different data sets, we tested it for
other examples and realized that it maintains the accuracy of the results, only varying the
computational time for larger data sets. For the initial data set (298 rows), the compilation
time was practically instantaneous. For a data set with 100,000 rows, the compilation
time was approximately 10 s. Finally, for a data set with 1,000,000 (one million) rows, the
compilation time was approximately 5 min.

10. Conclusions

The motivation for our work was to provide a new computational algorithm, on Python,
to assess overdispersion in machine learning models. In that sense, the objective for this
article was to create an implementation of the Vuong test using Python, since to date, there
was no implementation of this statistical test in this programming language, providing a
valuable contribution to the academic community.

With the analysis developed in this paper, the newly developed algorithm has proven
to be a useful tool for choosing between regular or zero-inflated models. The numerical
results of the Vuong test algorithm, as can be seen in Table 3, provide a clear indicator of
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which model should be used (the one with the highest Vuong z-statistic value), with their
respective p-values, indicating statistical significance.

Prior to our work, this test did not exist in the Python environment. Now, other
researchers can benefit from our contribution by using the code we have made available
in Appendix A of this paper to apply the Vuong test in their research using Python. We
welcome any user feedback on the algorithm for future improvements.

While the existing methodology marks a notable achievement, there is potential
value in investigating enhancements or alternative computational approaches to improve
precision, velocity, or resilience. Future research may involve exploring parallel processing
methodologies or utilizing advancements in machine learning frameworks.
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Appendix A. Vuong Test Code in Python

def vuong_test(m1 , m2):

from statsmodels.discrete.count_model import
ZeroInflatedPoisson , ZeroInflatedNegativeBinomialP

from statsmodels.discrete.discrete_model import Poisson ,
NegativeBinomial

from scipy.stats import norm

supported_models = [ZeroInflatedPoisson ,
ZeroInflatedNegativeBinomialP ,
Poisson ,
NegativeBinomial]

if type(m1.model) not in supported_models:
raise ValueError(f"Model type not supported for first

parameter. List of supported models:
(ZeroInflatedPoisson , ZeroInflatedNegativeBinomialP ,

https://github.com/DuarteAlexandre/VuongTest.git
https://github.com/DuarteAlexandre/VuongTest.git
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Poisson , NegativeBinomial) from statsmodels discrete
collection .")

if type(m2.model) not in supported_models:
raise ValueError(f"Model type not supported for second

parameter. List of supported models:
(ZeroInflatedPoisson , ZeroInflatedNegativeBinomialP ,
Poisson , NegativeBinomial) from statsmodels discrete
collection .")

m1_y = m1.model.endog
m2_y = m2.model.endog

m1_n = len(m1_y)
m2_n = len(m2_y)

if m1_n == 0 or m2_n == 0:
raise ValueError ("Could not extract dependent variables from

models .")

if m1_n != m2_n:
raise ValueError (" Models appear to have different numbers of

observations .\n"
f"Model 1 has {m1_n} observations .\n"
f"Model 2 has {m2_n} observations .")

if np.any(m1_y != m2_y):
raise ValueError (" Models appear to have different values on

dependent variables .")

m1_linpred = pd.DataFrame(m1.predict(which="prob"))
m2_linpred = pd.DataFrame(m2.predict(which="prob"))

m1_probs = np.repeat(np.nan , m1_n)
m2_probs = np.repeat(np.nan , m2_n)

which_col_m1 = [list(m1_linpred.columns).index(x) if x in
list(m1_linpred.columns) else None for x in m1_y]

which_col_m2 = [list(m2_linpred.columns).index(x) if x in
list(m2_linpred.columns) else None for x in m2_y]

for i, v in enumerate(m1_probs):
m1_probs[i] = m1_linpred.iloc[i, which_col_m1[i]]

for i, v in enumerate(m2_probs):
m2_probs[i] = m2_linpred.iloc[i, which_col_m2[i]]

lm1p = np.log(m1_probs)
lm2p = np.log(m2_probs)

m = lm1p - lm2p

v = np.sum(m) / (np.std(m) * np.sqrt(len(m)))

pval = 1 - norm.cdf(v) if v > 0 else norm.cdf(v)

print(" Vuong Non -Nested Hypothesis Test -Statistic (Raw):")
print(f"Vuong z-statistic: {v}")
print(f"p-value: {pval }")



Computers 2024, 13, 88 14 of 15

Appendix B. Equidispersion Test for the Modified Data Set

Figure A1. Equidispersion test for the modified data set.
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