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Abstract: Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants
of GNAS encoding for Gαs and leading to excessive cyclic adenosine monophosphate signaling in
bone-marrow stromal cells (BMSCs). The effect of Gαs activation in the BMSC transcriptome and
how it influences FD lesion microenvironment are unclear. We analyzed changes induced by Gαs

activation in the BMSC transcriptome and secretome. RNAseq analysis of differential gene expression
of cultured BMSCs from patients with FD and healthy volunteers, and from an inducible mouse
model of FD, was performed, and the transcriptomic profiles of both models were combined to build
a robust FD BMSC genetic signature. Pathways related to Gαs activation, cytokine signaling, and
extracellular matrix deposition were identified. To assess the modulation of several key secreted
factors in FD pathogenesis, cytokines and other factors were measured in culture media. Cytokines
were also screened in a collection of plasma samples from patients with FD, and positive correlations
of several cytokines to their disease burden score, as well as to one another and bone turnover
markers, were found. These data support the pro-inflammatory, pro-osteoclastic behavior of FD
BMSCs and point to several cytokines and other secreted factors as possible therapeutic targets
and/or circulating biomarkers for FD.

Keywords: fibrous dysplasia; bone-marrow stromal cell; osteoprogenitor; skeletal stem cell; cytokines;
skeleton; osteoclast

1. Introduction

Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating
variants in GNAS, encoding the α subunit of the stimulatory G protein. The location
and extent of bone lesions are variable and can be associated with hyperpigmented skin
macules and/or various endocrinopathies, termed McCune–Albright syndrome (MAS,
OMIM #174800). Although MAS is a rare disorder (prevalence of 1:100,000 to 1:1,000,000),
FD accounts for as much as 7% of all benign bone tumors [1]. GNAS p.R201C and p.R201H
activating variants are typically the genetic causes. These mutations lock Gαs in an ac-
tive conformation, leading to the excessive production of intracellular cyclic adenosine
monophosphate (cAMP) in bone-marrow stromal cells (BMSCs). In bone, this results in FD
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lesions that become apparent during early childhood and can lead to deformity, fractures,
and pain [2]. Due to the mosaic nature of FD, disease burden can range from a single lesion
(monostotic) to multiple areas of the skeleton (polyostotic), leading to severe disability in
the patients [3].

FD arises from the altered differentiation of bone-marrow skeletal stem cells (SSCs),
the progenitor subpopulation of BMSCs [4]. Affected SSCs are unable to differentiate
into either hematopoiesis-supporting marrow stroma or adipocytes, instead generating
highly proliferative fibroblastic cells and abnormal osteochondrogenic cells. This leads
to the regression of normal hematopoietic/fatty marrow tissue into the perimeter of the
lesions and its replacement by fibro-osseous tissue with occasional areas of fibrocartilage.
Radiographically, lesions typically appear as lytic/sclerotic “ground glass” areas within
the bones, although appearances can vary significantly [5]. On histology, they appear as
vascularized fibro-osseous tissue of undifferentiated fibroblasts and curvilinear trabeculae
of abnormal, poorly mineralized woven bone [5].

FD lesions are often rich in osteoclasts and osteolytic activity, and an elevated bone
turnover is a characteristic of the disease [6]. Indeed, osteoclasts are recruited by an
abnormally high production of RANKL by FD BMSCs such that circulating RANKL in
patients with FD is 16-fold higher compared to healthy controls [7]. These findings led to
the consideration of RANKL inhibition as a therapeutic approach for FD [8,9]. In a clinical
trial conducted by our group, the anti-RANKL drug denosumab successfully halted bone
resorption in FD and prevented the proliferation of altered BMSCs, leading to the decreased
cellularity and normalized differentiation of affected BMSCs. This resulted in improved
mineralization and organization of bone in FD lesions and a decrease in co-morbidities
associated with the skeletal lesions. Based on these findings, our current understanding
of FD pathophysiology is that of a positive feedback loop between altered BMSCs and
osteoclasts. In this scenario, FD BMSCs release factors inducing osteoclastogenesis, and
osteoclasts respond by releasing RANK-containing extracellular vesicles to increase BMSC
proliferation and further altering their differentiation [10,11]. Despite this advancement,
little is known about the transcriptional effects of Gαs activation/cAMP excess in BMSCs
and how this translates to changes within the FD microenvironment.

Therefore, a comprehensive characterization of the genetic expression and production
of secreted factors in addition to RANKL and OPG is crucial to understand the microenvi-
ronment of FD lesions. Moreover, as the discovery of RANKL’s role in FD led to the trial
of denosumab therapy, such an exploration would provide novel therapeutic approaches
and/or circulating biomarkers for FD. Previous efforts have been taken to characterize
other secreted factors in FD, including the demonstration of lesional FGF23 excess [12]
and investigations of IL-6 that led to an unsuccessful attempt to treat FD patients with the
IL6R-inhibiting drug tocilizumab [13–15]. However, the scope of these exploratory studies
was limited due to the lack of high-throughput screening techniques.

On the other hand, we and others carried out efforts to characterize the transcrip-
tomic profile of FD. Our approach involved isolating bulk mRNA from FD tissue; while
informative, this did not allow us to determine how GNAS variants independently affect
gene expression in BMSCs [11,16–18]. In addition, previous studies characterized the tran-
scriptomic changes caused by Gαs activation using cultured human BMSCs transduced
with Gαs

R201C, though the substantial cellular manipulation of this technique may limit
its reliability to capture the transcriptomic effects of the Gαs gain of function in lesional
BMSCs [19,20].
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We developed a methodology that utilized a combination of bulk RNAseq performed
with cultured BMSCs from an inducible mouse model of FD and cultured BMSCs of FD
patients compared with healthy volunteers. This resulted in the development of a robust
transcriptomic signature specific to altered FD BMSCs, including only genes significantly
and similarly modulated in both systems. We then measured the concentration of several
pro-osteoclastogenic cytokines and other factors of interest secreted into culture media.
Lastly, we measured the circulating concentrations of some of these cytokines in plasma
samples from patients with FD and correlated them with disease burden, resulting in the
proposal of novel potential circulating biomarkers for FD.

2. Materials and Methods
2.1. Human and Mouse Specimens

Primary cultures of bone lesions from six patients with FD, as well as plasma samples
from fifty-seven patients with FD, were selected from a longstanding natural history proto-
col (NCT00001727) (Figure S1, Tables S1 and S2). The protocol was approved by the NIH
Investigational Review Board, and all subjects/guardians gave informed consent/assent.
Subjects were limited to those who had never received bisphosphonate or denosumab
therapy. All subjects had skeletal disease burden scores (SBSs) measured using a previously
validated Tc-99m bone scintigraphy method [21]. Plasma was collected from patients at
NIH and cryopreserved; bone specimens were collected as waste during corrective surg-
eries and used to culture primary BMSCs, which were subsequently cryopreserved. BMSCs
from six healthy donors were obtained according to NIH ethical guidelines (NIH OHSRP
exemption #373) (Table S2).

Femora and tibiae from 4 inducible FD mice carrying a doxycycline-inducible Gαs
R201C

variant were dissected and used to obtain primary murine BMSC cultures (Figure S1). To
limit the variability introduced by mixing sexes and ages in the analyses, all mice used
were 12-week-old males.

2.2. Human BMSC Culture

Cryopreserved BMSCs isolated from 16 patients with FD and 6 healthy volunteers
(HV) were cultured as previously described [22] and cryopreserved. Cultures were thawed
and seeded in T-25 flasks for continued growth in full medium (α-MEM supplemented with
20% fetal bovine serum and penicillin/streptomycin) until at least 5.5 million cells were
present. Cells were detached using trypsin (Sigma-Aldrich, St. Louis, MO, USA, T4049)
and the number of total cells was confirmed using a Cellometer Auto M10 (Nexcelom
Bioscience, Lawrence, MA, USA). Two T-25 flasks were seeded with 2 million BMSCs in
full medium for each cell line; after one day, medium was changed to depleted medium
(α-MEM supplemented with penicillin/streptomycin). Cells were then incubated for 48 h,
then culture medium was collected from each well. TRIzol Reagent (Invitrogen, Waltham,
MA, USA, 15596026) was added to flasks and frozen at −80 ◦C. Complete Mini EDTA Free
Protease Inhibitor Cocktail (Roche, Basel, CH, 4693159001) was added to medium, which
was centrifuged to discard aggregates and concentrated 10 times using Amicon Ultra-4
Ultracel-3 3 kDa centrifugal filter units (Millipore, Burlington, MA, USA, UFC800308).
Aliquots of concentrated medium and flowthrough medium were frozen at −80 ◦C.

2.3. Murine BMSC Culture

To avoid excessive presence of hematopoietic cells in the primary cultures, mouse
bones were depleted of bone marrow, minced into small chips, and seeded onto T-25 flasks
using full medium (same formulation as in human cultures). Medium was changed after
6 h and then every 4 days. Bone chips were subsequently removed and placed in new T-25
flasks on days 12 and 21. On day 28, flasks showing high ratio of stromal cells to monocytes
as per visual examination through an inverted microscope were treated with trypsin (Sigma
Aldrich, T4049) and harvested cells were transferred to T-75 flasks. When an estimated
12 million cells per subculture were achieved, cells were trypsinized and passed through
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a nylon mesh for single-cell suspension. The total number of live cells was confirmed
using a Cellometer Auto M10 (Nexcelom Bioscience) and Trypan Blue (Sigma-Aldrich,
T8154). Cultures were negatively immunoselected for hematopoietic cells using CD45 and
CD11b microbeads (Miltenyi Biotec, Gaithersburg, MD, USA, 130-052-301 and 130-097-142)
and the autoMACS Pro Separator following the manufacturer instructions. Six-well plates
were seeded with 0.8 million cells per well in full medium. After 48 h, the medium was
changed for depleted medium (same formulation as in human cultures). Half of the cultures
from each mouse were treated with doxycycline hyclate (5 mg/mL, Sigma-Aldrich D5207)
for 48 h and media was collected. Complete Mini EDTA Free Protease Inhibitor Cocktail
(Roche, 4693159001) was added to media. Cells were then incubated for 48 h, then culture
medium was collected from each well. TRIzol Reagent (Invitrogen, 15596026) was added to
flasks and frozen at −80 ◦C. Media was centrifuged to discard aggregates and concentrated
10 times using Amicon Ultra-4 Ultracel-3 3 kDa centrifugal filter units (Millipore, UFC800308).
Aliquots of concentrated media and flowthrough media were frozen at −80 ◦C.

2.4. RNA Extraction, Sequencing, and Analysis

Bulk RNA was extracted from cultured cells using the TRIzol Reagent protocol without
glycogen. Library preparation and sequencing was performed by the Genomics and
Computational Biology Core (NIDCR, NIH) team using an Illumina HiSeq 2500 (Illumina,
San Diego, CA, USA) configured for 37 paired-end reads (human) or 150 paired-end reads
(mouse). Read quality was assessed using FastQC software v0.12.0 [23] and reads were
subsequently mapped using STAR aligner v2.5.2a [24]. Mapping quality was assessed using
Picard tools. Read counts were determined using the quantMode utility of STAR aligner
and genes with less than 5 counts in at least 1 sample were filtered out. Normalized counts
were then calculated using TMM normalization. Cultures showing GNAS p.R201C/H
mRNA variant allele expression frequency of 7–55% were selected for further analyses
(6 out of 16 samples cultured). Briefly, bam alignments were visualized using the Integrative
Genome Viewer (IGV) application and nucleotide counts at the GNAS p.R201 position and
corresponding amino acid changes were determined for each sample [25]. DEseq2 [26] was
used to determine differential gene expression. Unsupervised clustering was performed
using principal component analysis and unsupervised clustering using heatmap.2 in R [27].
Other heatmaps were manually generated by grouping related genes that were differentially
regulated in the same direction.

Cross-species human–mouse annotation was performed using the Biomart service
using the high-confidence ortholog dataset. Annotated genes were then used to determine
the number of genes differentially regulated in the same manner between both species
(defined as the FD Signature). Pathway analysis was performed for humans, mice, and
the FD Signature using Enrichr (https://maayanlab.cloud/Enrichr/ [accessed 18 April
2023]) to generate bar charts from GO Molecular Function 2021, BioPlanet 2019, KEGG
2021 Human, and MSigDB Hallmark 2020 using |log2-fold change| > 1.5 and adjusted
p-value < 0.01.

Predicted protein–protein interactions were mapped based on genes differentially
regulated in the same direction in both species (adjusted p < 0.01) using the STRING
database (v11.5; string-db.org). The top 6 groups resulting from MCL clustering were
annotated based on common protein functions.

Sequencing datasets are available at the NCBI GEO repository under series accession
number GSE261360.

https://maayanlab.cloud/Enrichr/
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2.5. cAMP Determination

cAMP-Gs HiRange standard (Cisbio, Codolet, FR, 62AM6CDA) was dissolved in
11.2 mM 3-isobutyl-1methylxanthine (IBMX; Sigma-Aldrich, I5879) and Dulbecco’s Modi-
fied Eagle Medium (DMEM; Gibco, Leicestershire, UK, 10564011) for external calibration.
A 200 µL aliquot of post-filtration flowthrough media was combined with 500 µM IBMX
to protect the setup from cAMP degradation. The aliquot was combined with 200 µL
acetonitrile and centrifuged (13,000× g, 30 min); 50 µL of supernatant was combined with
50 µL HPLC-grade water.

Liquid chromatography with tandem mass spectrometry was then used to quantify
cAMP using an orbitrap Fusion Lumos mass spectrometer interfaced to an Ultimate3000
HPLC system (Thermo Scientific, West Palm Beach, FL, USA) and an Atlantis C18 column
(2.1 × 150 mm, 3 µm, Waters Corp, Milford, MA, USA). Samples were injected and desalted
for 2 min in 2% solvent B (80% acetonitrile, 20% water, and 0.1% formic acid) and in
solvent A (0.1% formic acid in water), followed by a linear gradient to 98% B in 3 min; the
composition was held at 98% B for 2.5 min before ramping down to 2% B in 0.1 min. Column
was equilibrated for 4.5 min at 2% B before the next injection. Flow rate was 250 µL/min.
Solvent A and solvent B were Optima-grade from Fisher Scientific. Parallel Reaction
Monitoring of protonated cAMP at m/z 330.0598 ([M + H]+) was recorded in the orbitrap
at R = 50,000 for detection and quantification using positive-ion electrospray ionization
with the following source parameters: spray voltage—3300 V, sheath gas—40 units, aux
gas—10 units, and sweep gas—2 units. The ion transfer tube was at 325 ◦C and vaporizer
was at 350 ◦C. Isolation window was 1.2 m/z; collision energy was 35%. Standard curves
were acquired before and after the sample set. A QC sample (5 nM standard) was analyzed
mid-sequence. Quantification was carried out using QuanBrowser module of Xcalibur
software v4.3 (Thermo Scientific) using peak area of m/z 136.0609. Quantification result
was manually inspected before being exported to Excel (Microsoft, Redmond, WA, USA).

2.6. Serum and Media Determinations

For mouse samples, RANKL was detected using Mouse TRANCE/RANKL/TNFSF11
Quantikine ELISA Kit (R&D systems, MTR00); Ephrin B2, Semaphorin 3A, and FAPα using
ELISAs from LSBio (LS-F6974, LS-F33608, and LS-F49804, respectively); and soluble Fas
ligand and M-CSF using R&D Quantikine assays (MFL00 and MMC00B, respectively).
In addition, a customized magnetic Luminex assay was designed to assess Dkk-1, IL-7,
MMP-2, β-NGF, and VEGF in mice (R&D Sytems, LXSAMSM-05 with BR77, BR14, BR37,
BR43, and BR21). Mouse cytokines were detected with the Bio-Plex Pro Mouse Cytokine
23-plex Assay (Bio-Rad, #M600009RDPD), including IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6,
IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17A, Eotaxin, G-CSF, GM-CSF, IFN-γ, KC,
MCP-1 (MCAF), MIP-1α, MIP-1β, RANTES, and TNF-α.

In human samples, RANKL was detected using Biomedica Immunoassay for free
sRANKL ELISA kit (Eagle Biosciences, BI-20462), and cytokines were detected using the
Bio-Plex Pro Human Cytokine 17-plex Assay (Bio-Rad, #M5000031YV), including IL-1β,
IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 (p70), IL-13, IL-17A, G-CSF, GM-CSF, IFN-γ,
MCP-1 (MCAF), MIP-1β, and TNF-α.

Analytes that were undetectable in human or mouse experimental and control groups
were excluded from analyses.
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2.7. Statistical Analysis

Comparisons between released cytokines in cell cultures were performed on GraphPad
Prism v9.2.0 (GraphPad Software, Boston, MA, USA) and determined using multiple
Mann–Whitney tests with a two-stage Benjamini, Krieger, and Yekutieli step-up and 5%
False Discovery Rate (FDR). The correlations between circulating cytokines and skeletal
burden score in patients with FD/MAS were determined using multiple correlations with
Pearson’s r in GraphPad. Using SAS v9.4 (SAS Institute, Cary, NC, USA), p-values in
SBS–cytokine and cytokine-cytokine correlations were adjusted for multiple testing, with
an FDR-adjusted p-value below 0.05 considered statistically significant. Unpaired t-tests
were used to determine significance of relationships between cAMP and variant burden
comparisons with a threshold of p < 0.05. Statistical analysis of differential gene expression
was included in the DESeq2 package.

3. Results

3.1. Murine and Human Gαs
R201C/H-Expressing BMSC Cultures Display Pro-Inflammatory

Transcriptomic Profiles

Bone chips from both femora and tibiae from each mouse were minced and plated.
Two to four weeks later, cultures were depleted of CD45+ CD11b+ hematopoietic cells and
seeded in 6-well plates. Two days later, half of the cultures were induced for Gαs

R201C

expression for 48 h with doxycycline (5 mg/mL), and then mRNA was extracted (Figure S1).
Gαs

R201C transgene expression and downstream pathway activation were confirmed with
transcriptomic analysis (Figure 1A) and through the measurement of cAMP in the culture
media, respectively (Figure 1B). RNAseq showed good segregation by Gαs

R201C expression
status based on principal component (PC) analysis, which also grouped together on unsu-
pervised clustering (Figure 1C,D) and revealed the significant modulation of 5852 genes
(Table S3). Pathway analysis of the most differentially expressed genes in this dataset (with
at least |log2 fold change| > 1.5 and adjusted p < 0.01) was performed using the Gene
Ontology (GO) Molecular Function, BioPlanet, Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Molecular Signatures Database (MSigDB) hallmark gene set repositories
with the Enrichr tool. Some of these gene sets showed signatures directly or indirectly
associated to Gαs activation, and all of them showed terms related to cytokine signaling
and inflammation: “cytokine activity” in the GO Molecular Function; “TGF-beta regulation
of extracellular matrix” and “Interleukin-1 regulation of extracellular matrix” in BioPlanet;
“Cytokine-cytokine receptor interaction” in KEGG; and “TNF-alpha Signaling via NF-kB”
and “Inflammatory Response” in MSigDB (Figure 1E).

Of all sixteen human FD cultures tested, six had a p.R201H or p.R201C variant allele
frequency between 7–55% of all GNAS reads and were selected for further analyses and
compared to BMSCs obtained from healthy volunteers (Figure 2A). Gαs activation was
confirmed through the measurement of cAMP in the culture media (Figure 2B). PC analysis
showed the excellent segregation of FD and healthy volunteer (HV) BMSCs, and both
categories partially grouped together in unsupervised clustering analysis (Figure 2C,D) and
revealed the significant modulation of 3637 genes (Table S4). We performed a similar Enrichr
pathway analysis as in mouse cultures, with the same fold change and p-value restrictions,
which also showed pathways consistent with Gαs activation, and all showed gene sets
related to cytokines and inflammation: “cytokine activity” and “chemoattractant activity”
in the GO Molecular Function; “TGF-beta regulation of extracellular matrix”, “Cytokine-
cytokine receptor interaction”, “Interleukin-4 regulation of apoptosis”, and “TGF-beta
regulation of skeletal system development” in BioPlanet; “Cytokine-cytokine receptor
interaction” and “TGF-beta signaling pathway” in KEGG; and “TNF-alpha Signaling via
NF-kB” and “Inflammatory Response” in MSigDB (Figure 2E).
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model of FD. (A) Transcriptomic data confirm that GαsR201C is highly expressed by murine BMSCs 
following induction with doxycycline. (B) BMSCs expressing GαsR201C exhibited markedly elevated 
cAMP concentrations in culture media, as determined by HPLC-MS. (C,D) Principal component 
and unsupervised clustering analyses demonstrated close grouping within control and induced ex-
perimental groups while maintaining segregation between groups, confirming robust differences in 
expression profiles. (E) Gene set enrichment analyses of significantly regulated genes (|log2FC| > 
1.5 and p-adj < 0.01) revealed enriched pathways for inflammatory signaling, e.g., “cytokine activity” 
(GO Molecular Function 2021); “TGF-beta regulation of extracellular matrix” and “Interleukin-1 

Figure 1. Pro-inflammatory pathways are enriched in BMSCs derived from an inducible mouse
model of FD. (A) Transcriptomic data confirm that Gαs

R201C is highly expressed by murine BMSCs
following induction with doxycycline. (B) BMSCs expressing Gαs

R201C exhibited markedly elevated
cAMP concentrations in culture media, as determined by HPLC-MS. (C,D) Principal component
and unsupervised clustering analyses demonstrated close grouping within control and induced
experimental groups while maintaining segregation between groups, confirming robust differences in
expression profiles. (E) Gene set enrichment analyses of significantly regulated genes (|log2FC| > 1.5
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and p-adj < 0.01) revealed enriched pathways for inflammatory signaling, e.g., “cytokine activity” (GO
Molecular Function 2021); “TGF-beta regulation of extracellular matrix” and “Interleukin-1 regulation
of extracellular matrix” (BioPlanet 2019); “cytokine-cytokine receptor interaction” (KEGG 2021
Human); and “TNF-alpha Signaling via NF-kB” (MSigDB Hallmark 2020). * p < 0.05; **** p < 0.0001.
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(A) Transcriptomic data confirmed expression of Gαs variants in BMSCs from patients with FD.
Notably, the fractional abundance of variant transcripts was highly variable, reflecting the mosaic
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nature of the disease. (B) HPLC-MS demonstrated elevated cAMP production in FD cultures com-
pared to healthy volunteers (HVs), in line with Gαs activation. (C,D) Principal component and
unsupervised clustering analyses showed close grouping of HV and FD samples while maintaining
segregation between groups. (E) Gene set enrichment analyses of significantly regulated genes
(|log2FC| > 1.5 and p-adj < 0.01) revealed enriched pathways for inflammatory signaling, e.g., “cy-
tokine activity” and “chemoattractant activity” (GO Molecular Function 2021); “TGF-beta regulation
of extracellular matrix”, “Interleukin-4 regulation of apoptosis”, and “TGF-beta regulation of skeletal
system development” (BioPlanet 2019); “cytokine-cytokine receptor activity” (KEGG 2021 Human);
and “TNF-alpha Signaling via NF-kB” (MSigDB Hallmark 2020). * p < 0.05; ** p < 0.01.

3.2. Combining the Transcriptome of Human and Murine FD BMSCs Reveals a Robust
Genetic Signature

To develop a robust signature of dysregulated genes in FD BMSCs across disease
models, we combined the datasets of differentially expressed human and mouse genes.
Of the 3367 differentially expressed genes in human samples, 2964 had a mouse ortholog,
and of the 5852 differentially expressed mouse genes, 5355 had a human ortholog. Of
these, 1239 genes appeared in both datasets and 764 were regulated in the same direction
(Figure 3A, Table S5). A selection of these genes involved in pathways of interest for the
study of FD, curated through literature review, are shown in Figure 3B, including genes
involved in Gαs/cAMP signaling, SSC differentiation, fibrosis, inflammation (including
pro-osteoclastogenic cytokines), and vascularization. In addition, the 136 genes with
strongest regulation (defined by |log2 fold change| > 1.5 and adjusted p < 0.01) were
analyzed with Enrichr pathway analysis, showing over-representation of genes related
to cAMP signaling in the GO Molecular Function; “G alpha s pathway” in BioPlanet;
“Cytokine-cytokine receptor interaction” in KEGG; and “TNF-alpha Signaling via NF-kB”
and “Inflammatory Response” in MSigDB (Figure 3C). Lastly, we selected those genes
with p < 0.01 (435 genes) to assess the pathway interaction of their encoded proteins using
STRING, which detected six main interacting pathways, involved in processes like cAMP
signaling, extracellular matrix organization, metallopeptidase activity, cellular metabolism,
mesenchymal cell proliferation, and ATPase activity (Figure S2).

3.3. Mouse Gαs
R201C-Expressing BMSC Cultures Release Pro-Inflammatory Cytokines and Other

Factors Related to FD Pathophysiology

We measured the levels of 18 cytokines in the primary culture media of BMSCs from FD
patients and healthy volunteers (HV). Of these, five cytokines were undetectable and, due to
the high variability of these samples, we failed to detect significantly different levels of any
of the twelve remaining cytokines between HV and FD BMSC culture media (Figure S4).
However, we measured twenty-four cytokines in media from murine BMSC cultures, of
which thirteen factors were significantly higher in Gαs

R201C-expressing BMSCs (Figure 4),
nine did not change (Figure S4), and two fell below the detection range of the assays (IL-4
and IL-9). In addition to these cytokines, we measured other factors involved in the FD
microenvironment such as the proteases MMP2 and FAPα, the WNT modulator Dkk1, the
growth factors VEGF and β-NGF, and modulators of osteoclastogenesis previously shown
to be produced by osteogenic cells (EPHD4, FASL, and SEMA3A). Although the assays
used could not detect the presence of EFNB2 and FASL in the media, all the remaining
factors showed increased levels in cultures with induced Gαs

R201C expression (Figure 5).
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Figure 3. BMSCs from mice and humans with FD shared genes dysregulated in the same manner. 
(A) Differentially expressed genes (p-adj < 0.05) were limited to those having orthologs in either 
species, resulting in 2964 and 5355 differentially expressed human and mouse genes, respectively. 
Of these, 764 genes appeared in both species and were differentially expressed in the same direction. 
(B) From our FD Signature, genes were manually selected and tabulated according to known asso-
ciations, e.g., with the WNT and BMP pathways. (C) Gene set enrichment analysis of our FD Signa-
ture revealed enriched pathways similar to previous results from mice and humans, e.g., “cytokine-

Figure 3. BMSCs from mice and humans with FD shared genes dysregulated in the same manner.
(A) Differentially expressed genes (p-adj < 0.05) were limited to those having orthologs in either
species, resulting in 2964 and 5355 differentially expressed human and mouse genes, respectively. Of
these, 764 genes appeared in both species and were differentially expressed in the same direction.
(B) From our FD Signature, genes were manually selected and tabulated according to known associa-
tions, e.g., with the WNT and BMP pathways. (C) Gene set enrichment analysis of our FD Signature
revealed enriched pathways similar to previous results from mice and humans, e.g., “cytokine-
cytokine receptor interaction” (KEGG 2021 Human) and “TNF-alpha Signaling via NF-kB” (MSigDB
Hallmark 2020). Pathways overlying gray bars did not reach statistical significance. Abbreviations:
ACYs, adenylyl cyclases; adipo, adipogenesis; chon, chondrogenesis; PDEs, phosphodiesterases; SSC,
skeletal stem cell.
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Figure 4. Cultured BMSCs from FD mice release pro-inflammatory cytokines. Multiple Mann–Whit-
ney test with two-stage Benjamini, Krieger, and Yekutieli and 5% FDR was used to determine sta-
tistical significance. IL-4 and IL-9 were undetectable. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

Figure 4. Cultured BMSCs from FD mice release pro-inflammatory cytokines. Multiple
Mann–Whitney test with two-stage Benjamini, Krieger, and Yekutieli and 5% FDR was used to
determine statistical significance. IL-4 and IL-9 were undetectable. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001.
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tiple Mann–Whitney test with two-stage Benjamini, Krieger, and Yekutieli and 5% FDR was used to 
determine statistical significance. Ephrin B2 and soluble Fas ligand were assessed but not found in 
detectable levels. * p < 0.05; ** p < 0.01; *** p < 0.001. 

3.4. Plasmatic Cytokines in FD Patients Correlate with Their Disease Burden 
We analyzed 19 cytokines, of which 16 were detectable, in serum samples from 57 

patients with FD, with the disease burden ranging from a skeletal burden score (SBS) of 
0.5 to 75 (Table S1). In addition, the bone turnover markers ALP, osteocalcin, and NTX 
were measured. As expected, ALP, osteocalcin, OPG, and RANKL significantly correlated 
with patient’s SBS. In addition to these, and for the first time, we demonstrated the posi-
tive correlation of seven other cytokines to SBS (Figure 6A). Interestingly, several cyto-
kines correlated with one another and with ALP and osteocalcin, especially all interleu-
kins analyzed, which presented very strong correlations ranging between r = 0.556, p = 2.7 
× 10−6 (IL-6 vs. IL-7) and r = 0.881, p = 3.6 × 10−21 (IL-7 vs. IL-4) (Figure 6B). 

Figure 5. Cultured BMSCs from FD mice release additional factors related to FD pathogenesis.
Multiple Mann–Whitney test with two-stage Benjamini, Krieger, and Yekutieli and 5% FDR was used
to determine statistical significance. Ephrin B2 and soluble Fas ligand were assessed but not found in
detectable levels. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.4. Plasmatic Cytokines in FD Patients Correlate with Their Disease Burden

We analyzed 19 cytokines, of which 16 were detectable, in serum samples from 57 pa-
tients with FD, with the disease burden ranging from a skeletal burden score (SBS) of 0.5
to 75 (Table S1). In addition, the bone turnover markers ALP, osteocalcin, and NTX were
measured. As expected, ALP, osteocalcin, OPG, and RANKL significantly correlated with
patient’s SBS. In addition to these, and for the first time, we demonstrated the positive
correlation of seven other cytokines to SBS (Figure 6A). Interestingly, several cytokines
correlated with one another and with ALP and osteocalcin, especially all interleukins ana-
lyzed, which presented very strong correlations ranging between r = 0.556, p = 2.7 × 10−6

(IL-6 vs. IL-7) and r = 0.881, p = 3.6 × 10−21 (IL-7 vs. IL-4) (Figure 6B).
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Figure 6. Inflammatory cytokines and bone turnover markers can be detected in serum from pa-
tients with FD and correlate with disease burden. (A) Cytokines and other markers were analyzed 
in serum from 57 patients with FD and correlated with skeletal burden score (SBS), a standardized 
quantification of disease burden. Significance was determined via multiple correlations with Pear-
son’s r and defined as p < 0.05. (B) SBS–cytokine and cytokine-cytokine correlations between all 
detectable factors revealed numerous associations, especially with ALP and osteocalcin, as well as 

Figure 6. Inflammatory cytokines and bone turnover markers can be detected in serum from patients
with FD and correlate with disease burden. (A) Cytokines and other markers were analyzed in serum
from 57 patients with FD and correlated with skeletal burden score (SBS), a standardized quantifica-
tion of disease burden. Significance was determined via multiple correlations with Pearson’s r and
defined as p < 0.05. (B) SBS–cytokine and cytokine-cytokine correlations between all detectable factors
revealed numerous associations, especially with ALP and osteocalcin, as well as between interleukins
as expected (red boxes). p-values were adjusted for multiple testing, with an adjusted p-value less
than 0.05 considered statistically significant. IL-10, G-CSF, and GM-CSF were undetectable.
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4. Discussion

Although our understanding of lesional cell population dynamics in FD pathogenesis
has advanced significantly in recent years, we still have limited knowledge of the transcrip-
tional effects of hyperactive Gαs and cAMP excess in BMSCs, the underlying causes of the
lesions. Previous differential gene expression analyses of bulk FD tissue fail to capture
BMSC-specific transcriptomic changes [11,16,17], and attempts to characterize the effects
of Gαs

R201C expression in human BMSCs through lentiviral transduction involved high
cell manipulation, limiting the models’ validity to emulate the transcriptomic profile of FD
BMSCs [19,20]. In the present study, we performed a comprehensive exploration of the
transcriptome and secretome of FD BMSCs cultured in the absence of other cell types to
determine the cell-intrinsic effects of Gαs activation. For a robust experimental design, we
combined human and mouse FD cultures to propose a transcriptomic signature comprising
significantly modulated orthologous genes changing in the same direction in both models.

For both models, GNAS variant expression and cAMP release in the culture media
were confirmed before data analysis. Principal component and unsupervised clustering
analyses of human and mouse cultures showed good segregation of the samples by group
(WT/Gαs

R201C in mice, HV/FD in humans), and Enrichr analysis identified several terms
associated with GPCR/Gαs/AC pathway activation, supporting the experimental validity
of our approach. In addition, Enrichr analyses of the human or mouse gene lists, as well
as the combined FD BMSC signature, undoubtedly supported the importance of cytokine
signaling in FD pathogenesis, returning terms like “cytokine activity”, “cytokine-cytokine
receptor interaction”, or “inflammatory response” among the top matching genetic datasets.
Further analysis of the FD BMSC signature with the STRING protein–protein network
analysis tool also confirmed cAMP signaling activation and identified additional expected
processes in FD pathogenesis like “extracellular matrix organization”, “metallopeptidase
activity”, and “mesenchymal cell proliferation” among others. Lastly, we curated a subset
of 57 genes among the 764 identified in the FD Signature with biological significance
in the disease (Figure 2B) and demonstrated relationships with cAMP signaling, SSC
differentiation fate, osteoclast recruitment, fibrous matrix deposition/remodeling, and
vascularization. This restrictive strategy to generate a signature from human and murine
cultures likely missed some genes involved in FD BMSC pathogenesis due to the absence
of known gene orthologs between species (10–12% of the genes modulated in each dataset
lacked an ortholog in the other species). However, at the expense of losing sensitivity, our
analysis gained specificity because the 764 genes identified were regulated by GNAS’s gain
of function in BMSCs across models, avoiding model-specific biases or artifacts. Although
human lesional BMSC cultures best represent lesional BMSC transcriptomes, the need to use
healthy volunteer BMSC control cultures to compare gene expression introduces several
biases. First, BMSCs were obtained from different skeletal sites and through different
techniques (iliac crest aspirates in HV versus femur surgical waste tissue in FD patients).
In addition, four out of six patients with FD that donated surgical tissue were children,
who cannot be age-matched to HVs. Last, Gαs

R201C/H mRNA allele frequency in FD BMSC
cultures was highly variable (7–55%). This biological variability was reflected in our failure
to show significant differences in secreted factors between FD and HV BMSCs. On the other
hand, mouse-derived BMSC cultures impeccably account for these sources of variability, as
paired comparisons can be made between cultures from the same donor, with one induced
to express Gαs

R201C. However, they are a less faithful representation of FD BMSCs as
transgene expression is not driven by an endogenous promoter and expression is only
induced for 48 h, making it impossible to account for the consequences of long-term Gαs
activation. To build upon our findings, future studies involving techniques like spatial
transcriptomics and single cell RNA sequencing may constitute useful approaches to study
FD BSMCs.

Our transcriptomic analysis highlighted the important influence of GNAS variant-
bearing BMSCs in the local microenvironments of FD lesions, ultimately leading to their
characteristic hallmarks. Indeed, as patients age, the number of BMSCs bearing GNAS
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variants decreases, and the cellular composition of FD lesions normalizes [28]. We and
others previously pointed to the importance of RANKL in fibrous dysplasia [7], which lead
to the development of targeted therapies, first in preclinical and compassionate treatment
case studies [8,9,29–31] and then in a clinical trial [10,11], including ongoing studies (https:
//clinicaltrials.gov/study/NCT05419050 [accessed 26 February 2024]). While early studies
on the role of RANKL signaling in FD facilitated this promising therapeutic approach, little
exploration has been conducted to find additional cytokines and factors secreted by FD
BMSCs that may affect osteoclastic–osteoprogenitor crosstalk and other important features
of the FD pathogenesis such as fibrous tissue deposition and remodeling, angiogenesis,
and nociception. Therefore, we carried out a systematic exploration of cytokines and other
selected secreted factors in our culture models.

Due to the biological variability of human FD and HV BMSC cultures, we failed to
identify significant changes in their media concentrations of the 18 cytokines analyzed
despite the several cytokine-related signatures identified through the Enrichr analyses of the
RNAseq data. However, measurements in murine culture media captured a pro-osteoclastic,
pro-inflammatory secretome, showing increased levels in 13 of the 25 cytokines examined.
RANKL and IL-6 had already been associated with FD pathogenesis [7,32] although a
clinical trial using tocilizumab to inhibit IL-6 signaling failed to produce significant disease
improvement [15]. Previous analyses failed to detect IL-1α and IL-1β, key pro-inflammatory
cytokines, in human FD BMSC cultures [13], but both were detectable in the FD mouse
cultures, with IL-1β concentration significantly increased in Gαs

R201C-expressing BMSCs.
In addition to these cytokines previously studied in FD, increased levels of IL-2, IL-3, IL-5,
IL-12 (p40), IL-13, GM-CSF, IFN-γ, CXCL-1, MCP-1, and TNF-α were found for the first time
in the media from Gαs

R201C-expressing BMSCs. We then analyzed both the concentrations
of 18 cytokines as well as bone turnover markers known to correlate with disease burden in
plasma from patients with FD. Six cytokines showed correlations with disease burden (IL-2,
IL-4, IL-7, IL-8, TNF-α), and additional correlations of cytokines to bone turnover markers
and to one another were identified, confirming the role of pro-inflammatory cytokines in
FD pathogenesis.

Analyzing the individual contribution of these novel cytokines to FD pathogenesis
is challenging. In many cases, their role in osteoclastogenesis is equivocal, depending
on length of exposure, concentration, and/or combination with other local factors. For
example, both pro- and anti-osteoclastogenic properties have been identified for anti-
inflammatory cytokines IL-4 and GM-CSF [33,34]. Nevertheless, some of the cytokines
identified in our study have unequivocal pro-osteoclastogenic activity. IL-1, IL-7, IL-8,
and TNF-α can directly stimulate osteoclastogenesis independently of RANKL [35–38]. In
addition to osteoclastogenesis, cytokines influence other key aspects of the FD lesion mi-
croenvironment like angiogenesis [39] and nociceptive pain through local innervation [39]
and nociceptive pain through local innervation [40]. Although there are inhibitory drugs
targeting several of these cytokines, it is unclear whether this strategy would be useful in
FD. First, although cytokine signaling is a local feature of FD, patients do not demonstrate
systemic inflammation. Second, inhibiting signaling pathways so broadly involved in
human physiology may entail unwanted secondary effects. Anti-RANKL therapy impairs
osteoclastogenesis with high specificity and is demonstrated to improve FD lesions without
significant negative systemic effects other than impaired bone resorption. However, its dis-
continuation results in the rebounding of osteoclastic activity. Targeting upstream cytokines
like TNF-α may lead to a more gradual, partial inhibition of osteoclastogenesis, potentially
preventing a discontinuation rebound, and would likely have direct anti-fibrotic effects
on FD lesions. However, TNF-α is involved in a myriad of physiological processes, and
systemically inhibiting it comes with several unwanted effects like immunosuppression,
increased cancer risk, and others [41,42].

Six additional secreted factors were identified in the media of mouse FD BMSCs.
Dkk-1 is a Wnt inhibitor that has been shown to promote osteoclast activity and prevent
osteoblast differentiation in response to TNF-α [43]. VEGF, an important pro-angiogenic

https://clinicaltrials.gov/study/NCT05419050
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factor, is also upregulated by TNF-α, and has anabolic effects both in osteoclasts and os-
teogenic cells [44]. β-NGF, a neurotrophic factor that is also sensitive to pro-inflammatory
microenvironments, promotes axonal outgrowth in nearby nociceptive neurons leading
to pain [45]. SEMA3A has also been proposed as both a major mediator of nerve regula-
tion in bone turnover as well as a factor in osteoblast–osteoclast coupling [46,47]. Lastly,
MMP-2 and FAP-α are proteases involved in remodeling fibrotic tissue whose mRNA levels
were significantly upregulated in previous studies and may be useful as biomarkers for
FD [11,17,20,48–50]. Moreover, these pathways in have been investigated as potential
therapeutic targets in a broad range of disorders as fibrosis is a common feature underpin-
ning many disease processes including heart failure [51], cancer [52], diabetes [53], and
others [54,55]. The recognition of potential shared pathogenic mechanisms thus raises
the possibility of accelerating research in FD/MAS by expanding or repurposing agents
developed for treatment in more common disorders. In addition, fibrosis-associated pro-
teases could be leveraged as pro-drug activators targeting pathways like TNF-α that would
otherwise give rise to unwanted systemic effects [56].

In conclusion, our study provided a comprehensive analysis of the transcriptomic
signature and relevant secreted factors of abnormal BMSCs in FD. By combining data from
human and mouse FD models, we identified a robust FD genetic signature, supporting the
association of Gαs pathway activation in these cells with cytokine signaling and extracellu-
lar matrix reorganization. Our FD secretome profiling identified several pro-inflammatory,
pro-osteoclastic cytokines that can be detected in circulation in association with disease
severity and other factors relevant in FD pathogenic processes like vascularization, fibrosis,
osteoblast–osteoclast crosstalk, and nociception. These findings open novel diagnostic and
therapeutic avenues that may be explored in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells13090774/s1, Figure S1: Schematic representation of the study design
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within the FD Signature; Figure S3: Cultured BMSCs derived from healthy volunteers (HVs) and
patients with FD released pro-inflammatory cytokines, but differences were unable to be detected;
Figure S4: Additional cytokines expressed by cultured murine BMSCs; Table S1: FD patient plasma
donor demographics; Table S2: BMSC donor demographics; Table S3: List of genes with significant
changes in GαsR201C-expressing mouse BMSCs versus WT mouse BMSCs, padj < 0.05; Table S4: List
of genes with significant changes in FD lesion-derived human BMSCs versus healthy donor BMSCs,
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