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Abstract: Statistical analyses often require unbiased and reliable data completion. In this work, we
imputed missing fine particulate matter (PM2.5) observations from eight years (2012–2019) of records
in 59 air quality monitoring (AQM) stations in Israel, using no auxiliary data but the available PM2.5

observations. This was achieved by a new k-Nearest Neighbors multivariate imputation method
(wkNNr) that uses the correlations between the AQM stations’ data to weigh the distance between
the observations. The model was evaluated against an iterative imputation with an Ensemble of
Extremely randomized decision Trees (iiET) on artificially and randomly removed data intervals of
various lengths: very short (0.5–3 h, corresponding to 1–6 missing values), short (6–24 h), medium-
length (36–72 h), long (10–30 d), and very long (30 d–2 y). The new wkNNr model outperformed the
iiET in imputing very short missing-data intervals when the adjacent lagging and leading observations
were added as model inputs. For longer missing-data intervals, despite its simplicity and the smaller
number of hyperparameters required for tuning, the new model showed an almost comparable
performance to the iiET. A parallel Python implementation of the new kNN-based multivariate
imputation method is available on github.

Keywords: air quality monitoring; extremely randomized decision trees; imputation of missing data;
kNN; machine-learning; PM2.5

1. Introduction

Due to the irrefutable evidence of causal associations between exposure to ambient
pollutants, especially fine particulate matter (PM2.5), and adverse health outcomes [1–7],
air quality monitoring (AQM) networks have been established in the past decades to track
pollutant levels. The higher the spatiotemporal measurement coverage, the higher the
ability of regulatory agencies to enforce environmental standards and to derive reliable
risk estimates for assessing the true cost of air pollution to society. However, oftentimes,
monitoring data suffer from periods of missing records as a result of device failure, cali-
bration procedures, maintenance, limited communication, or other technical difficulties.
Imputation of missing records may be a prerequisite for advanced statistical analyses that
require a complete dataset, like matrix factorization-based source apportionment methods.

In general, the imputation of AQM stations’ data can be carried out using either
univariate or multivariate methods. In univariate imputation, each PM2.5 time-series that
has been measured by any AQM station is independently imputed. Univariate imputation
can be performed by different methods, such as linear-, spline- or Nearest Neighbor (NN)
interpolations [8,9]; spectral methods, e.g., Discrete Fourier Transform (DFT) [10,11]; or
variations of Recurrent Neural Networks (RNN), which can capture long-term temporal
dependencies [12,13]. In multivariate imputation, the AQM network is viewed as a multi-
variate dataset, where at each observation time-point there are several PM2.5 measurements
gathered simultaneously at different AQM stations. While univariate imputation relies
only on the non-missing data from the imputed series itself (i.e., utilizing temporal relation-
ships), multivariate methods can leverage from relationships among different co-measured
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time-series (i.e., accounting also for spatial relationships) [14–16]. Hence, multivariate
imputation methods have been found to outperform univariate methods when imputing
long periods of missing data [17].

The k-Nearest Neighbors (kNN) algorithm [18] has been widely used for multivariate
imputations and was found to perform well when applied to environmental datasets [19,20].
Traditionally, the average of the non-missing values from the k most similar observations
is used to fill in the missing value, where the similarity between any two observations is
defined as the Euclidean distance between them. Different modifications to this simple
kNN method demonstrated improved performance. For example, Troyanskaya et al. [21]
took a weighted average of the values from the k most similar genes, based on an inverse
Euclidean distance, to impute a gene-array; Pan and Li [22] utilized a linear regression
model to account for spatial relationships between pairs of nodes in a network of wireless
sensors; Feng et al. [23] discarded surrounding gauging stations below a certain correlation
threshold when imputing monthly rainfall data, and Brás and Menezes [24] and Zhang [25]
suggested an iterative process for fine adjustment of the imputed values. All these studies
have shown the advantages of using multivariate kNN models over other methods (e.g.,
singular-value decomposition (SVD); [21]), yet none was applied to real-world air pollution
data. In particular, PM2.5 is a complex mixture of airborne particles whose dispersion is
governed in a highly non-linear manner by meteorological conditions, physicochemical
processes, and removal mechanisms [26–29]. Hence, to obtain satisfying results, most
PM2.5 imputation studies, to date, used auxiliary data, such as co-measured concentrations
of other pollutants, meteorological parameters [17,30–33], or the output of atmospheric
chemistry and transport models [16].

This work examines a new multivariate kNN imputation method (wkNNr), applied on
a large and naturally incomplete PM2.5 dataset that is comprised of eight years (2012–2019)
of half-hourly observations from 59 AQM stations spread across Israel. The work extends
beyond past studies in the following ways: (i) the new method uses the correlations
between the AQM stations’ records to weigh the distance between observations, (ii) lagging
and leading observations are accounted for as additional model inputs that can supply
information on short-term temporal associations, and (iii) the imputation is based only on
the non-missing PM2.5 records in the dataset, thus enabling the use of other auxiliary data
in advanced analyses without fearing collinearity. We compared the new model results
to those obtained by applying an iterative imputation scheme, which has been shown
to outperform many other imputation algorithms and was therefore chosen to serve as
a benchmark. We evaluated the performance of the new method on randomly removed
time-intervals of various lengths, using three performance metrics: normalized root mean
squared error (NRMSE), coefficient of determination (R2), and normalized mean absolute
error (NMAE). The imputation models’ performance was evaluated for each AQM station
and different lengths of artificially removed data intervals, and the influence of seasonality
was also examined. A parallel Python implementation of the new kNN-based multivariate
imputation method is available on github.

2. Materials and Methods
2.1. Study Area and Data

PM2.5 observations were obtained from the Technion Center of Excellence in Exposure
Science and Environmental Health (TCEEH) Air Pollution Monitoring Database (TAPMD).
The TAPMD holds all the air quality monitoring (AQM) records observed in Israel since
1995, collected by the Ministry of Environmental Protection (MoEP) and by other agencies,
using EPA-approved instruments. The data have passed a routine quality assurance
procedure [29]. The number of reporting AQM stations increased around 2011 due to
the phase-in of the Israel Clean Air Act. Thus, we limited the study period to the years
2012–2019, resulting in a dataset of, at most, 140,256 half-hourly observations in each of the
AQM stations whose data were used.
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We used all the 59 AQM stations (Figure 1) that operated during the study period and
monitored fine airborne particles (PM2.5). Most PM2.5 AQM stations in Israel are situated
around five densely populated metropolitan areas (Figure 1): (i) Haifa, in the northern
coastal plain, (ii) Tel-Aviv (Gush Dan), in the central coastal plain, (iii) Jerusalem, in the
Judah Mountains, (iv) Ashdod, in the southern coastal plain, and (v) Ashkelon, which is
also located in the southern coastal plain. The 2012–2019 PM2.5 annual means and standard
deviations (SD) in these areas were 17.9 (1.4) µg/m3, 22 (1.5) µg/m3, 19.8 (2.5) µg/m3,
20.7 (1.5) µg/m3, and 19.1 (1.1) µg/m3, respectively. These levels exceed the World Health
Organization (WHO) recommended PM2.5 annual mean (5 µg/m3) as well as the annual
US National Air Quality Standards (NAQS) for PM2.5 (12 µg/m3). The major local an-
thropogenic PM2.5 sources in Israel are transportation and industrial plants. However, a
substantial fraction of the total observed PM2.5 levels results from transboundary transport
that is carried to Israel during certain synoptic conditions. For example, mineral dust is
carried to the region from the Sahara Desert and the Arabian Peninsula during the winter
and the transition seasons, while secondary/ aged particles are transported to Israel from
eastern and southern Europe mainly in the summer. Clearly, the particles that reach Israel
as part of this long-range transboundary transport have different physicochemical proper-
ties (size distribution, composition, etc.), and the phenomena are characterized by distinct
intensity (concentrations) and length (duration) [34–38].
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Figure 1. Locations of the 59 AQM stations whose data were used (lat., lon.). Station names are
provided in Table S1 in the Supplementary Materials.

2.2. Missing-Data Characteristics

Twenty-three out of the 59 AQM stations in the dataset were characterized by poor data
coverage, each with accumulated missing observations of >4 years during the study period
(i.e., >50% missing observations). Thus, although missing observations were imputed in all
the 59 AQM stations, we did not use the latter 23 AQM stations for model evaluation, due
to the inevitable higher uncertainty in their imputed values.

On average, the percentage of missing PM2.5 observations (out of the total possible
140,256 observations) in the 36 AQM stations with <4 years of accumulated missing obser-
vations was 20.4%, with a median and a SD of 22% and 12.9%, respectively. Table 1 presents
the distribution of lengths of the missing-data intervals in these 36 AQM stations. About
93% of the missing PM2.5 intervals were very short (≤3 h), however, their total missing



Atmosphere 2022, 13, 1934 4 of 16

time points accounted only for about 7% of the overall missing observations. Figure 2
depicts the temporal coverage of these 36 AQM stations’ datasets, with missing values
marked in grey. The mechanism responsible for the missing observations has a profound
influence on the characteristics that are presented in Table 1 and Figure 2, as well as on the
imputation performance. For standard air quality monitoring data, it is common to assume
a “missing at random” (MAR) mechanism [17,39,40], with the probability of an observation
to be missing independent of the missing value itself, although it might be influenced by
an external cause [41].

Table 1. Frequency distribution of the actual missing-data intervals in the dataset, grouped into six
length (L) categories. Statistics is reported only for the 36 AQM stations with accumulated missing
observations ≤ 4 years (marked in bold in Table S1 in the Supplementary Materials). The AQM
observations are reported every 0.5 h.

Length of Missing Data
Interval

(L)
Length Category

Fraction of Missing Data
Intervals out of the Total

Number of Missing Intervals
(%)

Fraction of Missing
Observations out of the Total

Number of Missing
Observations

(%)

L ≤ 3 h very short 92.88 7.44
3 h < L ≤ 24 h short 5.32 4.33
24 h < L ≤ 7 d medium length 1.45 9.01
7 d < L ≤ 30 d long 0.22 7.20
30 d < L ≤ 2 y very long 0.12 53.91
2 y < L ≤ 4 y extremely long 0.01 18.11

2.3. Workflow

The research workflow included the following steps:

(i) Setting aside a test set for the imputation models’ performance evaluation. For each
AQM station, this set included N randomly sampled chunks of observations of length
L, denoted hereafter “time-windows” (N × L: 720 × 0.5 h, 360 × 1 h, 180 × 2 h,
120 × 3 h, 120 × 6 h, 30 × 24 h (1 d), 20 × 36 h, 10 × 72 h, 3 × 240 h (10 d), and
1 × 720 h (30 d, i.e., 1 m)), that were artificially designated as missing (marked in
red in Figure 2). The artificially removed data intervals were categorized into four
categories: very short (0.5 h, 1 h, 2 h, 3 h), short (6 h, 24 h), medium-length (36 h,
72 h), and long (10 d, 30 d). Overall, in each of the 36 AQM stations with accumulated
missing observations ≤ 4 years (marked in bold in Table S1 in the Supplementary
Materials), 11,520 time points (half hours) served as the test set, corresponding on
average to 11% (9–17%) of the non-missing observations.

(ii) Tuning the models’ hyperparameters using a cross-validation (CV) procedure with
repeated random sub-sampling of the training set (marked in blue in Figure 2). In
each iteration, a sub-sample of the training set was designated as missing and served
as a validation set against which the model performance was examined for different
hyperparameters. The tuning of the hyperparameters was conducted separately
for the very short, short, medium-length, and long time-window categories of the
artificial missing data. Each of these category-based sub-samples accounted for 12%
(9–20%) of the training set.

(iii) Building the imputation models using the training set and the models’ optimal hyper-
parameters.

(iv) Evaluation of the performance of the imputation models on the test sets for each of the
36 AQM stations and for the four categories of missing-data interval length (very short,
short, medium-length, and long). The following metrics were used for evaluating
the models’ performance (see Table S2 in the Supplementary Materials): normalized
root mean squared error (NRMSE), coefficient of determination (R2), and normalized
mean absolute error (NMAE). The normalization of the metrics was required to
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enable comparison across missing-data interval lengths, seasons, and geographic
regions (i.e., different AQM stations). We compared the imputation performance of
the different models using the non-parametric Kruskal-Wallis one-way analysis of
variance, followed by the Conover-Iman post-hoc test [42]. Furthermore, we examined
how the model performance varied among seasons by means of Taylor diagrams [43].
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Grey—missing observations, blue and red—non-missing observations. Blue—the training set, red—
the test set used for model evaluation, comprised of randomly selected artificially missing time-
windows of different lengths (0.5 h, 1 h, 2 h, 3 h, 6 h, 24 h, 36 h, 72 h, 10 d, and 30 d). Station names
are specified in Table S1 in the Supplementary Materials. The test set (red) was extracted only from
the 36 AQM stations with accumulated missing data of ≤4 years.

(v) Finally, a test-case of a very long (2 years) missing-data interval was examined, to
inspect the ability of the models to handle large missing-data intervals. For this,
we randomly removed two years of records (i.e., a sequence of 35,040 time points)
from 25 AQM stations (one at a time) that had less than two years of accumulated
missing observations. For each of these AQM stations, we ran the imputation models
with the optimal hyperparameters found for the long (7 d< L ≤ 30 d) missing-data
time-window (Tables S3 and S4 in the Supplementary Materials).

2.4. Model Description
2.4.1. Multivariate Weighted-kNN Imputation Using Correlations (wkNNr)

In this work the traditional kNN multivariate imputation has been modified as follows:
(i) we modified the Euclidean distance function such that differences between observations
in AQM stations that showed high correlations with the imputed AQM station obtained
higher weights, and (ii) we used the inverse of this distance function for calculating the
weighted average of the k-nearest observations. In general, the method follows these steps:
for a matrix X of N PM2.5 observations in M AQM stations (X[N×M]), let xij denote the
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ith observation in the jth AQM station, and let O
(
xij
)

denote whether the value of xij is
missing:

O
(
xij
)
=

{
0 if xij is missing
1 otherwise

(1)

Let Common(i, n, m) = O(xim)·O(xnm) such that Common(i, n, m) = 1 if rows i and n
both have non-missing observations in column m and Common(i, n, m) = 0 otherwise. In
addition, let

Common(i, n) = ∑M
m=1Common(i, n, m) (2)

such that Common(i, n) is the number of columns with non-missing observations in both
rows i and n. For each missing value xij to be imputed, we define a correlation-weighted
distance function between the observations in the ith and the nth rows (Equation (3)),

Distij(n) =

√√√√∑M
m=1 Common(i, n, m) · (xim − xnm)

2 · r2
mj

Common(i, n)
(3)

where rmj, the correlation between columns m and j, acts as a weighing coefficient of the
distance function. Namely, the distance function takes into account the correlation between
the AQM stations, such that measurement differences in AQM stations that are correlated
with the imputed AQM station (marked by j in Equation (3)) contribute more to the distance
metric while measurement differences in uncorrelated AQM stations are discounted. This
gives preference to rows with smaller distances in AQM stations that are highly correlated
with the currently imputed one. For imputing the missing value xij, we define a weight
function:

Wij(n) =
Common(i, n)q

Distij(n)
(4)

In Equation (4), Common(i, n) is raised to a power of q to give preference to rows with
fewer missing values, i.e., with a larger Common(i, n), since the reliability of these rows
is higher. A missing value in the ith row and the jth column is imputed by taking the
weighted average of the non-missing values in the jth column from the k rows with the
highest weights. The overall imputation procedure is described in the following pseudo-
code (Figure 3).
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We tuned the hyperparameters (k, q, type of correlation) using a grid search opti-
mization, with the loss function being the average RMSE of 10 sub-samples randomly
drawn from the training set during the CV procedure. The search space and the optimal
hyperparameters are detailed in Table S3 in the Supplementary Materials.

2.4.2. Multivariate Iterative Imputation with Extra Trees (iiET)

As a benchmark imputation method, we applied a variation of the missForest iterative
imputation algorithm [44], available in the IterativeImputer class of the scikit-learn Python
library [45]. The missForest algorithm was found to outperform many other imputation
methods [23,46–48]. However, while the original missForest algorithm iteratively trains a
Random Forest (RF) estimator on the observed values [49], the iterative imputation method
we applied trains a faster tree ensemble—the extremely randomized decision trees (Extra
Trees, ET) estimator [50]. Specifically, whereas a decision tree in a RF splits each node by
the best possible split among a random subset of features (i.e., AQM stations) selected at
each node, the ET algorithm employs a faster feature selection via randomization. The ET
algorithm first sets a random threshold value for each feature as a potential split, and then
selects the feature with the best split among them. Additionally, the ET algorithm uses
the whole learning sample to grow the trees [50] while the RF draws observations with
replacement (bootstrapping). We designated the iterative imputation algorithm based on
the extremely randomized decision trees, i.e., the benchmark model, iiET.

The iiET imputation follows these steps: the time-series of one AQM station is desig-
nated as the output (y) and the other AQM stations’ records are treated as input (X). An ET
regression estimator is then fitted on (X, y) for all the known values in y. Next, the estimator
predicts the missing values in y. These steps are performed on each of the AQM station’s
time series, starting from the AQM station with the fewest missing values and progressing
to AQM stations with more missing values. The procedure is repeated up to the preset
maximum number of iterations (n), refining the estimation of the missing values in each
iteration. Often, a small number of iterations is sufficient for convergence [51,52]. The
following hyperparameters of the ET estimator (the kernel of the iiET model) were tuned:
the number of trees in an ensemble (‘n_estimators’), the minimum number of samples in
each leaf node (‘min_samples_leaf ’), and the minimum number of samples required to split
a node (‘min_samples_split’). For the tuning, we used a Bayesian optimization model with
40 iterations [53] and with the loss function being the average RMSE of 10 sub-samples.
Subsequently, we tuned the number of iterations of the iiET model, n. The search-space
and optimal hyperparameters are detailed in Table S4 in the Supplementary Materials.

2.5. Accounting for Adjacent Lagging and Leading Observations

To improve the performance of both imputation methods, we examined accounting
also for the first and second lagging and leading observations, denoting these models by a
“ll1” or a “ll2” suffix, respectively. For example, wkNNr_ll1 is the wkNNr method when it
accounts also for two additional time-series beyond the time-series that we wish to impute
as input: one that leads and one that lags the imputed time-series by one timestep (half
an hour). This results in operation on a dataset that is three times larger. Similarly, the
wkNNr_ll2 operates on a dataset that is five times larger since it accounts for two lagging
and two leading time-series beyond the currently imputed time-series. We were able to
account for the first and second lagging and leading observations in the wkNNr model
(denoting these models wkNNr_ll1 and wkNNr_ll2, respectively). However, due to the very
high computational demand (RAM) of the iiET model, using this model we could only
account for the first lagging and leading observations (denoting the model iiET_ll1). We
evaluated the optimal number, T, of the lagging and leading observations to be used as
model inputs by calculating the partial autocorrelation function for each AQM station’s
time-series. The partial autocorrelation between observations at lag T is the correlation
that results after removing the effect of all the shorter lags (<T) correlations. Applying this
approach to our dataset, we found that most AQM stations had meaningful partial autocor-
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relations over only 1–2 lagging/leading half-hour time-points, suggesting that accounting
for more distant observations is not expected to further improve the performance of the
imputation models. We ran these enhanced models with the optimal hyperparameters
obtained for the wkNNr and the iiET models (see Section 2.4 and Tables S3 and S4 in the
Supplementary Materials).

3. Results

We report here the results of steps (iii)–(v) of the workflow (Section 2.3). The results of
step (ii) (tuning of the models’ hyperparameters) are reported in Tables S3 and S4 in the
Supplementary Materials. For simplicity, all the variations of the wkNNr and iiET methods
(i.e., wkNNr and iiET with the lagging and leading observations added as inputs), are
referred to as different models.

3.1. Model Performance for Different Missing-Data Time-Window Lengths

After the different imputation models were employed with the selected optimal hyper-
parameters, their performance was evaluated. We report here the models’ performance at
each AQM station for the first four missing-data time-window length categories (Figure 4
and Table 2). Since the wkNNr_ll2 model was found to perform slightly better than the
wkNNr_ll1 model, the latter is not reported hereinafter.

On average, for the very short (0.5–3 h) missing-data time-windows the wkNNr_ll2
model showed significantly better (p < 0.05) performance than all the other models (Figure 4
and Table 2). It is noteworthy that while the performance of the iiET_ll1 model was similar
to that of the wkNNr_ll2 for the very short missing-data time-windows (in terms of the
NRMSE, R2, and NMAE), the iiET_ll1 model showed a significantly higher (p < 0.05)
normalized mean bias (NMB, see Table S2; wkNNr_ll2: 0.021 ± 0.03, iiET_ll1: 0.062 ± 0.06).
Moreover, while the iiET model showed the best performance for the longer missing-data
time-window categories (Figure 4 and Table 2), the differences between the wkNNr_ll2 and
the iiET models in terms of all the performance measures were not significant (Table 2).

A few examples of missing-data time-series imputations are depicted in Figure 5. For
very short missing-data time-windows, imputation by the wkNNr_ll2 model generally
provided better results than those obtained by all the other models (Figure 5a,b), in agree-
ment with Figure 4. The performance deterioration of the iiET_ll1 model is seen already in
the imputation of the 2 h missing-data time-window (Figure 5a,b). For the imputation of
longer missing-data time-windows (Figure 5c,d), the advantage of the iiET model over the
wkNNr_ll2 model is evident when rapid concentration changes occurred.

The Taylor diagrams (Figure 6) depict seasonal changes in the iiET and wkNNr_ll2
models’ performance, revealing lower imputation performance for all the missing-data
time-window categories during the summer (JJA) relative to the other seasons. This is
evident by a higher normalized centered RMSE (CRMSE, see Table S2 in the Supplementary
Materials) and a lower correlation between the measured and imputed PM2.5 concentrations
in the summer (see Discussion).

3.2. A Test-Case of a Very Long Missing-Data Time-Window

Since the largest fraction of missing observations out of the total accumulated missing
data was in the very long (30 d < L ≤ 2 y; Table 1) missing data category, we examined the
performance of the imputation models in filling in such extended missing-data gaps (see
Workflow (v)). Both the wkNNr_ll2 and the iiET imputation models performed reasonably
well even under such extreme test conditions, with mean (SD) NRMSE, R2, and NMAE
of 0.55 (0.25), 0.64 (0.23), and 0.29 (0.06) for the iiET model, and 0.59 (0.26), 0.61 (0.18) and
0.3 (0.05) for the wkNNr_ll2 model.
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Figure 4. Model performance in terms of (a) NRMSE, (b) R2, and (c) NMAE. Each boxplot contains
all the imputation evaluation results in the 36 AQM stations (see Section 2.2), categorized accord-
ing to the missing-data time-window length: very short (0.5–3 h), short (6–24 h), medium-length
(36–72 h), and long (10–30 d), with N = 144, 72, 72, and 72, respectively. White triangles: mean
values, black horizontal lines: median values, lower and upper box boundaries mark the 25th and
75th percentiles, respectively (i.e., the inter quartile range, IQR). The upper whisker represents
the 75th percentile + 1.5 × IQR, and the lower whisker represents the 25th percentile − 1.5 × IQR.
Outliers are not shown to avoid clutter.
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Table 2. Mean (standard deviation) of the performance measures for the different missing-data
time-window categories.

Category Model NRMSE R2 NMAE

Very short

wkNNr 0.42 (0.22) 0.77 (0.19) 0.24 (0.06)
wkNNr_ll2 0.36 (0.16) 0.82 (0.13) 0.21 (0.05)

iiET 0.41 (0.17) 0.78 (0.14) 0.25 (0.05)
iiET_ll1 0.37 (0.21) 0.81 (0.16) 0.22 (0.07)

p value a <0.001 0.004 <0.001
Significant differences b 1, 4, 5, 6 1, 4, 5, 6 1, 3, 4, 5, 6

Short

wkNNr 0.43 (0.17) 0.65 (0.18) 0.26 (0.06)
wkNNr_ll2 0.42 (0.16) 0.65 (0.24) 0.25 (0.04)

iiET 0.39 (0.13) 0.70 (0.15) 0.25 (0.04)
iiET_ll1 0.50 (0.16) 0.52 (0.25) 0.30 (0.06)

p value a <0.001 <0.001 <0.001
Significant differences b 2, 4, 5 2, 4, 5 2, 4, 5

Medium length

wkNNr 0.43 (0.20) 0.62 (0.21) 0.26 (0.07)
wkNNr_ll2 0.41 (0.15) 0.64 (0.18) 0.25 (0.05)

iiET 0.39 (0.15) 0.66 (0.21) 0.25 (0.06)
iiET_ll1 0.50 (0.20) 0.45 (0.28) 0.31 (0.07)

p value a <0.001 <0.001 <0.001
Significant differences b 2, 4, 5 2, 4, 5 2, 4, 5

Long

wkNNr 0.45 (0.21) 0.55 (0.22) 0.27 (0.07)
wkNNr_ll2 0.45 (0.20) 0.56 (0.21) 0.26 (0.06)

iiET 0.42 (0.17) 0.57 (0.23) 0.26 (0.06)
iiET_ll1 0.56 (0.29) 0.32 (0.37) 0.32 (0.09)

p value a <0.001 <0.001 <0.001
Significant differences b 2, 4, 5 2, 4, 5 2, 4, 5

a p value of the non-parametric Kruskal-Wallis test, applied on each measure across the four models. b Pairs of
models that show statistically significant differences (p value < 0.05): (1) wkNNr_ll2—iiET, (2) wkNNr_ll2—iiET_ll1,
(3) wkNNr—iiET, (4) wkNNr—iiET_ll1, (5) iiET—iiET_ll1, (6) wkNNr—wkNNr_ll2.
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Figure 5. Measured PM2.5 concentrations (black line) vs. imputed concentrations by the wkNNr
(green line), wkNNr_ll2 (red line), iiET (blue line), and iiET_ll1 (purple line) models for different
missing-data time-window lengths (red shade). (a,b) Very short missing-data time-windows in
AQM station #2, (c) a medium-length missing-data time-window in AQM station #15, and (d) a long
missing-data time-window in AQM station #26 (the wkNNr model results are not shown to avoid
clutter).
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Figure 6. Taylor diagrams of the wkNNr_ll2 and iiET imputation models (represented by distinct
colors) in the different seasons (represented by symbols): winter (DJF), spring (MAM), summer
(JJA), and fall (SON). The plots correspond to different missing-data time-windows length categories:
(a) very short, (b) short, (c) medium-length, and (d) long. The centered root mean squared error
(CRMSE) is normalized by the standard deviation (SD) of the observations (see Table S2 in the
Supplementary Materials).

4. Discussion

This work presents a new multivariate kNN imputation model that weighs the distance
between the observations according to the correlation of the imputed AQM station’s time-
series with all the other AQM stations’ time-series. To the best of our knowledge, this is the
first study that applied such a model on a large dataset of PM2.5 concentrations, achieving
good accuracy without using any external data (e.g., meteorology, other air pollutants
concentrations, land use) other than the available PM2.5 concentrations in the dataset. The
latter represents a considerable advantage due to the fewer input data required, and as it
frees the auxiliary data for use as covariates in further analyses without fearing to introduce
hidden relationships (e.g., collinearity) that can impair the results of the advanced analyses.

Since autocorrelations always exist in time-series of environmental observations, we
hypothesized that accounting for the lagging and leading records around the imputed value
could improve the models’ performance. Indeed, accounting for the first and second lagging
and leading values as model inputs (wkNNr_ll2) significantly improved the imputation of
the very short missing-data time-windows by the wkNNr model. The result agrees with
the studies of Junninen et al. [17] and Ottosen and Kumar [9], who showed the advantage
of univariate interpolation methods for short missing-data gaps. The iiET_ll1 model on
the other hand showed poorer performance than the iiET model for all the time-window
categories. The reason for this counterintuitive result is unclear and requires an in-depth
examination that is beyond the scope of this work.

The wkNNr_ll2 model showed the best imputation performance for very short missing-
data time-windows (0.5–3 h) while the iiET model was superior in the imputation of longer
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missing-data time-windows (Figure 4 and Table 2). The superiority of the iiET model, a
variation of the missForest algorithm, was expected due to its ability to learn complex
relationships among the AQM stations’ data and to generalize them to unseen data. In
addition, it uses an iterative process that enables fine-tuning of the final estimation. By
contrast, the wkNNr and wkNNr_ll2 models are inherently limited to estimating missing
values based only on non-missing values in the imputed time-series, and they rely only on
one correlation matrix. A possible way to improve the performance of the wkNNr model
could be to account for several correlation matrices rather than just one, each accounting
for a shorter time-period (e.g., one year instead of eight years). This might enable the
imputation model to better respond to changes in the relationships between the AQM
stations over time. Moreover, choosing the model inputs such that only AQM stations
that are highly correlated with the AQM station that is being imputed are used could be
advantageous. In this work, a zero-correlation threshold was set as a threshold for selecting
the AQM stations that contribute to the distance calculation (Equation (3)). However, the
option to apply other thresholds is implemented in the wkNNr code that has been reposited
on github.

We found that the accuracy of the imputation varied between seasons (Figure 6),
showing lower performance in the summer. This is likely related to the fact that PM2.5
concentrations in the study area are considerably influenced by characteristic seasonal cli-
matology [38], in particular, transboundary transport of PM of distinct nature by seasonally
varying synoptic patterns [35]. In the East Mediterranean, mineral dust is transported from
the north African Sahara and the Arabian deserts during all seasons but the summer, with
the meteorological conditions characterized by an irregular succession of high-pressure
systems, Red Sea troughs (a northward extension of the Sudan monsoon low), and eastern
Mediterranean cyclones [34,37]. Such conditions generate high average Pearson correla-
tions between AQM stations’ observations in the study area (0.6, 0.69, and 0.73 in the fall,
winter, and spring, respectively), which enabled the models to impute relatively accurately
missing observations in all the AQM stations. In contrast, the summer months in the East
Mediterranean are characterized by stable and rather persistent atmospheric conditions
but by varying anthropogenic emissions due to variations in electricity demands for air
conditioning during the day and across regions, and due to summer vacation effects on
traffic-related air pollution (TRAP). This variation generates considerable local variability
across the AQM stations, and results in a lower average correlation between the AQM
stations in the summer (r = 0.36). The latter hinders the ability of the imputation models
to learn from the other AQM stations, resulting in lower imputation performance in the
summer. Nevertheless, applying a moving-average smoothing of the time-series of both
the measured and the imputed PM2.5 revealed that even when a narrow moving aver-
age window (2 h) has been applied, the correlation between the observed and imputed
smoothed time-series increased substantially for all the missing-data time-window cat-
egories. For example, for the long missing-data time-window category the correlation
between the measured and the iiET imputed PM2.5 concentrations increased in the summer
from 0.7 (Figure 6d) to 0.81 after we applied a 2 h moving-average smoothing of the two
time-series (not shown). These results demonstrate that if the performance of smoothed
time-series is considered, the imputation models perform well even in the summer.

In general, an imputation scheme that uses only the non-missing PM2.5 observations is
expected to work well in situations where correlations between stations exist. Correlations
could result from common emission sources or common climatology that may characterize
relatively small regions, like our study area (Figure 1). Yet, correlations can also exist
between distant AQM stations due to similar anthropogenic behavior (e.g., traffic patterns).
Calculating the correlation matrix between all stations might be a good place to start when
examining the applicability of the suggested imputation framework.

Furthermore, we note that the ability of imputation methods to fill in accurately
missing AQM data highly depends on whether observed changes (e.g., long-term trends)
were captured in the records of other AQM stations, i.e., whether these changes were
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local, e.g., the launching/shutdown of a local industrial, quarrying, mining, or construction
activity/operation, or spatially global, e.g. a large-scale lasting trend. Hence, the imputation
of long missing-data gaps in isolated AQM stations might be highly uncertain.

5. Conclusions

This work explored the use of a new method (wkNNr) for a reliable imputation of
missing PM2.5 observations in AQM records. To develop and evaluate the method we
used eight years of data (2012–2019) from 59 AQM stations in Israel. Despite the mathe-
matical simplicity of the wkNNr model, its comparable performance with the benchmark
imputation model (iiET), and the significant (p < 0.05) improvement (R2 = 0.82 compared
with R2 = 0.77) seen in the very-short missing-data time-windows when accounting for
the lagging and leading observations as inputs (wkNNr_ll2), attest for its robustness and
strength. The wkNNr_ll2 model carries both the advantage of univariate interpolation
methods for short missing-data time gaps, and of multivariate methods for imputation of
long missing-data gaps. With its small number of hyperparameters that require tuning
(see Tables S3 and S4), preferring the wkNNr_ll2 over the iiET would be a reasonable choice
when time-resources are limited, and for datasets with mostly small missing gaps, which is
common in environmental datasets (Table 1). Moreover, Table 2 reveals that in our dataset,
the performance of the wkNNr_ll2 model in the imputation of >3 h missing-data intervals
was lagging only slightly and not significantly (p > 0.05) behind the performance of the iiET
model. Alternatively, a hybrid model might be utilized, combining imputed values by the
wkNNr_ll2 in the very short missing-data gaps (≤3 h, corresponding to 1–6 missing values)
with imputed values by the iiET in the longer missing-data gaps (>3 h missing values).

The imputation scheme developed in this study uses only the non-missing PM2.5
observations, and as such. has a huge advantage if the imputed dataset should be used
for further advanced analyses, e.g., unsupervised factorization methods for source appor-
tionment. Namely, using only the PM2.5 observations frees commonly used auxiliary data,
such as meteorological records, concentrations of co-measured pollutants, etc., to be used
as covariates in the advanced analyses without fearing that they had contaminated the
dataset, e.g., inserted hidden relationships that can affect the source factors found.

The change in the model performance in the summer relative to the other seasons
emphasizes the importance of climatology on PM2.5 concentrations in the East Mediter-
ranean. Hence, accounting for the season when calculating the correlation matrix can
lead to an overall better performance of the wkNNr family of models. The unimputed
dataset used in this work and the wkNNr models presented in this work are available at
https://github.com/TCEEH/wkNNrImputation (accessed on 27 October 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13111934/s1, Table S1: The ID numbers and names of
the 59 AQM stations in the imputed dataset; Table S2: The performance metrics used in this work;
Table S3: The tuned hyperparameters of the wkNNr model; Table S4: The tuned hyperparameters of
the iiET model.
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