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Abstract: Ensemble weather forecasting involves the integration of multiple simulations to improve
the accuracy of predictions by introducing a probabilistic approach. It is difficult to accurately predict
heavy rainfall events that cause flash floods and, thus, ensemble forecasting could be useful to
reduce uncertainty in the forecast, thus improving emergency response. In this framework, this study
presents the efforts to develop and assess a flash flood forecasting system that combines meteoro-
logical, hydrological, and hydraulic modeling, adopting an ensemble approach. The integration of
ensemble weather forecasting and, subsequently, ensemble hydrological-hydraulic modeling can
improve the accuracy of flash flood predictions, providing useful probabilistic information. The flash
flood that occurred on 26 January 2023 in the Evrotas river basin (Greece) is used as a case study. The
meteorological model, using 33 different initial and boundary condition datasets, simulated heavy
rainfall, the hydrological model, using weather inputs, simulated discharge, and the hydraulic model,
using discharge data, estimated water level at a bridge. The results show that the ensemble modeling
system results in timely forecasts, while also providing valuable flooding probability information for
1 to 5 days prior, thus facilitating bridge flood warning. The continued refinement of such ensemble
multi-model systems will further enhance the effectiveness of flash flood predictions and ultimately
save lives and property.

Keywords: ensemble forecasting; heavy rainfall; flash floods; atmospheric modeling; hydrometeorol-
ogy; hydraulics; WRF–ARW; WRF–Hydro; HEC–RAS

1. Introduction

The continuous interaction of physical processes between the atmosphere and hydro-
sphere has a profound impact on the planet’s water cycle. This interplay, at times, can give
rise to severe hydrometeorological phenomena, such as floods [1]. Flooding stands out
as one of the most recurrent natural hazards, consistently endangering human lives and
essential infrastructure. Over the past three decades, floods exhibit an overall increasing
trend worldwide [2], underscoring the necessity to increase preparedness and the timely
and efficient protection of socio-economic activities and human lives [3,4]. It is difficult to
be sure that flood protection measures or defense structures can be completely effective,
especially under changing climate conditions [1]. Thus, it becomes crucial for flood-risk
management systems to be able to provide timely forecasts, warnings, and ample lead
time, which is necessary both for human safety and for the timely application of inter-
ventions [5–8]. Therefore, it is very important to build robust flood forecasting systems,
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considering real weather conditions, providing thus scientifically supported inputs for
informed decision making, enhancing the resilience to floods [9,10].

The need to enable the anticipation of impending heavy rainfall events and their poten-
tial impact on hydrological systems leading to potential flooding has long been recognized
and researched [11]. The inherent uncertainties concerning meteorological phenomena
that pass through flood models and forecasts have also long been researched [12,13], and
continue to be a crucial research question [14], given the importance of accurate and timely
forecasts [15], and the need for considering climate and weather uncertainties in integrated
planning [16]. In that context, probabilistic forecasts have been proved particularly use-
ful in enhancing the reliability of hydrologic-hydraulic forecasts [17]. Ensembles have
found several applications in weather forecasting [18], given their ability to use multiple
simulations based on slight variations in initial conditions and/or parameters, capturing
a range of potential outcomes and associated uncertainties in predicting meteorological
processes, even with limited data [19–21]. Unlike traditional deterministic approaches that
offer a single prediction, ensembles offer a spectrum of outcomes, capturing complexities
and uncertainties. This is crucial for a more realistic and comprehensive understanding of
hydrometeorological-hydraulic systems, enhancing risk management and response plan-
ning, compared to relying on a single-point deterministic prediction, which can often be
misleading [22].

Previous papers using ensemble forecasting alert systems for flood forecasts usually
provide short-term predictions, and they refer to large scale study areas. For example, the
Iowa Flood Center (IFC) has operated a flood forecasting and information dissemination
system across the state since 2008, which is based on 15-min forecasts [23]. Other ensemble
forecasting alert systems developed for the Cévennes–Vivarais region (Southern France)
have been able to provide forecasts even 48 hours ahead of a flood event, for medium-
sized catchments covering 100–600 km2 [24]. Similar flood warning applications based on
ensemble forecasts have been developed for Iranian catchments of similar size (Kan Basin,
approximately 200 km2) [25]. There are large scale applications (large scale hydrology),
such as the European Flood Awareness System (EFAS) based on medium-range weather
forecasts [5], considering large basins, such as the Danube river basin [26]. Ming et al. [27]
have developed a flood forecasting system for the 2500 km2 Eden Catchment, England, with
a lead time of 34 h. However, the above examples are based on two models, at most, to cope
with the large scale computational demand, and also manage to provide results of adequate
lead time. In particular, these applications are usually based on a weather forecast model,
the results of which are then used to estimate the flood peaks by other methods (including
Bayesian Networks, MultiCriteria Analysis, Machine Learning), considering only the
rainfall peak thresholds [28,29], or use Machine Learning to capture modelling uncertainties
directly for flood simulations [30], while rarely employing hydraulic models [18]. There are
significantly fewer applications capturing the meteorological conditions and uncertainties
through weather forecast models and exploring their progression through comprehensive
hydrological and hydraulic models. Moreover, the level of detail of the existing applications,
in relation to their lead time, is a challenge [28], as it is difficult to provide accurate forecasts
at small catchment scales and with sufficient lead time exceeding 24–48 h [22]. Thus, there
are fewer small-scale applications of fine resolution, where the accuracy and modelling
detail are difficult to be adequately captured. The review article by Todini [22] highlights
the need for enhanced probabilistic forecasts, based on EFAS, and calls for improved and
more integrated modelling approaches, able to provide adequate lead time forecasts for
fine scales. The review on ensemble-based flood forecasting applications by Wu et al. [18]
is in line with the above, and further highlights the need to thoroughly assess uncertainties
from multiple sources and models.

In this paper, we aim to fill these gaps by: (a) using an integrated system combining
three models (meteorologic, hydrologic, hydraulic); (b) analyzing a real flash-flood event
in high-resolution at a small scale (a bridge in a Greek catchment); (c) aiming to provide
the initial flood alert signals five days prior to the flood event. In particular, we combined
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the Advanced Weather Research and Forecasting (WRF–ARW) model, which was ‘fed’
with ensemble probabilistic forecasts, the WRF–Hydro hydrological model, and the HEC–
RAS hydraulic–hydrodynamic model. This allows us to assess the uncertainties in each
modelling stage (weather, streamflow, water depth). The small scale is a comparative
advantage over existing approaches, including the sole other application of this system [31]
(which, however, did not consider an ensemble forecasting and, thus, an uncertainty
assessment). In this work, the small-scale precision was achieved by exploiting analyses
from Remote Sensing for our study area, along with data obtained from drones, to create a
refined terrain model, allowing us to focus even on specific infrastructure elements (i.e.,
a small bridge) to showcase its flooding probability under a real-world event. To our
knowledge, this is the first application (at least in Greece), of such a holistic modelling
approach at a scale that other ensemble forecasting alert systems currently cannot assess in
such detail. Our ensemble approach considered a forecast up to five days prior to the flood
event, which also allowed us to assess the behaviour of uncertainty as the event progressed,
and the ability to provide robust alerts. The novelty of the presented approach lies in
its integrated character, combining and advancing multiple models and methods, its fine
resolution at all modelling stages, the ambitious early warning signals, and its operational
character that enables its application to other areas.

2. Study Area, Models and Methods
2.1. Study Area

Evrotas is one of the largest rivers at the southern end of the Balkan Peninsula [32]. Its
basin is located in the south-eastern part of Peloponnese (Greece), covering approximately
2400 km2. Evrotas River Basin (ERB) originates from the regional unit of Arcadia, while
most of the river crosses the regional unit of Laconia and flows in a northwest–southeast
direction for approximately 90 km before discharging into the Laconic Gulf [33] (Figure 1).
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Almost 41% of the ERB has elevations that are higher than 600 m.a.s.l. (meters above
sea level) and 46% of the area is characterized by elevations ranging from 150 to 600 m.a.s.l.
The southwestern part of the basin presents the steepest slopes (45%), while the average
slope is 20%. Concerning the observed land uses, most of the basin (70%) is covered
by low vegetated areas, native coniferous and mixed forests, while the rest of the area
accommodates mostly agricultural activities. Regarding the geological formations, 42%
of the catchment is covered by carbonate formations while, mostly along the plain areas,
riverine sediments of Neogene or more recent age are detected [34]. The ERB is defined
by a Mediterranean climate type with hot, dry summers and cool, wet winters, with mean
annual precipitation and air temperature of 800 mm and 16 ◦C, respectively.

In general, the ERB is characterized by a hydrological complexity as it presents peren-
nial, intermittent, ephemeral and episodic river flows combined, in some places, with
interactive groundwater [34]. In summer or extended dry periods, the hydraulic connec-
tivity of the river is interrupted in certain areas. This interruption occurs because water
flows downward into carbonate karstic formations and due to excessive extraction from
nearby aquifers for irrigation purposes [34]. On the other hand, river parts that preserve
the flow are mainly dependent on karstic springs located along the river [35]. The river
flow is regenerated after the Skala region, located in the agricultural plain of the Evrotas
River Delta (Figure 1), due to its recharge with groundwater through springs [33].

Furthermore, during the winter period, large flash flood events occur with disastrous
impacts on infrastructure, agricultural areas, and human lives [34,36]. For example, the
flash flood that occurred on 7 September 2016 caused one fatality, severe damage, and
the overflow of the bridge of the town of Skala [37] (Figure 1). This paper focuses on
a more recent flash flood event, that occurred on 26 January 2023. This flood resulted
in damage to roads, cultivation and buildings, among other infrastructure elements and
properties (Figure 2). It inflicted severe damage, particularly in agricultural areas, as the
majority of the ERB consists of natural and agricultural zones, with urban areas comprising
only 1%. Consequently, the flood had significant socio-economic implications for the local
population. The Skala bridge experienced a near-flooding event, prompting precautionary
closure. This incident led to heightened public concern, garnered extensive coverage in the
Greek media, and initiated discussions regarding the bridge’s operational safety [38,39].
Therefore, in this paper, we focused on the weather-hydrologic-flood simulation for the
Skala bridge, to better understand the mechanisms that led to this event and explore the
potential for providing accurate early warning information.
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2.2. Overview of the Ensemble Hydrometeorological System

In this study, the Institute of Marine Biological Resources and Inland Waters (IM-
BRIW’s) hydrometeorological-hydraulic system [37] was set up to perform ensemble sim-
ulations aiming at the improvement of flash-flood forecasts through the exploitation of
produced probabilistic information. As mentioned in the introduction, the system includes
the Advanced Weather Research and Forecasting (WRF–ARW) model [40], the WRF–Hydro
hydrological model [41], and the HEC–RAS hydraulic–hydrodynamic model [42]. The lead
time is very important in the prediction of heavy rainfall events and, thus, the WRF–ARW
model was initialized using five different initialization datasets at 12 UTC each day cov-
ering the period from 21 to 25 January (i.e., 5 to 1 days before the occurrence of the flash
flood on 26 January). For each initialization time, WRF–ARW used 33 different datasets
for initial and boundary conditions (i.e., 165 simulations for the five initialization times
in total). For 2 of the 33 datasets, the initial and boundary conditions were based on the
operational analyses and forecasts of the Global Forecast System (GFS) of the National
Centers for Environmental Prediction (NCEP) in the horizontal resolutions of 0.25 × 0.25◦

and 0.5 × 0.5◦, respectively. These simulations are hereafter named as Oper_0.25 and
Oper_0.50. For the other 31 datasets, the initial and boundary conditions were based on
the control (1) and ensemble (30) analyses and forecasts of the Global Ensemble Forecast
System (GEFS) of the NCEP in the horizontal resolution of 0.5 × 0.5◦. These simulations
are hereafter named as Ctrl and Ens1-30. In this way, WRF–ARW simulated 33 different
atmospheric conditions for each initialization time (i.e., five initial datasets from 21 to
25 January at 12 UTC), thus producing 5 × 33 rainfall forecasts.

Then, the WRF–Hydro model used the forcing meteorological input data every 1 h in
a horizontal resolution of 1 km × 1 km (as simulated by the finest WRF–ARW domain),
to simulate discharge at the ERB in a horizontal resolution of 100 m × 100 m. Thus,
the WRF–Hydro produced 33 different discharge predictions for each initialization time
(i.e., 165 forecasts in total), according to the respective meteorological inputs. Finally,
the HEC–RAS model used the discharge data to estimate the water level at the Skala
bridge, also producing 33 different water level predictions for each initialization time (i.e.,
165 forecasts in total), which facilitated the calculation of flooding probability. Figure 3
demonstrates a flowchart of the main data and models included in the operation of the
ensemble forecasting system. The depicted information is further described in the following
sub-sections. More information regarding the setup of each model of the IMBRIW’s
ensemble hydrometeorological–hydraulic forecasting system is found in Sections 2.3–2.5.
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2.3. Meteorological Model Setup

The WRF–ARW version 4.4.2 model [43] was set up in 4 nested domains (Figure 4a): the
D1 domain with 36 km × 36 km horizontal resolution (161 × 90 Arakawa-C grid points), the
D2 domain with 12 km × 12 km horizontal resolution (211 × 160 Arakawa-C grid points),
the D3 domain with 4 km × 4 km horizontal resolution (199 × 199 Arakawa-C grid points),
and the D4 domain over the ERB (i.e., used for WRF–Hydro forcing) with 1 km × 1 km
horizontal resolution (73 × 73 Arakawa-C grid points). The vertical discretization of
the model was based on 38 levels in the 4 domains, reaching a top pressure of 50 hPa
(approximately 20 km). Time steps of 180, 60, 20, and 5 s were used in the 4 domains,
respectively. Moreover, the Global Multi-resolution Terrain Elevation Data (GMTED 2010
30-arc-sec USGS) [44], the MODIS FPAR vegetation data [45], and the 21-class IGBP MODIS
land-use data [46] were employed as static input data in the simulation. Regarding the
lower boundary conditions over the sea, sea surface temperature (SST) was based on the
real time global (RTG) SST analysis data produced by the NCEP in the high-resolution
(0.083 × 0.083◦). SST fields were used following an operational approach, considering 1 day
before initialization date, and preserving them as constant throughout the simulations.
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Concerning parameterization schemes, the revised Monin–Obukhov scheme [47]
represented surface layer processes, while the Mellor–Yamada–Nakanishi–Niino Level
(MYNN) level 2.5 scheme [48] handled the planetary boundary layer (PBL) processes.
The Unified Noah scheme [49] represented the land surface and soil processes, while
the longwave and shortwave radiation processes were parameterized by the RRTMG
scheme [50]. The Purdue Lin scheme [51] was used for cloud microphysics and the Grell–
Freitas ensemble scheme [52] was used to parameterize the convective processes in the D1
and D2 domains; however, convection was explicitly resolved in the D3 and D4 domains.

2.4. Hydrological Model Setup

The WRF–Hydro version 3.0 hydrological model was applied to forecast discharge
in the ERB during the flash flood event. The WRF–Hydro model [41] was set up at the
ERB (i.e., D4 domain of WRF–ARW, Figure 4b) using weather input data provided by
the D4 (1 km × 1 km) domain of the WRF–ARW model. The weather input dataset
consists of liquid water precipitation rate, air temperature at 2 m, specific humidity at
2 m, incoming shortwave and longwave radiation, u- and v-components of wind at 10
m, and surface pressure [1]. WRF–Hydro used the Noah land surface model (LSM) [53]
in the 1 km × 1 km horizontal resolution to represent land processes. The river routing
processes were simulated at the higher horizontal resolution of 100 m × 100 m, following
an aggregation/disaggregation methodology [1]. WRF–Hydro estimated infiltration and
exfiltration using a diffusive wave overland routing scheme [54,55] while channel routing
was simulated using the Muskingum–Cunge method [56].

Moreover, the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model
(DEM) [57] dataset (90 m × 90 m resolution) distributed by the National Aeronautics and
Space Administration (NASA) and the United States Geological Survey (USGS) were used
to create the topographic dataset used as input in the hydrological simulations. More specif-
ically, the void-filled version [58] of this DEM dataset provided by the Hydrological Data
and Maps Based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS) [59]
was used, after a regridding to a 100 m × 100 m resolution at the ERB grid (Figure 4b).
The same topographic dataset (100 m × 100 m resolution) was used to estimate the stream
order classification [60] across the ERB. The Manning roughness coefficient, the channel
bottom width, and the slide slope were also defined for each of the 6 stream orders en-
countered in the ERB (Table 1). The values in these channel parameters were set up after
a procedure including many testing simulations while also using information retrieved
from relative studies dealing with WRF–Hydro calibration in Greek basins [37,61–64] and
in rivers located in other countries, such as Cyprus [65], Italy [66], and Turkey [67,68].

Table 1. Manning roughness coefficient (Manning, dimensionless), channel bottom width (CBW in
m), and slide slope (CSS, dimensionless) of ERB channels for each stream order class.

Stream Order Manning CBW (m) CSS

1 0.15 2 1.0
2 0.12 5 0.6
3 0.10 10 0.3
4 0.09 20 0.18
5 0.06 30 0.05
6 0.04 50 0.05

2.5. Hydraulic–Hydrodynamic Model Setup

The Hydrologic Engineering Center’s (CEIWR–HEC) River Analysis System (HEC–
RAS) was used for river flood modelling and mapping (version 6.4). HEC–RAS has already
been implemented successfully in several recent studies, including 2D unsteady flow simu-
lation for hydraulic–hydrodynamic modelling and flood mapping [69–72]. The necessary
data for HEC–RAS in the case of modelling the event at Skala bridge are mainly the Digital
Elevation Model (DEM), the boundary conditions, the area’s characteristics (e.g., bridge
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technical specifications), the Manning’s roughness coefficients, and the accompanying
rainfall of the storm that caused the catastrophic flash flood of 26 January 2023.

In particular, the DEM’s quality and resolution are crucial for accurate 2D flood mod-
elling [73,74]. Thus, we carefully developed the area’s Digital Surface Model (DSM) and
Digital Terrain Model (DTM) using high-resolution river geometry data created by process-
ing Unmanned Aerial Vehicle (UAV) imagery (Figure 5a,b). The profile line presented in
Figure 5a as a green color line is used to derive the time variable water depth results. The
spatial resolution of the area’s DSM/DTM used was 11.521 cm. The upstream boundary
condition was determined utilizing the flood hydrograph (streamflow) forecast provided
by the WRF–Hydro hydrological model. The downstream boundary condition was defined
as normal water depth or energy slope [75,76]. Details regarding the bridge’s representa-
tion were obtained from the topographical survey conducted for the flood management
risk plans of east Peloponnese (Figure 5c,e) [77], with the technical specifications of the
bridge piers and abutments presented in Figure 5d. Given the absence of conventional
flood-related data (such as streamflow or water depth data from gauging stations near
the floodplain and high-water marks of the most affected areas) for the study event, the
hydraulic modeling setup and calibration relied on the limited non-conventional flood
data available. This data, comprising photographs and videos, was gathered from diverse
sources, including local mass-media reports. Based on these collected non-conventional
flood data (Figure 5f) [78], we approximated the floodwater depth to be around 6 m at
the bridge location. Based on this estimation and employing a standard trial-and-error
optimization technique, the Manning roughness coefficient was set to 0.09.
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Figure 5. Hydraulic modelling specifications at Skala’s bridge. (a) Hydraulic model setup in HEC–
RAS showing the “Geometry” representation of the study area along with the effect of bridge design
in the generation of the computational mesh for the 2D flow simulation. (b) UAV aerial photographs
of the study area determining the model’s schematic. (c) Topographical survey sketch including the
bridge’s characteristics [77]. (d) Technical details of the bridge piers and abutments, as simulated in
HEC–RAS. (e) Topographical survey photographs [77]. (f) Photographs of Skala’s bridge during the
flash flood event [38,39].
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2.6. Remore Sensing Analysis

As mentioned, remote sensing techniques were used to further analyse the terrain
and the flood inundated area. Although Sentinel 2 (S2) images have the disadvantage of
being affected by cloudiness, optical satellites are preferred for flood studies compared to
radar satellites, due to the ease of data access and analysis [79]. One Sentinel 2A image of
28 January 2023 was used for the mapping of inundated areas caused by the flash flood of
26 January (Figure 6a). Sentinel 2A Level 1C tile (Tile ID: T34SFF) was downloaded from
the Copernicus Open Access Hub [80].

Sentinel 2A image’s bands were resampled to a common resolution of 60m and
then were cloud-masked through the IDEPIX tool, which is available as a SNAP plugin
(European Space Agency—ESA). Subsequently, the Modified Normalised Difference Water
Index (MNDWI) was used to map the inundated areas in this study (Equation (1)):

MNDWI =
Green − SWIR
Green + SWIR

(1)

MNDWI is considered as an effective index highlighting the open water surfaces while
removing built-up land, as well as vegetation and soil noise [81]. The most significant
task concerning the utilization of MNDWI for flood mapping is the selection of the most
optimal threshold value that best represents the difference between land and water based
on the respective image’s histogram. Furthermore, manual adjustment of the thresholds
was proven to achieve a more accurate result in the water delineation, since thresholds vary
depending on the proportions of subpixel water/non-water components [81]. Hence, in
this study, after some manual tests, the threshold value equal to 0.1 was identified as the
most representative for water/land discrimination. Subsequently, the MNDWI image was
binarized, assigning a logical value (true) for index values greater than the threshold (>0.1)
and false for lower index values (<0.1), producing the final “water” image. Afterward, a
visual inspection, interpretation using expert knowledge, and comparison of MNDWI with
the S2 image natural color composite were performed.
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Skala’s bridge during the flash flood event of 26 January 2023. Source: [82].
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3. Results and Discussion
3.1. Brief Analysis of the Evrotas Flash Flood on 26 January 2023

The flash flood in the ERB occurred on 26 January 2023 caused damage (e.g., to roads,
buildings, and agricultural areas) and had high socio-economic impacts. Several areas in the
ERB were affected by the most inundated areas located at the downstream parts, as remote
sensing data (Figure 6a) revealed (as described in Section 2.6). As mentioned in Section 2,
various items of non-conventional flood data (i.e., photographs, videos, and mass media
reports) indicated that the water level peak at the Skala’s bridge reached 6 m, approximately
the height of the bridge (Figure 6b). For this reason, the passing of vehicles through the bridge
was prohibited to protect people from accidents due to possible overflow of the bridge.

Regarding the meteorological conditions, a slow and severe thunderstorm over the
ERB caused the flash flood. The thunderstorm developed due to the passage of a barometric
low that was sustained by fronts and was supported by an upper-level trough over the
central Mediterranean that slowly moved eastward (Figure 7). The combination of the cold
front at the southern areas of the barometric low, with the transport of warm and moist air
originating from the sea areas, triggered the intense thunderstorm that was almost stagnant
over the ERB for 3–4 h. Moreover, the mountains of the ERB intensified the storm, causing
orographic lifting of the moist air, thus increasing locally the rainfall amounts over the ERB.
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Figure 7. (a) Geopotential height (black contours in gpdam) and temperature (color-shaded areas
and white contours at ◦C) at the isobaric level of 500 hPa on 26 January 2023 at 00:00 UTC. The map
is based on analysis data from the Global Forecast System (GFS). The German word geopotential
appearing in the image corresponds to the term geopotential height. Also, the German words
temperatur and Donnerstag are temperature and Thursday, respectively; (b) UK Met Office surface
analysis map (isobaric contours in hPa) on 26 January 2023 at 00:00 UTC. Source: [83]. The symbols
“H” and “L” show barometric highs and lows, while the symbol “T” in (a) shows barometric lows.
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Overall, the daily precipitation values for 26 January ranged from 22.4 mm to 171.2 mm
(Figure 8) as recorded by the meteorological stations of the IMBRIW–HCMR and other
public entities (i.e., National Observatory of Athens—NOA and Harokopio University
of Athens—HUA). The Oper_0.25 simulation initialized on 25 January at 12:00 UTC (i.e.,
approximately 1 day before the flood) predicted the heavy rainfall over the ERB that caused
the flash flood, estimating a daily precipitation peak for 26 January at about 241 mm in
the eastern parts of the ERB. In general, the daily precipitation for 26 January based on
the meteorological simulation was in acceptable agreement with the respective station
measurements, despite that some spatial differences can be observed (Figure 8).
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Figure 8. 24-h accumulated precipitation (mm) for 26 January 2023 spatially distributed from the
1-km meteorological forecasts. In addition, 24-h accumulated precipitation measurements from
meteorological stations (i.e., meteorological stations from IMBRIW-HCMR, NOA and HUA) are
depicted next to the station names, while the respective forecasted values are also shown at the right
for comparison. Topography (m) is also illustrated as in Figure 4b.

Figure 9a–f illustrates the spatial pattern of hourly accumulated precipitation, as well
as the abrupt increase of discharge in the ERB streams from 07:00 to 12:00 (local time—LT)
of 26 January. The passage of the thunderstorm was slow, beginning from the southwestern
parts of the ERB at 07:00 and approaching over the northeastern–eastern parts at 10:00
LT (Figure 9a–d). A peak of 1-h accumulated precipitation slightly exceeding 50 mm was
estimated at 09:00 at the northeastern parts of the ERB (Figure 9c).
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(local time—LT). Topography (m) is also illustrated as in Figure 4b.
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It is noteworthy that the atmospheric simulation estimated precipitation amounts
in the ERB not only during 07:00–12:00 LT, but also before 07:00 LT and after 12:00 LT.
Nevertheless, only the decisive phase of the thunderstorm that caused the flash flood is
demonstrated here. As regards the impact of heavy rainfall on the river, the hydrological
model simulated the flood features, resulting in discharges exceeding 800 m3 s−1 from
10:00 to 12:00 LT, with a peak of 837 m3 s−1 at 10:00 LT.

3.2. Probabilistic Forecasting of Precipitation and Discharge at Evrotas River Basin

The deterministic meteorological simulation presented in the previous section (i.e.,
Oper_0.25 initialized on 25 January at 12:00 UTC) described the atmospheric conditions
during the flash flood quite well. However, deterministic simulations, as in our case
study, often exhibit inaccuracies. This necessitates adopting a probabilistic approach in
precipitation forecasting by using ensemble modelling, which subsequently determines
the flash-flood forecast. Thus, this section presents the results of the probabilistic approach
followed in this study.

Figure 10a–e demonstrates the spatial distribution of the probability that the predicted
30-h accumulated precipitation (i.e., from 25 January at 18:00 LT to 27 January at 00:00 LT)
has exceeded 100 mm. These maps were based on the results of the 33 ensemble simulations
(i.e., Oper_0.25, Oper_0.50, Ctrl and Ens1-30) for each initialization date (i.e., 21–25 January
at 12:00 UTC), respectively (Figure 10a–e). It is noteworthy that the precipitation accu-
mulation period of 30 h was chosen instead of 24 h in order to consider the precipitation
probabilities over a longer time window. This is important especially for the simulations
that were initialized 2 and more days before the flood. In this way, it is feasible to unravel
flooding signals more clearly even 2–5 days in advance. Figure 10a–e demonstrates that
the probabilities for precipitation forecasts exceeding 100 mm are higher 1 and 2 days
ahead than 3–5 days ahead the flood. The precipitation forecasts that were initialized on
25 and 24 January at 12:00 UTC (Figure 10a–b) show increased probabilities (exceeding
100 mm) even above 90% and 80%, respectively, in the east of the ERB. The probabilities of
exceeding 100 mm in the precipitation forecasts initialized on 23, 22 and 21 January at 12:00
(Figure 10c–e) are smaller and show a smoother spatial distribution and, instead, appear
in the western ERB. It is important to note that probabilities reaching even 40–50% can be
considered as a sufficient signal of heavy precipitation even 5 days prior the flood, despite
some spatial variations. The amount of 100 mm is an indicative precipitation limit that was
selected in this study by considering a previous flash flood at the ERB in 2016 [37].

Then, these probabilistic precipitation forecasts were used to force the respective
probabilistic hydrological simulations. Figure 11a shows that the probability of discharge
exceeding 300 m3 s−1 reached even 80–90% in the main part of the Evrotas river, based on
the 33 ensemble hydrological simulations initialized on 25 January at 12:00 UTC. The re-
spective probabilities for the simulations initialized on 24 January at 12:00 UTC (Figure 11b)
had peaks of 70–80%, while they reached 50–70% for initializations on 23, 22 and 21 Jan-
uary at 12:00 UTC (Figure 11c–e). Similar to the precipitation limit, the discharge limit of
300 m3 s−1 is an indicative value of high flow that could potentially cause local water level
increase, again based on the simulation of 2016 flash flood at the ERB [37]. It is emphasized
that the assessment of exceedance of precipitation and discharge limits from some ensemble
simulations as presented above, does not necessarily imply the occurrence of flash flood,
but indicates the development of favourable conditions and the increase of flood risk.
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Topography (m) is also illustrated as in Figure 4b.
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Figure 11. Probability maps for the maximum discharge in the study area’s streams, to exceed
300 m3 s−1, for the 5-day forecast: (a) 25 January; (b) 24 January; (c) 23 January; (d) 22 January; (e) 21
January 2023. Topography (m) is also illustrated as in Figure 4b.

It is interesting to examine precipitation and discharge together in timeseries (i.e.,
through hydrographs). Figure 12a–e demonstrates hydrographs for all simulations that
were initialized on 25, 24, 23, 22 and 21 January at 12:00 UTC, respectively. In particular,
Figure 12 shows how the 1-h areal precipitation, which refers to the total extent of the ERB
and the discharge at the Skala’s bridge, changes over time. As expected, the discharge
increase presents a lag in comparison with the respective increase in precipitation, as il-
lustrated in Figure 12. The main difference between the hydrographs is the existence of
two discharge peaks at noon and late afternoon, as shown in Figure 12a,b, and 1 discharge
peak at afternoon, morning and noon, as shown in Figure 12c–e, respectively. The spread
of the ensemble precipitation and discharge timeseries is larger for the simulations ini-
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tialized 2 or more days before the flood, indicating greater uncertainty as the forecasting
horizon increases.
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Figure 12. Ensemble timeseries of areal precipitation (upper part of the plots) and discharge hydro-
graphs (lower part of the plots), as simulated for the forecasts initialized on: (a) 25 January; (b) 24
January; (c) 23 January; (d) 22 January; (e) 21 January 2023.

This is reasonable and confirms the reliability of the model, as forecasts made in
advance, such as 5 days before the flood, exhibit more uncertainty compared to forecasts
made closer to the event, as in 2 days before the flood. This can be useful for informing the
authorities with gradually increasing ‘certainty’ as an extreme event develops.

This finding is also corroborated by Figure 13a–d, which shows box plots of the 30-h
areal precipitation, covering the period from 25 January at 18:00 UTC to 27 January at 00:00
UTC, based on the five different ensemble simulations.
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Figure 13. The box plots of the ensemble-forecasted simulations: (a) 30-h areal precipitation; (b) 1-h
maximum areal precipitation; (c) average discharge at Skala bridge; (d) maximum discharge at Skala
bridge, for each forecast initialization date, from 21–25 January 2023.

The estimated precipitation and discharge for the 24th and the 25th of January exhibit
smaller ranges of values, for all plots of Figure 13. This shows the model’s ability to
reduce the temporal uncertainty associated with longer-term forecasts. The use of ensemble
forecasting enabled us to both recognize and quantify this uncertainty by exploring multiple
possible scenarios, which is a significant strength of this approach.

3.3. Probabilistic Forecasting of Water Level at Skala’s Bridge

Finally, the results presented in Figures 11 and 12 (i.e., the hydrographs) were used as
inputs for the hydraulic–hydrodynamic model. Thus, following the procedure described
in Section 2.5, HEC–RAS produced the flash flooding probabilities for the study area (i.e.,
Skala’s bridge).

In particular, the spread of water depth obtained from the five different ensemble
simulations are shown indicatively for 26 January 2023 in Figure 14. The different water
depths are illustrated, as they change over time during the day of the flood event. The
horizontal green line represents the height above ground of the Skala bridge’s girder.
Similar to the atmospheric and hydrologic results, it is evident that the spread of the
different forecasted water depths is larger for the ensemble simulations initialized on the 21
January and becomes smaller in every ensemble simulation initialized closer to 25 January.
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Figure 14. Time-variable water depth based on the probabilistic hydraulic simulations, for the 5-
day forecast initialized on the: (a) 25 January; (b) 24 January; (c) 23 January; (d) 22 January; (e) 21
January 2023.

This effect of reduced temporal uncertainty in the hydraulic model’s result that follows
the hydrologic results is also evident in the water depths at the location of the bridge
(Figure 15). Based on the probabilistic hydraulic simulations, the time-variable water depth
for the 5-day forecast shows increased probabilities (exceeding 6 m) of 6%, 18%, and 36%
for 25 January, 24–22 January, and 21 January 2023, respectively. The lower the probability
of exceeding 6 m, the closer the results are to the observed ones.
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In Figure 15, the horizontal green line represents the Skala bridge’s girder. The terrain
profile line is the actual cross-section at the bridge location, as simulated in HEC–RAS. As
shown in Figure 6b, the water level peak at the Skala’s bridge reached 6 m, and all the
simulation initializations produced a 6 m-water depth approximately. The results of the
maximum water depths were estimated based on the pixel with the maximum water depth
along the profile line (as in Figure 5a)

The uncertainty range of the different forecasted maximum water depths is larger for
the ensemble initialized on the 21st and becomes smaller in every ensemble initialized
closer to the 25 January. In particular, the maximum water depth at Skala Bridge (upstream)
shows increased probabilities (exceeding 6 m) of 15%, 18%, 21%, and 36% for 25 January, 24
January, 23–22 January, and 21 January 2023 respectively. This effect can be also observed in
the respective box-plots of Figure 16, with the significant reduction of the uncertainty range
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in the last two days of the initialization of simulations. This underscores the consistency of
the uncertainty reduction, as the initializations approach the date of the event, in the same
way as in the previous stages of the model.

Atmosphere 2024, 15, x FOR PEER REVIEW 22 of 27 

also observed in the respective box-plots of Figure 16, with the significant reduction of the 

uncertainty range in the last two days of the initialization of simulations. This underscores 

the consistency of the uncertainty reduction, as the initializations approach the date of the 

event, in the same way as in the previous stages of the model. 

Figure 16. Box-plots of the ensemble-forecasted simulation results of the maximum water depths 

based on the time-variable water depth results, for each initialization date (21–25 January). 

However, even in the earlier ensemble predictions, the resulting water depths offer 

valuable insights (in terms of warning signals) into the anticipated severity of the upcom-

ing phenomenon. 

4. Conclusions

This study attempted to contribute to efforts towards more accurate predictions of 

heavy rainfall events that are likely to cause flash floods, by incorporating ensemble 

weather forecasting into a comprehensive weather-hydrological-hydraulic modeling sys-

tem (IMBRIW’s system). In particular, this ensemble forecasting process involved multi-

ple simulations, adopting a probabilistic approach based on 33 different initial and bound-

ary condition datasets initialized from one to five days before the observed flood on 26 

January 2023, in the ERB. The integrated ensemble weather-hydrological-hydraulic mod-

elling system allowed us to assess the uncertainty in flood forecasts and its potential re-

duction, providing improved and timely emergency alerts. This capability was showcased 

at a fine scale, considering specific infrastructure, such as the Skala bridge. 

In particular, the ensemble approach provided a range of different precipitation (in 

mm of water), river discharges (m3 s−1 of water), and flood depths (m of water). These 

ranges reflect the inherent uncertainties in predictions, demonstrating a consistent pattern 

based on the timing of model initialization. Notably, greater uncertainty was observed 5 

days before the event, gradually narrowing to a more confined range approximately 2–3 

days before the observed flood on 26 January. In essence, a more refined indication re-

garding the impending flood was achieved around 2–3 days before the event (and even 

more accurate 1–2 days before). 

The results obtained from IMBRIW’s system consistently portray the progression 

from storm conditions to streamflow and, ultimately, water depths at the bridge location. 

As mentioned, the ensemble precipitation forecasts produced probabilities reaching even 

40–50% that can be considered as a sufficient signal of heavy rainfall even 5 days before 

the flood. So, firstly, it is feasible to receive flooding signals 2–5 days before the event. 

Subsequently, the forecasted probabilities of discharge exceeding 300 m3 s−1 were 

Figure 16. Box-plots of the ensemble-forecasted simulation results of the maximum water depths
based on the time-variable water depth results, for each initialization date (21–25 January).

However, even in the earlier ensemble predictions, the resulting water depths offer
valuable insights (in terms of warning signals) into the anticipated severity of the upcoming
phenomenon.

4. Conclusions

This study attempted to contribute to efforts towards more accurate predictions of
heavy rainfall events that are likely to cause flash floods, by incorporating ensemble
weather forecasting into a comprehensive weather-hydrological-hydraulic modeling system
(IMBRIW’s system). In particular, this ensemble forecasting process involved multiple
simulations, adopting a probabilistic approach based on 33 different initial and boundary
condition datasets initialized from one to five days before the observed flood on 26 January
2023, in the ERB. The integrated ensemble weather-hydrological-hydraulic modelling
system allowed us to assess the uncertainty in flood forecasts and its potential reduction,
providing improved and timely emergency alerts. This capability was showcased at a fine
scale, considering specific infrastructure, such as the Skala bridge.

In particular, the ensemble approach provided a range of different precipitation (in
mm of water), river discharges (m3 s−1 of water), and flood depths (m of water). These
ranges reflect the inherent uncertainties in predictions, demonstrating a consistent pattern
based on the timing of model initialization. Notably, greater uncertainty was observed
5 days before the event, gradually narrowing to a more confined range approximately
2–3 days before the observed flood on 26 January. In essence, a more refined indication
regarding the impending flood was achieved around 2–3 days before the event (and even
more accurate 1–2 days before).

The results obtained from IMBRIW’s system consistently portray the progression
from storm conditions to streamflow and, ultimately, water depths at the bridge location.
As mentioned, the ensemble precipitation forecasts produced probabilities reaching even
40–50% that can be considered as a sufficient signal of heavy rainfall even 5 days before
the flood. So, firstly, it is feasible to receive flooding signals 2–5 days before the event.
Subsequently, the forecasted probabilities of discharge exceeding 300 m3 s−1 were consid-
erably high (above 70% in the main part of the river), showing also the discharge peaks
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over time. Due to the lack of conventional data and records that would facilitate a detailed
validation of flood characteristics related to the event on 26 January, the primary criterion
for comparing the hydraulic simulations was the estimated flood water depth at the specific
location of Skala bridge, as observed from relevant photographs and press documentation.
The spread of temporal uncertainties of water depth simulations also narrows for the model
initializations of the 2 days before the event. Again, a coherent indication emerges that the
approaching storm has the potential to trigger a flood event (i.e., the bridge’s overflow),
with a notable convergence in result uncertainties during the final 1–2 days leading up to
the event.

This is an advantage of the probabilistic approach over the existing (often used)
deterministic approaches. A deterministic approach might have resulted in one of the many
different predicted outcomes, signaling either a mild or a very extreme event, depending on
its initial and boundary conditions. This is evident at the scale of an infrastructure element,
like the bridge in our example (Figures 14 and 15), where the water depths are compared
to its girder, so even centimeters can lead to a different perception of risk regarding the
bridge’s overflow. The probabilistic forecast of the ensemble approach presented, has the
ability to account for these uncertainties and quantify them, while showing their variability
over time. By understanding the likelihood of various scenarios (e.g., as depicted in our
results), decision makers can have a more comprehensive assessment of risk, facilitating
more informed and adaptive plans for action, compared to the deterministic approaches,
where the planning is based on one possible scenario, which may be also misleading. This
is crucial in emergency planning, where having a range of possible scenarios is valuable for
preparedness. The early indications of the presented approach, even with the increased
uncertainty, were able to signal the need for heightened vigilance and potential preparation.
Apparently, such increased monitoring, timely warning and response, were not the case for
the studied event at Skala’s bridge (vehicles were crossing the bridge with water reaching
its girder, e.g., Figure 2, and there are no conventional or official estimates of the exact
maximum water depth). This shows the value of the early alerting capability that the
presented ensemble approach provided, which can be crucial for emergency response
planning in the future, including the effective communication of these forecasts regarding
upcoming risks to the public. In the case of Skala, it is still unclear when the bridge closed,
and how timely this decision and response was. But if this happens in a timely manner,
using gradually warnings of increased accuracy (in line with our results), it gives time to
become better prepared.

Future research could leverage the current work towards a more holistic approach
by incorporating social and economic factors, thereby enhancing the comprehensive un-
derstanding and application of the developed flash-flood forecast modeling. A limitation
of this ensemble approach could be its computationally demanding nature, although the
ongoing advancements in computer and computational sciences provide means to over-
come it. Another caveat for adopting such forecasting systems is the limited capacity
of the decision makers to utilize and interpret this information effectively, including its
communication to the public. However, the importance of building resilient societies in the
view of increasing extreme phenomena, and in particular when they involve flash flood
predictions that directly threaten human lives and property, highlights the need for capacity
building. As scientists make continuous efforts in providing improved methods of con-
veying uncertainty and probability in ways that can be easily understood and actionable,
decision makers should also recognize the need for improved understanding and training
to enable informed decision making, and scientifically supported emergency planning.

Author Contributions: Conceptualization, G.V., G.P., A.P. and E.D.; methodology, G.V., G.P., V.M., A.P.
and E.D.; software, G.V., G.P., V.M., A.A. and A.P.; validation, G.V., G.P., A.P., V.M. and E.D.; formal
analysis, G.V., G.P., A.A. and V.M.; investigation, G.V., G.P., A.P., V.M. and E.D.; resources, G.V., G.P.,
A.P. and E.D.; data curation, G.V., G.P., A.P., V.M. and E.D.; writing—original draft preparation, G.V.,
A.A., G.P. and V.M.; writing—review and editing, G.V., G.P., A.A., A.P., V.M. and E.D.; visualization,



Atmosphere 2024, 15, 120 22 of 25

G.V., G.P. and V.M.; supervision, A.P. and E.D.; project administration, G.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This study was supported by computational time in the National High-Performance
Computer (HPC) facility ARIS (https://hpc.grnet.gr/, accessed on 29 June 2023), under project
pr013011_thin/CLIMED, granted by the Greek Research and Technology Network (GRNET). NCEP
is fruitfully acknowledged for the provision of operational analysis and forecasting data of the Global
Forecast System (GFS) and the ensemble analysis and forecasting data of the Global Ensemble Forecast
System (GEFS) through the repository: https://aws.amazon.com/marketplace/ (accessed on 11
July 2023). NCEP is also acknowledged for the provision of the real time global (RTG) sea surface
temperature (SST) analysis data. NASA and HydroSHEDS are acknowledged for the provision of
SRTM DEM data. We also thank the National Observatory of Athens and the Harokopio University
of Athens for the provision of meteorological measurements (https://meteosearch.meteo.gr/ and
http://meteoclima.hua.gr/, respectively, accessed on 29 June 2023). The website wetter3.de (http:
//www1.wetter3.de/ (accessed on 29 June 2023)) is acknowledged for the provision of the GFS
500-hPa analysis map and the UK Met Office surface analysis map used in this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al.

Changing Climate Both Increases and Decreases European River Floods. Nature 2019, 573, 108–111. [CrossRef] [PubMed]
2. Berghuijs, W.R.; Aalbers, E.E.; Larsen, J.R.; Trancoso, R.; Woods, R.A. Recent Changes in Extreme Floods across Multiple

Continents. Environ. Res. Lett. 2017, 12, 114035. [CrossRef]
3. Sanders, B.F.; Schubert, J.E.; Kahl, D.T.; Mach, K.J.; Brady, D.; AghaKouchak, A.; Forman, F.; Matthew, R.A.; Ulibarri, N.; Davis,

S.J. Large and Inequitable Flood Risks in Los Angeles, California. Nat. Sustain. 2023, 6, 47–57. [CrossRef]
4. Johnson, K.A.; Wing, O.E.J.; Bates, P.D.; Fargione, J.; Kroeger, T.; Larson, W.D.; Sampson, C.C.; Smith, A.M. A Benefit–Cost

Analysis of Floodplain Land Acquisition for US Flood Damage Reduction. Nat. Sustain. 2020, 3, 56–62. [CrossRef]
5. Cloke, H.L.; Pappenberger, F. Ensemble Flood Forecasting: A Review. J. Hydrol. 2009, 375, 613–626. [CrossRef]
6. Maidment, D.R. Conceptual Framework for the National Flood Interoperability Experiment. J. Am. Water Resour. Assoc. 2017, 53,

245–257. [CrossRef]
7. Giannaros, C.; Galanaki, E.; Kotroni, V.; Lagouvardos, K.; Oikonomou, C.; Haralambous, H.; Giannaros, T.M. Pre-Operational

Application of a WRF-Hydro-Based Fluvial Flood Forecasting System in the Southeast Mediterranean. Forecasting 2021, 3, 437–446.
[CrossRef]

8. Ahmad, T.; Pandey, A.; Kumar, A. Evaluating Urban Growth and Its Implication on Flood Hazard and Vulnerability in Srinagar
City, Kashmir Valley, Using Geoinformatics. Arab. J. Geosci. 2019, 12, 308. [CrossRef]

9. Alamanos, A.; Linnane, S. Systems Resilience to Floods: A Categorisation of Approaches. In Proceedings of the 24th EGU General
Assembly, Vienna, Austria, 23–27 May 2022.

10. Papaioannou, G.; Alamanos, A.; Maris, F. Evaluating Post-Fire Erosion and Flood Protection Techniques: A Narrative Review of
Applications. GeoHazards 2023, 4, 380–405. [CrossRef]

11. Flageollet, J.-C. Landslide Hazard—A Conceptual Approach in Risk Viewpoint. In Floods and Landslides: Integrated Risk Assessment;
Casale, R., Margottini, C., Eds.; Environmental Science; Springer: Berlin, Germany, 1999; pp. 3–18, ISBN 978-3-642-58609-5.

12. Kouwen, N. WATFLOOD: A Micro-Computer Based Flood Forecasting System Based on Real-Time Weather Radar. Can. Water
Resour. J. 1988, 13, 62–77. [CrossRef]

13. Bogardi, J.J.; Kundzewicz, Z.W. Risk, Reliability, Uncertainty, and Robustness of Water Resource Systems; Cambridge University Press:
Cambridge, UK, 2002; ISBN 978-1-139-43224-5.

14. Rossa, A.; Liechti, K.; Zappa, M.; Bruen, M.; Germann, U.; Haase, G.; Keil, C.; Krahe, P. The COST 731 Action: A Review on
Uncertainty Propagation in Advanced Hydro-Meteorological Forecast Systems. Atmos. Res. 2011, 100, 150–167. [CrossRef]

15. Alamanos, A.; Linnane, S. Drought Monitoring, Precipitation Statistics, and Water Balance with Freely Available Remote Sensing
Data: Examples, Advances, and Limitations. In Proceedings of the Irish National Hydrology Conference 2021, Athlone, Ireland,
16 November 2021; pp. 1–13.

16. Alamanos, A. Water Resources Planning under Climate and Economic Changes in Skiathos Island, Aegean. Water Infrastruct.
Ecosyst. Soc. 2021, 70, 1085–1093. [CrossRef]

https://hpc.grnet.gr/
https://aws.amazon.com/marketplace/
https://meteosearch.meteo.gr/
http://meteoclima.hua.gr/
http://www1.wetter3.de/
http://www1.wetter3.de/
https://doi.org/10.1038/s41586-019-1495-6
https://www.ncbi.nlm.nih.gov/pubmed/31462777
https://doi.org/10.1088/1748-9326/aa8847
https://doi.org/10.1038/s41893-022-00977-7
https://doi.org/10.1038/s41893-019-0437-5
https://doi.org/10.1016/j.jhydrol.2009.06.005
https://doi.org/10.1111/1752-1688.12474
https://doi.org/10.3390/forecast3020026
https://doi.org/10.1007/s12517-019-4458-1
https://doi.org/10.3390/geohazards4040022
https://doi.org/10.4296/cwrj1301062
https://doi.org/10.1016/j.atmosres.2010.11.016
https://doi.org/10.2166/aqua.2021.061


Atmosphere 2024, 15, 120 23 of 25

17. Adams, T.E. Chapter 10—Flood Forecasting in the United States NOAA/National Weather Service. In Flood Forecasting; Adams,
T.E., Pagano, T.C., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 249–310, ISBN 978-0-12-801884-2.

18. Wu, W.; Emerton, R.; Duan, Q.; Wood, A.W.; Wetterhall, F.; Robertson, D.E. Ensemble Flood Forecasting: Current Status and
Future Opportunities. WIREs Water 2020, 7, e1432. [CrossRef]

19. Alamanos, A. Sustainable Water Resources Management under Water-Scarce and Limited-Data Conditions. Cent. Asian J. Water
Res. 2021, 7, 1–19. [CrossRef]

20. Hansen, J.W.; Dinku, T.; Robertson, A.W.; Cousin, R.; Trzaska, S.; Mason, S.J. Flexible Forecast Presentation Overcomes Long-
standing Obstacles to Using Probabilistic Seasonal Forecasts. Front. Clim. 2022, 4, 908661. [CrossRef]

21. Han, S.; Coulibaly, P. Probabilistic Flood Forecasting Using Hydrologic Uncertainty Processor with Ensemble Weather Forecasts.
J. Hydrometeorol. 2019, 20, 1379–1398. [CrossRef]

22. Todini, E. Flood Forecasting and Decision Making in the New Millennium. Where Are We? Water Resour. Manag. 2017, 31,
3111–3129. [CrossRef]

23. Krajewski, W.F.; Ceynar, D.; Demir, I.; Goska, R.; Kruger, A.; Langel, C.; Mantilla, R.; Niemeier, J.; Quintero, F.; Seo, B.-C.; et al.
Real-Time Flood Forecasting and Information System for the State of Iowa. Bull. Am. Meteorol. Soc. 2017, 98, 539–554. [CrossRef]

24. Marty, R.; Zin, I.; Obled, C. Sensitivity of Hydrological Ensemble Forecasts to Different Sources and Temporal Resolutions of
Probabilistic Quantitative Precipitation Forecasts: Flash Flood Case Studies in the Cévennes-Vivarais Region (Southern France).
Hydrol. Process. 2013, 27, 33–44. [CrossRef]

25. Goodarzi, L.; Banihabib, M.E.; Roozbahani, A. A Decision-Making Model for Flood Warning System Based on Ensemble Forecasts.
J. Hydrol. 2019, 573, 207–219. [CrossRef]

26. Ramos, M.-H.; Bartholmes, J.; Thielen-del Pozo, J. Development of Decision Support Products Based on Ensemble Forecasts in the
European Flood Alert System. Atmos. Sci. Lett. 2007, 8, 113–119. [CrossRef]

27. Ming, X.; Liang, Q.; Xia, X.; Li, D.; Fowler, H.J. Real-Time Flood Forecasting Based on a High-Performance 2-D Hydrodynamic
Model and Numerical Weather Predictions. Water Resour. Res. 2020, 56, e2019WR025583. [CrossRef]

28. Richardson, D.; Neal, R.; Dankers, R.; Mylne, K.; Cowling, R.; Clements, H.; Millard, J. Linking Weather Patterns to Regional
Extreme Precipitation for Highlighting Potential Flood Events in Medium- to Long-Range Forecasts. Meteorol. Appl. 2020, 27,
e1931. [CrossRef]

29. Nanditha, J.S.; Mishra, V. On the Need of Ensemble Flood Forecast in India. Water Secur. 2021, 12, 100086. [CrossRef]
30. Gude, V.; Corns, S.; Long, S. Flood Prediction and Uncertainty Estimation Using Deep Learning. Water 2020, 12, 884. [CrossRef]
31. Alamanos, A.; Papaioannou, G.; Varlas, G.; Markogianni, V.; Papadopoulos, A.; Dimitriou, E. Representation of a Post-Fire Flash-

Flood Event Combining Meteorological Simulations, Remote Sensing, and Hydraulic Modeling. Land 2024, 13, 47. [CrossRef]
32. Galia, T.; Macurová, T.; Vardakas, L.; Škarpich, V.; Matušková, T.; Kalogianni, E. Drivers of Variability in Large Wood Loads along

the Fluvial Continuum of a Mediterranean Intermittent River. Earth Surf. Process. Landf. 2020, 45, 2048–2062. [CrossRef]
33. Matiatos, I.; Papadopoulos, A.; Panagopoulos, Y.; Dimitriou, E. Insights into the Influence of Morphology on the Hydrological

Processes of River Catchments Using Stable Isotopes. Hydrol. Sci. J. 2023, 68, 1487–1498. [CrossRef]
34. Karaouzas, I.; Theodoropoulos, C.; Vardakas, L.; Zogaris, S.; Skoulikidis, N. Theodoropoulos, C.; Vardakas, L.; Zogaris, S.;

Skoulikidis, N. The Evrotas River Basin: 10 Years of Ecological Monitoring. In The Rivers of Greece: Evolution, Current Status and
Perspectives; Skoulikidis, N., Dimitriou, E., Karaouzas, I., Eds.; The Handbook of Environmental Chemistry; Springer: Berlin,
Germany, 2018; pp. 279–326, ISBN 978-3-662-55369-5.

35. Galia, T.; Škarpich, V.; Vardakas, L.; Dimitriou, E.; Panagopoulos, Y.; Spálovský, V. Spatiotemporal Variations of Large Wood and
River Channel Morphology in a Rapidly Degraded Reach of an Intermittent River. Earth Surf. Process. Landf. 2023, 48, 997–1010.
[CrossRef]

36. Tzoraki, O.; Cooper, D.; Kjeldsen, T.; Nikolaidis, N.P.; Gamvroudis, C.; Froebrich, J.; Querner, E.; Gallart, F.; Karalemas, N. Flood
Generation and Classification of a Semi-Arid Intermittent Flow Watershed: Evrotas River. Int. J. River Basin Manag. 2013, 11,
77–92. [CrossRef]

37. Varlas, G.; Papadopoulos, A.; Papaioannou, G.; Dimitriou, E. Evaluating the Forecast Skill of a Hydrometeorological Modelling
System in Greece. Atmosphere 2021, 12, 902. [CrossRef]

38. SKAI News Dangerous Rise of Evrotas River Water Levels. Available online: https://www.skai.gr/news/greece/anevainei-
epikindyna-i-stathmi-tou-potamou-eyrota-deite-vinteo (accessed on 17 November 2023).

39. The TOC Storms in Lakonia: Floods, Damages and Closed Roads in Evrotas Municipality. Available online: https://www.thetoc.
gr/koinwnia/article/sto-eleos-tis-kakokairias-i-lakonia-plimmures-adiabatoi-dromoi-kai-zimies-ston-dimo-eurota-eikones/
(accessed on 17 November 2023).

40. Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the
Advanced Research WRF Version 3. NCAR Tech. Note 2008, 475, 113. [CrossRef]

41. Gochis, D.; Yu, W.; Yates, D. WRF-Hydro Technical Description and User’s Guide; The NCAR WRF-Hydro Technical Description and
User’s Guide; NCAR: Boulder, CO, USA, 2015; p. 120.

42. Hydrologic Engineering Center (HEC) River Analysis Systems—HEC-RAS, version 6.3.1; U.S. Army Corps of Engineers: Washington,
DC, USA, 2022.

43. Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.; et al. A Description of
the Advanced Research WRF Model Version 4.3; No. NCAR/TN-556+STR; NSF: Alexandria, VI, USA, 2021. [CrossRef]

https://doi.org/10.1002/wat2.1432
https://doi.org/10.29258/CAJWR/2021-R1.v7-2/1-19.eng
https://doi.org/10.3389/fclim.2022.908661
https://doi.org/10.1175/JHM-D-18-0251.1
https://doi.org/10.1007/s11269-017-1693-7
https://doi.org/10.1175/BAMS-D-15-00243.1
https://doi.org/10.1002/hyp.9543
https://doi.org/10.1016/j.jhydrol.2019.03.040
https://doi.org/10.1002/asl.161
https://doi.org/10.1029/2019WR025583
https://doi.org/10.1002/met.1931
https://doi.org/10.1016/j.wasec.2021.100086
https://doi.org/10.3390/w12030884
https://doi.org/10.3390/land13010047
https://doi.org/10.1002/esp.4865
https://doi.org/10.1080/02626667.2023.2224005
https://doi.org/10.1002/esp.5531
https://doi.org/10.1080/15715124.2013.768623
https://doi.org/10.3390/atmos12070902
https://www.skai.gr/news/greece/anevainei-epikindyna-i-stathmi-tou-potamou-eyrota-deite-vinteo
https://www.skai.gr/news/greece/anevainei-epikindyna-i-stathmi-tou-potamou-eyrota-deite-vinteo
https://www.thetoc.gr/koinwnia/article/sto-eleos-tis-kakokairias-i-lakonia-plimmures-adiabatoi-dromoi-kai-zimies-ston-dimo-eurota-eikones/
https://www.thetoc.gr/koinwnia/article/sto-eleos-tis-kakokairias-i-lakonia-plimmures-adiabatoi-dromoi-kai-zimies-ston-dimo-eurota-eikones/
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.5065/1dfh-6p97


Atmosphere 2024, 15, 120 24 of 25

44. Danielson, J.; Gesch, D. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); 211AD; USGS: Reston, VA, USA, 2011; p.
34.

45. Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global
Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data. Remote Sens. Environ. 2002, 83,
214–231. [CrossRef]

46. Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land
Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [CrossRef]

47. Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF
Surface Layer Formulation. Mon. Weather. Rev. 2012, 140, 898–918. [CrossRef]

48. Nakanishi, M.; Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J.
Meteorol. Soc. Jpn. Ser. II 2009, 87, 895–912. [CrossRef]

49. Tewari, M.; Boulder, C.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; et al. Implemen-
tation and Verification of the Unified Noah Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on
Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, DC, USA, 12–16 January 2004.
Volume Formerly Paper Number 17.5.

50. Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived
Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113, D13. [CrossRef]

51. Chen, S.-H.; Sun, W.-Y. A One-Dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Jpn. Ser. II 2002, 80, 99–118. [CrossRef]
52. Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling.

Atmos. Chem. Phys. 2014, 14, 5233–5250. [CrossRef]
53. Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah Land

Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. J. Geophys. Res.
Atmos. 2003, 108, D22. [CrossRef]

54. Julien, P.Y.; Saghafian, B.; Ogden, F.L. Raster-Based Hydrologic Modeling of Spatially-Varied Surface Runoff1. J. Am. Water Resour.
Assoc. 1995, 31, 523–536. [CrossRef]

55. Ogden, F. CASC2D Reference Manual; University of Connecticut: Storrs, CT, USA, 1997.
56. Garbrecht, J.; Brunner, G. Hydrologic Channel-Flow Routing for Compound Sections. J. Hydraul. Eng. 1991, 117, 629–642.

[CrossRef]
57. Jarvis, A.; Guevara, E.; Reuter, H.I.; Nelson, A.D. Hole-Filled SRTM for the Globe: Version 4: Data Grid; University of Twente:

Enschede, The Netherlands, 2008.
58. Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived from Spaceborne Elevation Data. EOS Trans. Am. Geophys.

Union 2008, 89, 93–94. [CrossRef]
59. HydroSHEDS. Available online: https://www.hydrosheds.org/ (accessed on 17 November 2023).
60. Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. GSA Bull. 1952, 63, 1117–1142. [CrossRef]
61. Varlas, G.; Anagnostou, M.N.; Spyrou, C.; Papadopoulos, A.; Kalogiros, J.; Mentzafou, A.; Michaelides, S.; Baltas, E.; Karymbalis,

E.; Katsafados, P. A Multi-Platform Hydrometeorological Analysis of the Flash Flood Event of 15 November 2017 in Attica,
Greece. Remote Sens. 2019, 11, 45. [CrossRef]

62. Papaioannou, G.; Varlas, G.; Papadopoulos, A.; Loukas, A.; Katsafados, P.; Dimitriou, E. Investigating Sea-State Effects on Flash
Flood Hydrograph and Inundation Forecasting. Hydrol. Process. 2021, 35, e14151. [CrossRef]

63. Papaioannou, G.; Varlas, G.; Terti, G.; Papadopoulos, A.; Loukas, A.; Panagopoulos, Y.; Dimitriou, E. Flood Inundation Mapping
at Ungauged Basins Using Coupled Hydrometeorological–Hydraulic Modelling: The Catastrophic Case of the 2006 Flash Flood
in Volos City, Greece. Water 2019, 11, 2328. [CrossRef]

64. Spyrou, C.; Varlas, G.; Pappa, A.; Mentzafou, A.; Katsafados, P.; Papadopoulos, A.; Anagnostou, M.N.; Kalogiros, J. Implementa-
tion of a Nowcasting Hydrometeorological System for Studying Flash Flood Events: The Case of Mandra, Greece. Remote Sens.
2020, 12, 2784. [CrossRef]

65. Camera, C.; Bruggeman, A.; Zittis, G.; Sofokleous, I.; Arnault, J. Simulation of Extreme Rainfall and Streamflow Events in Small
Mediterranean Watersheds with a One-Way-Coupled Atmospheric–Hydrologic Modelling System. Nat. Hazards Earth Syst. Sci.
2020, 20, 2791–2810. [CrossRef]

66. Senatore, A.; Furnari, L.; Mendicino, G. Impact of High-Resolution Sea Surface Temperature Representation on the Forecast of
Small Mediterranean Catchments’ Hydrological Responses to Heavy Precipitation. Hydrol. Earth Syst. Sci. 2020, 24, 269–291.
[CrossRef]

67. Yucel, I.; Onen, A.; Yilmaz, K.K.; Gochis, D.J. Calibration and Evaluation of a Flood Forecasting System: Utility of Numerical
Weather Prediction Model, Data Assimilation and Satellite-Based Rainfall. J. Hydrol. 2015, 523, 49–66. [CrossRef]

68. Ozkaya, A.; Akyurek, Z. WRF-Hydro Model Application in a Data-Scarce, Small and Topographically Steep Catchment in
Samsun, Turkey. Arab. J. Sci. Eng. 2020, 45, 3781–3798. [CrossRef]

69. Khanam, M.; Sofia, G.; Koukoula, M.; Lazin, R.; Nikolopoulos, E.I.; Shen, X.; Anagnostou, E.N. Impact of Compound Flood
Event on Coastal Critical Infrastructures Considering Current and Future Climate. Nat. Hazards Earth Syst. Sci. 2021, 21, 587–605.
[CrossRef]

https://doi.org/10.1016/S0034-4257(02)00074-3
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1175/MWR-D-11-00056.1
https://doi.org/10.2151/jmsj.87.895
https://doi.org/10.1029/2008JD009944
https://doi.org/10.2151/jmsj.80.99
https://doi.org/10.5194/acp-14-5233-2014
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1111/j.1752-1688.1995.tb04039.x
https://doi.org/10.1061/(ASCE)0733-9429(1991)117:5(629)
https://doi.org/10.1029/2008EO100001
https://www.hydrosheds.org/
https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/10.3390/rs11010045
https://doi.org/10.1002/hyp.14151
https://doi.org/10.3390/w11112328
https://doi.org/10.3390/rs12172784
https://doi.org/10.5194/nhess-20-2791-2020
https://doi.org/10.5194/hess-24-269-2020
https://doi.org/10.1016/j.jhydrol.2015.01.042
https://doi.org/10.1007/s13369-019-04251-5
https://doi.org/10.5194/nhess-21-587-2021


Atmosphere 2024, 15, 120 25 of 25

70. Urzică, A.; Mihu-Pintilie, A.; Stoleriu, C.C.; Cîmpianu, C.I.; Huţanu, E.; Pricop, C.I.; Grozavu, A. Using 2D HEC-RAS Modeling
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