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Abstract: The Source Region of the Yellow River (SRYR), renowned as the “Water Tower of the
Yellow River”, serves as an important water conservation domain in the upper reaches of the Yellow
River, significantly influencing water resources within the basin. Based on the Weather Research
and Forecasting (WRF) Model Hydrological modeling system (WRF-Hydro), the key variables of
the atmosphere–land–hydrology coupling processes over the SRYR during the 2013 rainy season
are analyzed. The investigation involves a comparative analysis between the coupled WRF-Hydro
and the standalone WRF simulations, focusing on the hydrological response to the atmosphere.
The results reveal the WRF-Hydro model’s proficiency in depicting streamflow variations over the
SRYR, yielding Nash Efficiency Coefficient (NSE) values of 0.44 and 0.61 during the calibration and
validation periods, respectively. Compared to the standalone WRF simulations, the coupled WRF-
Hydro model demonstrates enhanced performance in soil heat flux simulations, reducing the Root
Mean Square Error (RMSE) of surface soil temperature by 0.96 K and of soil moisture by 0.01 m3/m3.
Furthermore, the coupled model adeptly captures the streamflow variation characteristics with
an NSE of 0.33. This underscores the significant potential of the coupled WRF-Hydro model for
describing atmosphere–land–hydrology coupling processes in regions characterized by cold climates
and intricate topography.

Keywords: the Source Region of the Yellow River; WRF-Hydro; the atmosphere–land–hydrology
coupling processes; streamflow

1. Introduction

Water, energy, and heat fluxes, along with the interactions between the atmosphere,
land surface, and hydrology, constitute a complex nexus [1,2]. Within the water cycle of
the whole Earth Climate System, the land surface hydrological processes serve as a crucial
link, connecting atmospheric water components (e.g., precipitation, evapotranspiration,
water vapor transport), terrestrial surface water (e.g., rivers, lakes, glacial meltwater, snow
meltwater, surface runoff), groundwater (e.g., baseflow, subsurface runoff, soil water),
and ecological water (vegetation water). This interconnected system provides feedback
to weather and climate by regulating land–atmosphere energy and water cycle processes.
Therefore, a nuanced comprehension of hydrological cycle processes at the interface of
the atmosphere and the land surface in mesoscale river basins holds vital importance for
ecological preservation and the overarching regulation of water resources [3].

The Source Region of the Yellow River (SRYR), located in the Tibetan Plateau (TP)
hinterland, falls within the continental semi-arid climate zone with complex climatic
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conditions exhibiting a temperature rise rate of 0.48 ◦C/(10a)−1 and precipitation increase
of 7.6 mm/(10a)−1 [4]. This region is highly susceptible to climate change and ecological
shifts, characterized by numerous alpine lakes and wetlands, regarding it as a vital area
for East Asia and global climate change [5]. Known as the “Yellow River Water Tower”, it
encompasses approximately 16.2% of the Yellow River Basin’s total area. The streamflow,
dominated by precipitation and evaporation, plays a crucial role as the primary flow-
producing area and water conservation area for the middle and upper reaches of the
Yellow River [6]. The historical continuity of the Yellow River civilization can be attributed,
in part, to the SRYR’s stable ecological environment and water supply [7]. However,
contemporary challenges emerge due to global climate change, human activities, and the
uneven distribution of regional water resources, leading to transformative shifts in water
conservation elements such as glaciers, permafrost, and grasslands. This has resulted
in a heightened frequency of extreme meteorological and hydrological events, including
rainstorms, blizzards, droughts, and floods escalating the spatiotemporal distribution
uncertainties of precipitation and hydrology in watersheds. Consequently, the sustainable
development of the ecological environment and social economy over the SRYR encounters
formidable challenges [8,9].

With the rapid development of high-resolution Earth System Models, the significance
of land surface variability in simulations garners increasing attention [10,11]. Currently,
studies on the coupled atmosphere–hydrology processes predominantly use regional cli-
mate models (RCMs) or combine land surface models (LSMs) with hydrological models
to investigate the intricate interaction between climate change and hydrological cycle pro-
cesses [12]. Key methodological tools encompass satellite remote sensing, data assimilation,
error correction, and various downscaling approaches (statistical downscaling and dy-
namic downscaling). Prominent models such as the Weather Research and Forecasting
model (WRF), Community Land Model (CLM), Community Noah Land Surface Model
with Multi-Parameterization Options (Noah-MP), and Soil and Water Assessment Tool
(SWAT) are deployed, emphasizing the impact of climate change and human activities
on hydrological cycle processes [13,14]. Nevertheless, there are still large uncertainties
regarding the RCMs in climate change simulations and projections, especially for pre-
cipitation simulations in regions characterized by complex terrain. It is found that these
uncertainties are mainly associated with the physical parameterization schemes and the
lateral forcing of the RCMs [15,16]. In addition, previous studies concentrate on the influ-
ence of climate change on the hydrological process, adopting a single-directional linkage of
“atmospheric circulation change–regional precipitation change–land hydrological change”.
This approach falls short in accurately depicting the feedback between land surface and
hydrological processes on regional climate, thereby affecting the simulation accuracy of
hydrological processes in watersheds [17].

The Weather Research and Forecasting Model Hydrological modeling system (WRF-
Hydro) stands as a high-resolution distributed land–atmosphere coupled model, developed
by the National Center for Atmospheric Research (NCAR), with the primary aim of im-
proving surface, subsurface, and river water redistribution and facilitating the coupling of
atmospheric and hydrological models [18]. This model can operate as a standalone land
surface hydrological model or can be coupled with an atmospheric model (such as WRF) to
achieve a two-way feedback process between the atmosphere and land surface. Distinguish-
ing from traditional land surface hydrological models, the WRF-Hydro model is explicitly
designed to provide continuous spatially gridded information on soil temperature and mois-
ture, evapotranspiration, water and heat exchange fluxes, and runoff [19,20]. Notably, the
WRF-Hydro model has demonstrated success in numerous coupled atmosphere–hydrology
studies [2,21]. Senatore et al. [22] found superior simulation performances for precipitation,
surface runoff, and surface fluxes with the coupled WRF-Hydro model compared to the
WRF model in the Crati River Basin. Gu et al. [20] thought that radar data assimilation
can effectively improve flood simulations at small- and medium-sized basins based on the
coupled WRF-Hydro model. Li et al. [23] concluded that the coupled WRF-Hydro model
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improved soil moisture and precipitation simulations and has potential in simulating and
projecting streamflow over the Source Region of the Three Rivers. However, the great
overestimation of precipitation by the coupled model leads to the fact that reproducing
daily streamflow with the coupled model remains a challenge in complex terrain areas.

The main aim of this study is to investigate the feedback of land surface hydrological
processes on precipitation in a large-sized basin with complex subsurface and climatic
conditions based on a high-resolution coupling model. Meanwhile, based on the experimen-
tal data from Ngoring Lake and Maqu stations, the surface and hydrological parameters
and parameterization schemes were modified. The scientific question addressed in this
study is whether the atmosphere–land–hydrology coupling simulation after optimizing
the parameterization schemes can effectively characterize the land–atmosphere interaction
processes over the SRYR. To address this question, this research is structured as follows. The
study area and data are arranged in Section 2. Section 3 introduces the methodology and
experimental designs. A comparison between the standalone WRF and the coupled WRF-
Hydro simulations follows. And then, the characteristics of coupled simulated streamflow
are analyzed. Finally, the Discussion and Conclusion are presented to provide a summary
and perspective of this study in Section 5 and Section 6, respectively.

2. Study Area and Data
2.1. Study Area

The SRYR, situated between 32.12◦ and 35.48◦ N and 95.50◦ and 103.28◦ E, lies
in the northeastern part of the TP. The region encompasses a total catchment area of
1.22 × 105 km2 and boasts a mean elevation of 4000.0 m, as displayed in Figure 1, which
also serves as the configuration for the nested domains in the WRF and coupled WRF-
Hydro. Positioned in the periphery influenced by the East Asian monsoon, the SRYR falls
within the plateau cold climate zone, characterized by an annual mean temperature ap-
proaching 0.0 ◦C and annual mean precipitation ranging between 300.0 and 500.0 mm [24].
Recognized as the primary flow-producing area and water-conserving area in the middle
and upper reaches of the Yellow River, the SRYR is referred to as the “Yellow River Water
Tower”, taking the Tangnaihai hydrological site as the basin outlet [25]. The region pre-
dominantly comprises high mountains, plains, and hills, featuring expansive lakes, notably
the largest plateau freshwater lakes in China, Zhaling Lake and Ngoring Lake [17]. The
terrain is undulating, characterized by alpine meadow grassland and alpine wetland as
the primary land use types. The hydrological environment influences soil composition,
primarily loam and sandy loam with a coarse texture, and a widespread distribution of
seasonal frozen soil.

Figure 1. The geographic location of the Source Region of the Yellow River (a) and the distribution of
the hydrological site (b).
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2.2. Data

This study utilizes the daily streamflow data from the Tangnaihai hydrological site,
generously provided by the Yellow River Water Conservancy Bureau, spanning the period
of 2012–2013. Additionally, turbulent heat fluxes, top-layer soil temperature, and soil
moisture data sourced from the Ngoring Lake site [26,27] and Maqu site [28,29] from the
National Cryosphere Desert Data Center are incorporated. Quality inspection is carried
out for the observational data, and the data with obvious errors are processed to ensure
that there are not significantly incorrect data in the deployed data.

The WRF-Hydro model necessitates a substantial volume of input data, including
meteorological driving data, underlying surface data, and river network data. The me-
teorological driving data are mainly composed of seven variables: downward longwave
and shortwave radiation, surface pressure, specific humidity, air temperature, near-surface
wind speed, and precipitation rate. Given the scarcity and non-uniform distribution of me-
teorological observation sites over the SRYR, significant challenges arise in model driving.
To address this, the Global Land Data Assimilation System (GLDAS) data, jointly developed
by the National Aeronautics and Space Administration (NASA) and the National Center of
Environmental Prediction (NCEP), prove invaluable. With a temporal resolution of three
hours and a spatial resolution of 0.25◦ × 0.25◦, GLDAS integrates the ground and satellite
observation data, demonstrating great applicability over the SRYR [30].

In addition, the quality of precipitation data is critical to streamflow simulation,
emerging as the most sensitive factor affecting streamflow variations. Therefore, a high-
quality precipitation product is of considerable significance to serve as the forcing data
for the WRF-Hydro model. The China Meteorological Forcing Dataset (CMFD) is a high-
spatial-temporal-resolution (0.10◦ × 0.10◦) gridded meteorological driving dataset which
was developed for studying land surface processes in China [31]. The dataset integrates a
variety of reanalysis, satellite remote sensing, and site observation data and is widely used
in climate change and numerical simulations. The CMFD precipitation data and GLDAS
non-precipitation data form the ultimate driving dataset for the model through the bilinear
interpolation method [32].

The initial and boundary conditions for the WRF and coupled WRF-Hydro models are
from the Final Operational Global Analysis (FNL), whose spatial and temporal resolutions
are 6 h and 1.00◦ × 1.00◦, respectively (https://doi.org/10.5065/D6M043C6, accessed on
23 November 2022). The model requisites, such as vegetation type, land use type, soil
type, and other land surface information are sourced from the WRF Pre-processing System
(WPS). The default soil type is substituted with the soil type dataset from Beijing Normal
University (BNU), renowned for its heightened accuracy within China [33]. High-resolution
river network data are from the United States Geological Survey (USGS) Hydrological data
and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS), with
a resolution of 90.0 m chosen to extract accurate river network information. The details of
the aforementioned data are shown in Table 1.

Table 1. An overview of the research data.

Category Data Type Temporal and Spatial Resolutions Variables

Climate

CMFD 3 h; 0.10◦ × 0.10◦ Precipitation

GLDAS 3 h; 0.25◦ × 0.25◦ Temperature, wind speed, solar radiation, downward
longwave radiation, pressure, specific humidity

FNL 6 h; 1.00◦ × 1.00◦ Initial and boundary conditions

Hydrology Site 1 d Streamflow

Eddy covariance Site 30 min Water/heat flux, soil temperature and moisture

Topography HydroSHEDS 90.0 m × 90.0 m Digital Elevation Model

https://doi.org/10.5065/D6M043C6
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3. Methodology
3.1. The Numerical Model
3.1.1. WRF Model

The WRF is a sophisticated non-hydrostatic mesoscale numerical weather prediction
model, renowned for its capability to accommodate various mesoscale and small-scale
atmospheric and hydrological processes in numerical simulation research [34]. There are
numerous physical parameterization schemes for the WRF model, and the applicability of
schemes is different due to the variations in the weather, climate, and underlying surface
conditions. The microphysical process scheme and cumulus scheme have a particularly
significant impact on precipitation simulations. In addition, the quality of different re-
analysis data also directly affects the effectiveness of precipitation simulation [21,22]. By
testing different microphysical process and cumulus parameterization schemes using four
different types of reanalysis data, it was found that the FNL data and the Thompson
and Grell–Devenyi (G-D) schemes have the best applicability over the Source Region of
the Yellow River (not shown in the manuscript). The Advanced Research WRF (ARW)
model (version 4.1.2) for both the standalone WRF and the coupled WRF-Hydro model
was employed in this research.

3.1.2. Noah-MP Model

The Noah-MP model, derived from the Noah Land Surface Model (LSM) with substan-
tial enhancements, is a notable advancement [35,36]. It provides multiple parameterization
options for the key biogeophysical processes, featuring a distinct vegetation canopy, a
two-stream radiation transfer approach, and a short-term dynamic vegetation scheme. Ad-
ditionally, updates to the frozen soil scheme within the groundwater model and the snow
model significantly influence streamflow simulation [37]. In this study, the Noah-MP model
was selected as the land surface process module of the WRF and the WRF-Hydro model.

3.1.3. WRF-Hydro Model

The WRF-Hydro model, developed as a hydrological extension package for WRF, is a
new generation of a distributed hydrometeorological forecasting system with a physical
basis and multi-scale and multi-parameter schemes. Serving as a linkage between the
large-scale regional climate model and the refined hydrological model, it employs the LSM
(Noah/Noah-MP) as a bridge. The model enhances the land surface hydrological process,
focusing on the spatial redistribution of land surface water, groundwater, and river water.
It demonstrates proficiency in quantitatively studying the water–heat exchange process
between the atmosphere and land surface [18]. Comprising five modules, namely, surface
overland flow, saturated subsurface flow, channel, reservoir routing, and the conceptual
baseflow module, the WRF-Hydro model computes quasi-3D subsurface flow, accounting
for both vertical and horizontal water exchange. This research utilized WRF-Hydro system
version 5.1.1, and a comprehensive model description is available in [18].

3.2. Experimental Designs
3.2.1. The Parameterization Schemes in the WRF and Coupled WRF-Hydro Model

The Lambert Projection, featuring a central longitude and latitude of 99.50◦ E and
33.75◦ N, is applied in the model, incorporating two-way nested domains with horizontal
resolutions of 25 km and 5 km, respectively. The vertical structure encompasses 40 levels,
reaching a 50 hPa pressure top, utilizing a time step of 100 s in the outer domain. Continuous
runs are initialized with lateral atmospheric boundary conditions provided by the Final
Operational Global Analysis (FNL) data from the National Centers for Environmental
Prediction (NCEP), as outlined in Table 1. The physics parameterization schemes for the
selected WRF domains are listed in Table 2, with the cumulus parameterization exclusively
employed in the outer domain [22]. Notably, routing processes at a resolution of 500.0 m
are executed solely on the innermost domain within the coupled WRF-Hydro model. The
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simulation spans from 1 March 2013 to 1 September 2013 UTC, with the initial two months
allocated as spin-up time and the remainder for analysis.

Table 2. Physical options of WRF and coupled WRF-Hydro model.

Physics Process Parameterization Reference

Microphysics Thompson [38]

Cumulus parameterization G-D [39]

Planetary boundary layer MYNN2 [40]

Land surface Noah-MP [34]

Longwave radiation RRTMG [41]

Shortwave radiation RRTMG [41]

3.2.2. The Calibration of Sensitivity Parameters in the Offline WRF-Hydro Model

Before analyzing the effects of the land–hydrological processes on the atmosphere
simulation, the WRF-Hydro model is run in an offline/uncoupled way to calibrate relevant
sensitivity parameters and evaluate its efficacy in simulating streamflow. Hydrological
model parameters serve as the reflections of the underlying surface characteristics, and
variations in default parameters’ applicability across different basins are noteworthy. In
terms of the WRF-Hydro model, prior studies have categorized the sensitivity parame-
ters governing streamflow processes into those controlling streamflow distribution and
water volume and those regulating flood peaks and flood hydrographs [20]. A stepwise
manual approach is adopted in calibrating the sensitivity parameters, following previous
WRF-Hydro studies [42]. Given the steep slope of the SRYR, distinct from that of the
Daihe River Basin, the surface retention depth (RETDEPRTFAC) is set as 0.0, and only four
parameters, including the saturated soil moisture (SMCMAX), runoff infiltration parameter
(REFKDT), channel Manning roughness (MannN), and overland flow roughness parameter
(OVROUGHRTFAC), were calibrated within reasonable ranges to select the optimal pa-
rameter value. The calibration process considered the daily streamflow variations at the
Tangnaihai hydrological station during the rainy season from 1 June to 30 September in
2012 [43].

Additionally, the water–heat exchange process is of vital importance to the understand-
ing of the atmosphere–land–hydrology interaction process, influencing the land–surface
water cycle process by modulating the evapotranspiration process. Relevant studies in-
dicate that the default parameterization schemes of the Noah-MP model exhibit an un-
derestimation of latent heat (LE) and an overestimation of sensible heat (H) in the alpine
grassland area [44]. To rectify the issue of H overestimation, the Chen97 scheme for a
sensible heat transfer coefficient is employed, while the Jarvis canopy stomatal resistance
scheme enhances vegetation transpiration, improving simulated LE and achieving a more
balanced distribution of heat flux between LE and H. Other parameterization scheme
options applied in this study remain consistent with the default settings in the uncoupled
WRF-Hydro model.

3.2.3. The Interpolation Method

In this study, a bilinear interpolation method was used to harmonize the data resolution
to 0.1◦ × 0.1◦ to analyze the model’s performances for depicting the distributions of the
meteorological and hydrological elements over the Source Region of the Yellow River. The
bilinear interpolation is a method used to estimate the value of a function at a point, given its
values at the surrounding points. The detailed calculation formula can be found in [33].

3.2.4. Evaluation Index

To evaluate the model’s simulation performance, various metrics including the Nash
Efficiency Coefficient (NSE), Root Mean Square Error (RMSE), Correlation Coefficient
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(R), and Relative Deviation (BIAS) are employed in this research. The NSE is used to
evaluate the performance of streamflow, which can penalize large errors in the simulations
and give a better measure of how well the model simulations match the observational data.
The NSE ranges from −1 to 1, where a value close to 1 indicates that the experiment has a
better performance. The RMSE is a commonly used metric to evaluate the accuracy of the
model by quantifying the differences between the observed and simulated values. A lower
RMSE indicates a better performance, and it is a widely accepted metric for regression
calculation. As for R, it is a measure of the linear correlation between two data sets. It
ranges from −1 to 1, where 1 indicates a perfect positive linear relationship, −1 indicates
a perfect negative linear relationship, and 0 indicates no linear relationship. The BIAS
can be useful for understanding the relative performance of different experiments, where
the magnitude of the simulation errors can vary greatly depending on the scale of the
observational data. The calculation formula and optimal value of each evaluation index are
shown in our previous study [45].

3.2.5. The Applicability of the WRF-Hydro Model

After a 2-month spin-up period, the uncoupled WRF-Hydro was calibrated from
1 June to 30 September in 2012, based on daily streamflow from the Tangnaihai hydrological
site. As depicted in Figure 2, the simulated streamflow closely aligns with the observation,
exhibiting consistency between flood and precipitation hydrographs. During the calibration
period, the simulated and measured streamflow achieves an R of 0.84, NSE of 0.44, RMSE
of 465.61 m3·s−1, and BIAS of −11.44%. In the validation period, R is 0.81, the NSE
is 0.61, RMSE is 351.36 m3·s−1, and BIAS is −10.21%. However, the model tends to
underestimate peak flows during flood season and presents some unrealistic peak flows,
indicating potential issues with the base flow model and precipitation [22]. Nevertheless,
the WRF-Hydro model demonstrates the ability to produce a relatively realistic hydrological
regime over the SRYR; hence, the calibrated parameters are used for comparing WRF and
coupled WRF-Hydro simulations.

Figure 2. The variation in simulated and observed daily streamflow (units: m3·s−1) over the Source
Region of the Yellow River during the calibration and validation periods. The black dotted line in
correspondence with 30 September 2012 splits the calibration and validation periods.
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4. Results

The land surface hydrological cycle constitutes a crucial Earth System process. Cli-
mate change exerts influence on the global water cycle, eliciting diverse responses at the
regional scale. Simultaneously, variations in the land surface process contribute to the
regional and catchment-scale modification of water resource distribution and runoff [4].
Based on the coupled WRF-Hydro model, the impact of climate change on land surface
hydrological processes and the feedback of the surface water cycle to precipitation are
comprehensively considered, and the characteristics of the coupled atmosphere–land–
hydrology process and streamflow variations over the SRYR during the rainy season of
2013 are also explored.

4.1. The Temporal Variation in Hydrometeorological Elements

Given the sparse and uneven distribution of monitoring sites over the SRYR, reanalysis
products are employed in this study to examine the variation in the hydrometeorological
elements. Previous studies [44,45] have demonstrated the suitability of CMFD precipita-
tion data over the SRYR, while GLDAS data, encompassing temperature and runoff, are
recognized for effectively characterizing climate change and water cycle processes over
the SRYR. Therefore, CMFD and GLDAS are utilized as reference datasets (denoted as
Reference) for analyzing the regional mean simulation results in the following study.

Figure 3 shows the time series of regional mean meteorological and hydrological
elements. It exhibits that both the WRF and coupled WRF-Hydro models can effectively
capture the evolution characteristics of these elements over the SRYR. Compared with the
standalone WRF model, the coupling process results in a slight increase in the wet deviation
of precipitation, with an average RMSE of 2.51 mm. However, it enhances the simulation
of temperature and downward longwave and shortwave radiation to a certain extent. The
simulations of surface pressure, specific humidity of 2 m, and wind speed near the ground
exhibit minimal differences between the two experiments. Notably, the coupling process
elevates soil moisture levels by accounting for the terrestrial vertical and lateral flow of
soil water in three-dimensional space, consequently leading to larger simulated values
for evapotranspiration and precipitation. Table 3 depicts the evaluation indices of diverse
meteorological and hydrological variables simulated by WRF and WRF-Hydro models over
the SRYR. Both models, especially WRF-Hydro, demonstrate good overall performance in
simulating various hydrometeorological elements, with high correlation coefficients and
generally low RMSE values.

Table 3. The evaluation indices for hydrometeorological elements’ simulations.

Variables Model R RMSE

Precipitation WRF 0.80 2.50
WRF-Hydro 0.81 2.51

Temperature WRF 0.96 1.45
WRF-Hydro 0.96 1.2

Downward longwave radiation WRF 0.90 20.43
WRF-Hydro 0.90 20.01

Downward shortwave radiation WRF 0.76 63.14
WRF-Hydro 0.77 61.27

Surface pressure WRF 0.98 1.04
WRF-Hydro 0.98 1.08

Specific humidity WRF 0.93 0.002
WRF-Hydro 0.91 0.002

Wind speed WRF 0.72 0.01
WRF-Hydro 0.75 0.03
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Figure 3. The time series of the mean meteorological and hydrological elements simulated by the
WRF and coupled WRF-Hydro models from 1 May 2013 to 31 August 2013.

The land–atmosphere water and heat exchange processes exert influence on surface
soil moisture through alterations in evapotranspiration, consequently impacting the surface
energy and hydrological cycle [46]. To ensure data comparability, the typical sunny/cloudy
days at Ngoring Lake (lakeside underlying surface) and Maqu (grass underlying surface)
sites are selected based on characteristic downward total radiation patterns throughout the
entire simulation period. The screening methods for typical sunny/cloudy days are consis-
tent with the work of Zhang et al. [47].

Figure 4 illustrates the diurnal variation characteristics of the LE and H simulated
by both the WRF and coupled WRF-Hydro models on typical sunny days, where the
land–atmosphere water and heat exchange processes are notably active. The results at the
Ngoring Lake site show that the coupled WRF-Hydro model produces LE and H values
more consistent with measurements, resulting in reduced RMSE values of 29.91 W·m−2 and
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31.06 W·m−2 compared to WRF simulations. Conversely, at the Maqu site, the coupled
process amplifies the deviation in LE simulations, attributed to the overestimation of
evapotranspiration, while effectively mitigating the issue of overestimated H.

Figure 4. Comparison of turbulent fluxes (units: W·m−2) between WRF-Hydro/WRF and observa-
tions on typical sunny days at Ngoring Lake (a,b) and Maqu (c,d) sites.

Figure 5 demonstrates the diurnal variation characteristics of the LE and H on typical
cloudy days, characterized by more complicated weather conditions and physics pro-
cesses. During these days, the agreement between turbulent flux simulation results and
observations is less favorable compared to typical sunny days. The simulations at both
sites indicate that the coupled process can reduce the RMSE in LE and H, with a mean
RMSE of 29.48 W·m−2 and 26.55 W·m−2, respectively. Overall, the coupled WRF-Hydro
simulations exhibit enhancements in simulating surface heat flux variables, attributed to
the incorporation of lateral terrestrial water flow in the hydrological process.

Furthermore, soil temperature and moisture play an important role in influencing
land surface evaporation and groundwater processes, directly or indirectly affecting the
land–hydrology process. The Taylor diagram [48] provides a visual assessment of model
performance by comparing the bias and correlation of model simulations to observations.
It highlights which models perform well in simulating the climate variable and which ones
may require improvement or further calibration. Therefore, the analysis of top-layer soil
temperature and moisture at the Maqu site is conducted by Taylor diagrams in Figure 6,
leveraging available observed data. The results display a commendable agreement between
the simulated and observed soil temperature, albeit with a notable discrepancy in August,
attributed to deviations in downward shortwave radiation and temperature. The coupling
process reduces the RMSE of soil temperature simulation (from 5.18 to 4.22 K), indicating
improved accuracy through the comprehensive consideration of soil water content variation.
In addition, the WRF-Hydro model exhibits a prolonged soil moisture memory compared
to standalone WRF, resulting in significantly higher simulated soil moisture values in WRF-
Hydro, attributable to the inclusion of subsurface lateral flow in the WRF-Hydro model.
Nevertheless, the simulated top-layer soil moisture in both experiments does not align
with observations and struggles to capture the response of soil moisture to precipitation.
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Furthermore, the uncertainty introduced by the site-specific results necessitates verification
through spatial distribution analysis.

Figure 5. As in Figure 4, but for the typical cloudy days.

Figure 6. Taylor diagrams of correlation coefficients and standard deviations for daily soil tem-
perature and soil moisture at Maqu site among simulations with observations from 1 May 2013 to
1 September 2013.
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4.2. The Spatial Distribution of Hydrometeorological Elements

Moreover, the spatial distribution of the accumulated precipitation for the CMFD
reference data (denoted as Reference), WRF, and coupled WRF-Hydro, along with their
discrepancies, is displayed in Figure 7. The precipitation patterns underscore a pronounced
reliance on topography, showing a decreasing trend from southeast to northwest over the
SRYR. Both WRF and coupled WRF-Hydro demonstrate enhanced capabilities in capturing
precipitation distribution characteristics. However, both simulations exhibit a considerable
wet bias, particularly in the Jiuzhi and Maqu areas, coupled with a dry bias in the south-
eastern SRYR. The coupled WRF-Hydro, in contrast to the standalone WRF, incorporates
subsurface lateral flow considerations, resulting in increased soil moisture and a more
rational spatial distribution of soil water. This, in turn, engenders a feedback effect on
precipitation, contributing to a mean wet bias of 16.63 mm compared to WRF simulations.

Figure 7. The spatial distribution of the accumulated precipitation (units: mm) in the time interval
1 May 2013 to 31 August 2013 with (a) observation, (b) the standalone WRF simulation, (c) the coupled
WRF-Hydro simulation, and difference maps for (d) WRF minus observation, (e) WRF-Hydro minus
observation, and (f) WRF-Hydro minus WRF.

Concerning temperature, the spatial patterns of the mean 2 m air temperature during
the simulated period are shown in Figure 8. The temperature spatial distribution presents
gradient characteristics, with elevated temperatures observed in flat regions and lower
temperatures in alpine areas. Both experiments adeptly capture the temperature distribu-
tion characteristics. On the whole, the simulated temperature tends to be relatively higher,
particularly in the northeast area of the SRYR. The regional mean bias is 0.44 K for the
standalone WRF and 0.15 K for the coupled WRF-Hydro, indicating a slight reduction
in the mean temperature deviation in the coupled simulation.



Atmosphere 2024, 15, 468 13 of 18

Figure 8. As in Figure 7, but for the mean temperature (units: K).

Soil temperature serves as an important parameter in the land surface process, provid-
ing a direct reflection of the thermal state of the land. The fluctuations in soil temperature
have a consequential impact on the movement and phase transitions of surface soil water,
consequently influencing the surface hydrological cycle [49]. Simultaneously, soil moisture
plays a vital role in land–atmosphere interactions. Functioning as a reservoir for heat and
moisture, soil moisture exhibits remarkable memory, retaining information from weeks to
months, and subsequently influencing atmospheric conditions through the remembrance
of preceding atmospheric perturbations.

The spatial distribution characteristics of top-layer soil temperature (Figure 9a–c)
and moisture (Figure 9d–f) during the 2013 rainy season over the SRYR are analyzed in
Figure 9. Given the high altitude and substantial diurnal temperature fluctuations over the
TP, the mean temperature is lower than that of the inland areas, with lower soil tempera-
ture closer to the plateau’s interior. Both simulations adeptly illustrate the characteristic of
lower temperatures in the lake area compared to the surroundings. The coupled WRF-
Hydro reduces the simulated surface soil temperature, exhibiting a cold deviation of 1.07 K,
with potential implications for atmospheric water vapor convergence via land–atmosphere
interactions. Regarding soil moisture, both experiments show wet centers in the Zhaling
Lake and Ngoring Lake areas. The coupled WRF-Hydro model, influenced by terrestrial
lateral water and soil moisture redistribution processes, demonstrated a more reasonable
spatial distribution of soil water content over the study region. The simulations of soil
moisture from WRF-Hydro significantly exceed those of WRF, presenting a wet deviation
of 0.02 m3/m3. On the whole, the areas surrounding the two lakes in the SRYR function
as cold and wet centers during the simulation period, and the coupled simulations aptly
capture the variation characteristics of soil temperature and moisture.
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Figure 9. The spatial distribution of the mean top-layer (0–10 cm) soil temperature (units: K) in the
time interval 1 May 2013 to 31 August 2013 with (a) the standalone WRF simulation, (b) the coupled
WRF-Hydro simulation, and the difference map for (c) WRF-Hydro minus WRF; (d–f) are the same
as (a–c), but for top-layer soil moisture (units: m3/m3).

4.3. The Time Series of the Streamflow Simulated by the Coupled Model

The time series depicting the coupled simulated streamflow for the 2013 rainy season,
where direct meteorological site observations are not required, is presented in Figure 10.
The coupled model adeptly captures the temporal variation in observed hydrographs,
exhibiting an R of 0.77. However, reproducing daily streamflow with the coupled model
poses a challenge, yielding an NES of 0.33 and RMSE of 458.85 m3·s−1. The substantial
overestimation of coupled simulated streamflow, particularly in peak flow reproduction, is
a notable limitation. This performance degradation primarily stems from the WRF-Hydro
model’s extreme sensitivity to precipitation data quality, where the RMSE of precipitation
is merely 2.51 mm, contrasting with the considerably higher RMSE of streamflow. Fur-
thermore, this discrepancy may arise from distinct frequencies of Noah-MP invocation in
uncoupled calibration and coupled runs. In uncoupled simulations, Noah-MP is typically
invoked at the physical time step of the hydrological model, while in coupled simulations, it
is invoked at the physical time step of the WRF model. This leads to more water traversing
down-slope or entering the channel before infiltration occurs again, contributing to elevated
streamflow [22].
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Figure 10. The observed and coupled WRF-Hydro simulated streamflow (units: m3·s−1) for the
period 1 May 2013 to 31 August 2013.

5. Discussion

Based on the standalone WRF and coupled WRF-Hydro models, a high-resolution
atmosphere–land–hydrology coupling model was constructed with various data over
the SRYR. In this study, the key variables associated with atmosphere–land–hydrology
coupling processes were compared and analyzed to evaluate the streamflow simulation
capability of the coupled model. The results reveal that the WRF-Hydro model success-
fully reproduces the daily streamflow, yet refinement is warranted for a more nuanced
depiction of the hydrograph, particularly regarding underestimation and steep changes
during flood peaks. This limitation underscores the need for an in-depth exploration of
groundwater and soil water content dynamics to explain their influences on streamflow.
Future research endeavors should encompass a comprehensive analysis of land surface
water cycle processes to enhance our understanding.

In addition, a significant overestimation of streamflow is observed in the coupled
model. To explore the factors influencing this performance degradation, a sensitivity anal-
ysis is conducted by using different combinations of atmospheric forcing data and the
uncoupled WRF-Hydro model (not shown in the manuscript). The results show that
the coupled simulated precipitation data introduces slight deviations cumulatively lead-
ing to a substantial error in streamflow simulation (RMSE of 2.51 mm for precipitation
and 458.85 m3·s−1 for streamflow). While using the coupled simulated non-precipitation
data and CMFD precipitation, the simulated streamflow is close to the observations, which
suggests that accurate precipitation is recommended as the forcing data for streamflow sim-
ulations over the SRYR. Presently, reproducing daily streamflow over the Tibetan Plateau
with the coupled model remains a challenge [25,50]. Studies have indicated that advanced
data assimilation methods have the potential to enhance precipitation forecasting accuracy,
thus fostering advancements in atmosphere–land–hydrology simulations [20]. Incorporat-
ing satellite and radar data into the WRF model in future studies offers a potential avenue
for improving precipitation and streamflow simulation and projection.

The inaccurate estimation of initial soil moisture is also a limitation for streamflow
simulation. Studies found that streamflow is sensitive to early rainfall, which may influence
the reconstruction of later flood peaks [20]. The observational sites over the SRYR were
usually established on flat terrain with moist soils and rivers passing through, where the
lateral flow of soil water flows in, not out. As a result, improvements in initial soil water
content accuracy help capture streamflow over this region.
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In future studies, the consideration of improving the accuracy of initial soil moisture
and precipitation data will not only help the WRF-Hydro coupled model to simulate
streamflow but also serve as an effective tool in interdisciplinary flood simulation studies.

6. Conclusions

This study conducts a comparative analysis of key variables associated with the
coupled atmosphere–land–hydrology processes over the SRYR during the 2013 rainy
season. The primary focus is on investigating the impacts of climate change on land surface
and water cycle processes, as well as the feedback of the land surface hydrological cycle to
precipitation. The following main conclusions have been drawn:

(1) The uncoupled WRF-Hydro model effectively characterizes the variability of stream-
flow over the SRYR basin, demonstrating an R of 0.84 and an NSE of 0.44 during the
calibration period and an R of 0.81 and an NSE of 0.61 during the validation period.

(2) Both the standalone WRF and coupled WRF-Hydro models indicate reasonable per-
formance in reproducing variables associated with atmosphere–land–hydrology pro-
cesses over the SRYR. The consideration of soil water lateral flow in the coupling
process significantly reduces biases in water–heat exchange fluxes, soil temperature,
and soil moisture simulations, with mean RMSE values of 32.27 W·m−2, 24.91 W·m−2,
4.22 K, and 0.06 m3/m3, respectively.

(3) The coupled model success captures the streamflow variation. Nevertheless, repro-
ducing daily streamflow with the coupled model remains a challenge, yielding an
NSE of 0.33 and an RMSE of 458.85 m3·s−1.

The main findings in this work indicate that the WRF-Hydro model has the potential
to reproduce the interaction processes between the land surface and atmosphere in the
complex terrain areas. For a future perspective, accurate initial soil moisture and precip-
itation estimation by incorporating advanced data assimilation methods is supposed to
improve streamflow simulations and interdisciplinary flood simulation studies.
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