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Abstract: Global climate change has exacerbated alterations in urban thermal environments, signifi-
cantly impacting the daily lives and health of city residents. Measuring and understanding urban land
surface temperatures (LST) and their influencing factors is important in addressing global climate
change and enhancing the well-being of residents. However, due to limitations in data precision
and analytical methods, existing studies often overlook the microscale examination closely related
to residents’ daily lives, and lack a deep exploration of the spatial heterogeneity of the influencing
factors. This leads to these results being ineffective in guiding the planning and construction of
cities. Taking Shenzhen as a case study, our study investigates the effects of various microscale build
environment characteristics of LST using street view images and machine learning. A convolutional
neural network model adopting the SegNet architecture is used to perform semantic segmentation on
street view images, extracting features of the microscale urban-built environment. The LST is inverted
through the Google Earth Engine (GEE) platform. By using Multiscale Geographically Weighted
Regression (MGWR) models, our study reveals the comprehensive impact of the urban-built environ-
ment on LST and its significant spatial heterogeneity. The findings indicate that the proportions of sky,
roads, and buildings are positively correlated with LST, while trees have a significant cooling effect.
Although earth and water can reduce LST, their overall contribution is minimal due to limitations
in their area and distribution patterns. This study not only reveals the key factors affecting urban
LST at the microscale but also emphasizes the necessity of considering the spatial heterogeneity of
these factors’ impacts. This suggests the need for targeted strategies for different areas to effectively
improve the urban thermal environment and achieve sustainable urban development.

Keywords: global climate change; big data; urban thermal environment; human perspective;
urban planning

1. Introduction

Global climate change has profound effects on human society [1,2]. Cities, as the main
venues for human production and living [3], are more vulnerable to global climate change
due to their dense populations and artificial environments [4,5]. In recent years, rapid
urbanization has accelerated changes in urban land use [6,7], with natural environments
being extensively replaced by artificial ones [8,9]. The rapid expansion of cities and frequent
human activities have damaged the ecological environment, while also exacerbating the
urban heat island (UHI) effect [10]. This is primarily due to the increased thermal capacity
from more buildings and impermeable surfaces, thereby trapping more energy and radia-
tion [11,12]. Against the backdrop of climate change, the problem of the UHI effect is set to
worsen [13,14]. Research has demonstrated that the intensification of UHI not only reduces
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the thermal comfort of urban residents but may also has negative impacts on human health,
including heatstroke or other heat-related health issues [15,16]. Furthermore, the decline in
the quality of the urban thermal environment significantly impacts the energy use, leading
to a higher demand for cooling appliances like air conditioners, which in turn amplifies the
UHI effect, forming a vicious cycle [17].

Monitoring of Land Surface Temperature (LST) has become key to understanding and
measuring the UHI effect and is crucial in the context of global climate change [18]. LST can
indicate the present condition and direction of the urban thermal environment, offering an
essential foundation for devising relevant urban planning policies [19]. Early monitoring
of LST relied on weather stations or mobile observations. Although these methods were
accurate for recording climate conditions at specific locations, they faced challenges in
capturing the broad spatial distribution of the thermal environment. As remote sensing
technology advances, LST-based research offers a new perspective on observing the UHI
effect and assessing its impact on human health [20,21]. This enables the observation of
variations in the urban thermal environment on a more extensive scale, identifying high-
heat risk areas. Increasingly, researchers use remote sensing data to deduce the spatial and
temporal changes in LST and its relationship with influencing factors, proposing strategies
to mitigate the UHI [13,22]. Due to the practical application, timeliness, and free availability
of sensors, we can conduct analyses on a regional or even global scale, providing more
effective aid in reducing the UHI effect [23,24].

Analyzing the influencing factors and mechanisms of the urban thermal environment
is important to mitigating high thermal conditions in cities, crucial for urban planners and
managers [14]. Previous research has demonstrated a strong correlation between LST and
air temperature [25]. Urban morphology (such as building density or layout patterns) [26],
land use patterns [27], landscape patterns [28], and human activity intensity [29] all impact
the urban thermal environment. Researchers have studied the LST and UHI effect at
different scales, including continents [30,31], countries [32], urban agglomerations [33], and
cities [27]. As urbanization accelerates, the influence of the urban-built environment on
LST has become increasingly significant [34]. The microscale urban-built environment is
closely related to residents’ daily lives and is a crucial component of urban construction
and renewal [35]. Optimizing the built environment at the microscale is a rapid and
effective method to improve the urban microclimate under the current urban development
model. However, research on the impact of microscale-built environment factors on surface
temperature remains severely limited. This not only underestimates the critical role that the
microscale-built environment plays in the daily lives of residents, but also overlooks the
spatial differentiation of this impact. As a result, many studies produce outcomes that lack
practicality in specific contexts of urban construction and environmental improvement.

Street view images support the observation of the urban-built environment from a
microscale perspective [36,37]. With recent developments, street view images have become
a geographical analysis tool equivalent to remote sensing data, offering finer-grained data to
support small-scale research [38]. Street view images now cover most cities globally and are
gradually expanding to scenic areas and rural settings, further increasing their data capacity
and application potential [39]. Street view images offer new methods and perspectives for
urban research, widely applied in fields such as urban environmental change [40], property
valuation [41], and subjective perception assessment [42]. The integration of street view
images with machine learning enables precise measurement of built environment features,
providing a more detailed and comprehensive three-dimensional perspective. This allows
researchers to understand and analyze urban space layout and features at the street scale
more deeply [35,43]. Long and Liu [44] argue that street view images can measure the
urban physical environment from a human perspective and are more economical and
effective than traditional assessments and field observations. Gong et al. [45] mapped sky,
tree, and building view factors in street canyons using street view images, demonstrating
their higher accuracy compared to 3D-GIS. Li et al. [46] utilized the proportions of grass,
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shrubs, and trees extracted from street view images to reveal the different cooling effects of
various vegetation types on the urban thermal environment.

Shenzhen is a typical high-density city, and its high level of construction has caused it
to be troubled by the UHI effect. Based on this, this study employs a joint analysis method
combining street view big data, deep learning, and spatial regression models to help urban
planners and managers understand the factors affecting urban LST more targeted. This
study aims to address the following research questions: (1) What is the impact of the
microscale-built environment on LST? (2) Does this impact exhibit spatial heterogeneity?
(3) Can Multiscale Geographically Weighted Regression (MGWR) accurately explain the
influence of the microscale-built environment on LST?

2. Methodology
2.1. Research Framework

This study is conducted from three main aspects: (1) Utilize a convolutional neural
network framework inspired by the SegNet design to scrutinize and decode the microscale
urban-built environment features of Shenzhen through analysis of street view images;
(2) Invert Shenzhen’s LST using three different emissivity’s on the Google Earth Engine
(GEE) platform; (3) Examine the influence of Shenzhen’s urban architecture on LST by
employing a variety of spatial analysis models, including Ordinary Least Squares (OLS),
Geographically Weighted Regression (GWR), and MGWR. This approach is intended to
determine the most effective model for elucidation and to delve into the spatial diversity of
how each component of the built environment affects the LST. The framework of this study
is shown in Figure 1.
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2.2. Study Area

Shenzhen is located in the southern part of China, specifically between longitude
113◦46′–114◦37′ E, and latitude 22◦27′–22◦52′ N (Figure 2). As a typical megacity and high-
density urban area, Shenzhen serves as an economic hub, innovation base, and transporta-
tion nexus in southern China and is one of the core engine cities of the Guangdong-Hong
Kong-Macao Greater Bay Area. The city experiences a subtropical monsoon climate with
abundant rainfall. It encompasses nine districts, covering a total area of 1997.47 square
kilometers, with a permanent population of 17.6618 million people. Despite its relatively
recent establishment, Shenzhen has undergone rapid development with dense economic
and social activities, leading to a high degree of urbanization. In the last four decades,
Shenzhen’s developed regions have expanded six times over, profoundly altering the city’s
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thermal landscape and increasing its susceptibility to urban heat island phenomena [47].
The microscale urban-built environment is directly linked to the daily lives of residents.
Therefore, measuring the impact of Shenzhen’s urban-built environment on LST from a
microscale perspective is very important for solving the city’s UHI problem and improving
planning and construction quality. Additionally, the region has an abundance of Baidu
street view image data resources, which ensures the accuracy of the research findings [48].
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2.3. Street View Data Collection

Street view images enable measurement and characterization of the urban environ-
ment from a more precise and three-dimensional perspective, and are widely used in the
analysis and evaluation of urban environments. Due to the absence of Google Street View in
mainland China, Baidu Street View serves as an important tool for studying urban environ-
ments in Chinese mainland cities, offering accuracy comparable to Google Street View and
being broadly applied in related research [36,49]. The street view images for this study were
collected from Baidu Maps (https://api.map.baidu.com/panorama/v2?ak=YOURKEY,
accessed on 16 February 2024), which we found to provide excellent coverage of Shenzhen,
China. Based on previous research and the line of sight distance of pedestrians [37,48],
collection points for Baidu Street View images were established and created at intervals
of 50 meters throughout the road network using Geographic Information Systems (GIS).
This approach is advantageous for collecting built environment data at a microscale in as
much detail as possible, thereby ensuring the precision of the research. The road network
used in this study was sourced from the Open Street Map (OSM) platform. To precisely
depict a comprehensive view of street-level images from all four cardinal directions, we
further calculated the viewing direction angles in GIS to ensure that all street view image
collection points were parallel to the spatial forward direction of the road. This process
helps improve the accuracy of measurements. Figure 3 shows a schematic diagram of the
Baidu street view image sampling points. By calling the Baidu Street View map API, street
view panoramas from four directions were obtained for each sample point, with image
resolution set to 600 × 480 pixels. To avoid interference with the overall urban environment
evaluation, data cleaning was performed to remove inaccessible and duplicate street view

https://api.map.baidu.com/panorama/v2?ak=YOURKEY
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images, check the quality of street view photos, and eliminate low-quality images with
issues such as blurriness, overexposure, or underexposure. The study generated a total of
354,586 collection points, collecting 1,045,524 valid street view images, which were stitched
together to form 261,381 street view panoramas of the sample points.
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2.4. Microscale-Built Environment Features Measurement Based on Image Segmentation

Scene semantic parsing, an essential technology for understanding scene perception,
aims to segment and identify object instances in street view images [45,50]. This study
employed image semantic segmentation technology for scene semantic parsing to measure
urban-built environment features at a fine-grained level. The ADE_20K dataset, which
includes elements from 150 daily life scenes such as the sky, roads, cars, plants, etc.,
has been proven to have high accuracy and has been widely applied in the semantic
segmentation of street view images [51]. The dataset contains a total of 25,210 images,
of which 20,210 are in the training set, 2000 in the validation set, and 3000 in the test set.
Using this pre-trained dataset, we trained a convolutional neural network model with a
SegNet architecture to achieve the precise classification of the collected street view images
at the pixel level [52]. The network comprises two main parts: the encoder and the decoder.
The encoder compresses and extracts information about objects, while the decoder restores
the semantic information to the size of the input image, representing each pixel by the
color corresponding to its object information. The outcomes of the training demonstrated
an accuracy of 92.36% within the training dataset and 86.20% in the validation dataset,
indicating that the model’s accuracy meets the research requirements. Following previous
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studies [37,53], we extracted the top 10 urban-built environment features with the highest
image proportions for subsequent research. Figure 3 also illustrates the working process of
this model.

2.5. Urban LST Inversion Based on GEE

The process of estimating LST based on satellite remote sensing data relies on the
availability of thermal infrared sensors [54]. We used Landsat-8 OLI TIRS data as a basis,
and collected LST data on the GEE platform. Subsequently, this study utilized the single-
channel algorithm developed by Parastatidis et al. [55]. for LST inversion. This algorithm
corrects LST using three different sources of emissivity: (1) the global emissivity released
by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) with
a resolution of 100 m; (2) daily emissivity from MODIS (Moderate Resolution Imaging
Spectroradiometer); (3) emissivity calculated based on NDVI (Normalized Difference
Vegetation Index). In the GEE environment, we calculated and extracted the median
LST for summer (1 June to 31 August 2023) based on the vector boundaries of Shenzhen.
Compared to annual data, summer LST is more representative of the UHI effect, as it is the
period when this phenomenon is most prevalent.

2.6. Explaining the Relationship between the Microscale Urban-Built Environment and LST

To better unveil the complex impacts of the urban-built environment on LST, we
employed three different regression models: OLS, GWR, and MGWR. The field of urban
environment studies widely uses OLS linear regression to explore the relationship between
the dependent variable and independent variables [37]. OLS linear regression is a com-
prehensive model that calculates the coefficients of the explanatory variables in a linear
equation. It achieves this by minimizing the total of the squared discrepancies between
the forecasted and actual values within the dataset [56]. The formula for OLS is as follows
(Equation (1)):

Y = Xβ + ϵ (1)

Here, Y is the dependent variable, X is the matrix of explanatory variables, β is the
vector of coefficients, and ϵ is the vector of random error terms.

OLS assumes that data are spatially stationary across their distribution. However,
variables in actual studies are often spatially non-stationary. For spatially non-stationary
data, a spatial regression model like GWR becomes necessary. GWR allows regression
coefficients to vary across different spatial locations, enabling analysis of how variables
related to the urban-built environment impact urban LST through spatially varying re-
gression coefficients [57]. GWR defines neighborhoods using a single bandwidth and
optimizes parameters through golden section search optimization and the corrected Akaike
Information Criterion corrected (AICc). The model is evaluated using a bisquare distance
weighting function. The formula for GWR is as follows (Equation (2)):

Yi = α0(ui ,vi)
+

m

∑
k=1

ak(ui ,vi)
Xk(ui ,vi)

+ εi (2)

Here, Yi is the LST and its coordinates (ui,vi), α0(ui,vi) is the intercept of the model,
ak(ui,vi) is the regression coefficient of the kth independent variable data at (ui,vi), Xk(ui,vi)
is to the kth attribute at position i, and εi is the random error of the model.

MGWR is an extension of GWR, providing individual bandwidths for each variable to
more accurately reflect the influence of spatial scales [58]. Unlike GWR, MGWR employs
adaptive kernel bandwidths, specifying the minimum number of data points that must
be included in each local regression model. This approach can significantly address edge
effects and non-uniform spatial distributions. For parameter optimization, we use the
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golden section search optimization procedure, with the AICc as the criterion for model fit.
The formula for MGWR is as follows (Equation (3)):

Yi = α0(ui ,vi)
+

m

∑
k=1

abwk(ui ,vi)
Xk(ui ,vi)

+ εi (3)

Here, abwk is the kth explanatory variable with an added bandwidth term bw, and each
explanatory variable has a separate spatial scale.

3. Results
3.1. Microscale-Built Environment Features

The semantic segmentation results of the street view images in our study area were
aggregated, and the top 10 most prevalent microscale-built environment elements were
extracted for further analysis. The descriptive statistics of the built environment features
are presented in Table 1. The results indicate significant variations in the distribution of
each microscale-built environment element. The sky, representing the openness of space,
is the most dominant feature with an average value of 0.239, but it varies greatly across
the entire area. The proportion of roads, ranking second after the sky (0.208), exhibits less
variability than the sky. Roads signify the urbanization level, and the results suggest a high
degree of artificialization in Shenzhen. Trees, as the main contributors to urban greening
and key elements providing ecological benefits, have an average value of 0.194 but fluctuate
significantly, reaching up to 0.666 in some areas. This reflects the uneven spatial distribution
of greenery in Shenzhen. Buildings, one of the dominant factors affecting the urban thermal
environment, are crucial components of urban structure. Measurements from street view
images allow for a comprehensive assessment of the density, area, and form of buildings.
The average coverage is 0.141, with a maximum of 0.600, indicating excessive building
density in some urban areas. These elements significantly outnumber other elements,
highlighting their dominant role in the urban-built environment. Grass and water have the
lowest average values, at 0.013 and 0.001 respectively, indicating their relative scarcity in
Shenzhen’s urban structure. Notably, the maximum coverage of water is only 0.026, which
may suggest that water features are limited or marginalized in street-level photography.

Table 1. Top10 Built environment elements identified following segmentation of the street view images.

Number Elements Mean Max. Min. S.D.

1 Sky 0.239 0.571 0.000 0.095
2 Road 0.208 0.397 0.000 0.056
3 Tree 0.194 0.666 0.000 0.109
4 Building 0.141 0.600 0.000 0.110
5 Sidewalk 0.038 0.257 0.000 0.027
6 Shrub 0.035 0.357 0.000 0.032
7 Wall 0.023 0.547 0.000 0.041
8 Earth 0.017 0.404 0.000 0.028
9 Grass 0.013 0.260 0.000 0.019
10 Water 0.001 0.026 0.000 0.002

Note: The built environment elements in the table are sorted by mean value.

3.2. Spatial Distribution of Urban LST

This study used the GEE platform to invert the spatial distribution map of Shenzhen’s
LST for the summer of 2023. As can be seen from Figure 4A, LST in Shenzhen varied
between 29 ◦C and 69 ◦C. The temperature distribution shows that the LST values in the
urban center and industrial concentration areas are relatively high, displaying the typical
UHI effect. In contrast, the suburban and vegetation-covered areas have lower LST values,
indicating that green spaces play a significant role in mitigating the UHI effect. Through
spatial autocorrelation analysis (Figure 4B), this study further revealed the clustering
characteristics of LST distribution. High–high cluster areas are mainly concentrated in the
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city center, industrial zones, and along major transportation arteries, where high LST values
show significant spatial clustering. Low–low clusters are primarily located in suburban
areas, large parks, and near water, indicating that these areas are conducive to cooling
temperatures. Notably, high–low and low–high cluster areas are relatively few, suggesting
a trend of spatial separation in the extremes of LST, i.e., the temperature distribution within
areas of high or low temperature is relatively uniform. Overall, these results highlight the
spatial unevenness of Shenzhen’s LST in summer, as well as the role of vegetation and
urban structure in forming and regulating the UHI effect.
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3.3. Regression Results

To dissect the elements influencing LST, our study undertook experiments employing
three distinct models: OLS, GWR, and MGWR. These experiments aimed to scrutinize
the link between characteristics of the urban-built environment and LST. Preliminary OLS
analysis correlating features of the urban-built environment with urban LST revealed that
the Variance Inflation Factors (VIFs) for all urban-built environment variables were below
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4, indicating an absence of collinearity concerns. In our quest to identify the most fitting
regression model to elucidate the relationship between urban-built environment traits
and LST, we evaluated the efficacy of the OLS, GWR, and MGWR models, as depicted
in Table 2. The MGWR model outperformed its counterparts in both R2 values and AICc
metrics, leading to a focused examination of the MGWR model’s regression outcomes.
The findings from the MGWR model, which highlighted the significance of geographic
discrepancies, underscored the importance of adopting a spatially oriented regression
model. This approach is invaluable for capturing the diverse effects that various urban
attributes exert on LST across different locales. Specifically, the average coefficient for the
sky in the MGWR model was positive (average coefficient = 0.021; range = –0.853 to 1.601),
implying that theoretically, an increase in sky visibility could be related to an increase
in LST. The spatial heterogeneity of sky impact was significant. In some areas, greater
sky visibility correlated positively with higher LST, possibly reflecting less shading and
vegetation, leading to more solar radiation reaching the ground. Roads and buildings
were overall positively related to an increase in LST, possibly due to the heat-absorbing
physical properties of impervious surfaces. Trees had a significant cooling effect on LST,
but this effect was spatially uneven (average coefficient = −0.116; range = −1.198 to 1.194),
which could relate to the density, type of trees, and their surrounding environment. For
example, dense canopies can more effectively reduce temperatures, while the transpiration
capacity and shading area of different tree species also influence their cooling effects.
Furthermore, if there are buildings or other man-made structures around the trees, this
may impact their temperature regulation effects. For Earth (average coefficient = −0.075;
range = −0.975 to 0.761), the negative average coefficient might indicate that unpaved
surfaces help lower temperatures, possibly due to the natural cooling effect of the land. The
coefficient for sidewalk, although on average positive (average coefficient = 0.073), varied
significantly across different areas (range = −0.268 to 0.078), possibly reflecting differences
in surrounding vegetation and ground materials. Water had a coefficient very close to zero
in the MGWR model, suggesting the limited waterside spaces in Shenzhen city contributed
minimally to mitigating the UHI effect.

Table 2. Regression results of OLS, GWR and MGWR.

—— OLS Coefficients GWR Coefficients MGWR Coefficients

Variables Mean Mean Min., Max. Mean Min., Max.

Sky 12.971 *** 0.031 (−1.698, 2.436) 0.021 (−0.853, 1.601)
Road 17.361 *** 0.083 (−1.017, 1.117) 0.062 (−0.357, 0.676)
Tree 3.230 * −0.126 (−1.902, 2.173) −0.116 (−1.198, 1.194)

Building 17.684 *** 0.128 (−1.889, 2.655) 0.106 (−1.380, 2.637)
Sidewalk 30.933 *** 0.088 (−0.770, 0.735) 0.073 (−0.268, 0.078)

Shrub 5.946 ** 0.021 (−0.805, 0.864) 0.004 (−0.360. 0.383)
Wall 6.440 * −0.009 (−1.676, 1.305) −0.009 (−1.468, 0.836)
Earth 5.287 * −0.077 (−2.005, 3.106) −0.075 (−0.975, 0.761)
Grass 8.709 ** 0.036 (−0.818, 1.933) 0.032 (−0.263, 0.759)
Water −5.889 −0.001 (−2.438, 4.998) 0.011 (−1.895, 1.648)

R2 0.263 0.747
9992.3

0.830
8878.2AICc 26,999.8

Note: *** denotes significance at the 0.1% level, ** at the 1% level, and * level 5% level.

We further visualized the regression coefficients on a map to better integrate the
actual urban situation and explore the impact of different built environment characteristics
(Figure 5). It should be noted that since the impact of water on LST was not significant,
we did not plot its results. The results show significant heterogeneity in the effects of
urban microscale environment characteristics on LST across different city districts. The wall
feature demonstrated a stronger cooling effect in industrial and commercial areas, possibly
due to the wind tunnel effect created between tall buildings. In densely populated areas,
the positive effects of walls on temperature were more pronounced due to dense buildings
reducing ventilation. The building feature showed a strong positive correlation in the center
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and commercial areas of Shenzhen, reflecting the contribution of high building density and
the concrete jungle effect to the UHI phenomenon. The impact of the sky feature on LST
varied greatly across different areas in city centers, where the visibility of the sky was often
limited by tall buildings. In contrast, in the outskirts, open skies might increase exposure to
solar radiation. Trees exhibited a significant cooling effect in the suburbs and urban green
spaces of Shenzhen, but in the city center, due to limited space and lower green coverage,
their cooling effect was diminished. The road feature had a notable positive correlation
with the temperature near Shenzhen’s main traffic arteries, possibly related to the high heat
absorption capacity of urban impervious surfaces. Grass provided a cooling effect in parks
and residential areas, but in commercial and industrial areas, this effect was suppressed by
hardened ground surfaces. Sidewalks reflected different impacts on temperature in urban
planning, depending on the choice of materials and design concepts, with areas using
more permeable materials potentially offering better cooling effects. Earth demonstrated a
negative regulatory effect on temperature in undeveloped areas and suburban farmlands.
Shrub generally had little impact on temperature across various land uses but might help
provide microclimate regulation in urban parks and residential green spaces. These results
reflect the enormous spatial differences in regional characteristics and urban morphology
of Shenzhen, a rapidly developing metropolis, significantly altering the impact capabilities
of different built environment factors.
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4. Discussion
4.1. Exploring the Effects of Microscale Built Environment on LST

Urban issues, epitomized by the UHI effect, significantly impact human well-being [59].
As the main spaces of daily activity for urban residents, street environments are closely
related to residents’ living experiences and physical and mental health. Examining the
urban thermal environment from the microscale perspective of streets is crucial for miti-
gating the UHI [60]. In megacities like Shenzhen, where population density is high and
urbanization levels are significant, street environments pose a greater potential threat to
residents’ quality of life and public health. Therefore, in its urban planning and street
design, Shenzhen should consider urban surface temperatures from a street perspective to
reveal specific block contributions to the UHI, enabling urban planners and designers to
take targeted cooling measures.

In this study, we conducted semantic segmentation on street-level imagery from
Shenzhen, utilizing machine learning techniques to quantify features of the urban-built
environment. Subsequently, by applying MGWR, we investigated the connection between
these urban-built environment characteristics and LST. This analysis uncovered the spatial
variability inherent in this relationship, providing a more precise roadmap for enhancing
urban environmental conditions. First, we found a positive impact between sky visibility
and LST, indicating that open spaces in the city lead to direct solar radiation on the ground,
thereby raising the surface temperature. Second, roads and buildings, as representatives
of urban impervious surfaces, have a positive relationship with the increase in LST. This
finding supports previous research [61] that urban impervious surfaces, such as concrete
and asphalt, contribute to temperature increases due to their heat-absorbing properties.
Especially in city centers and industrial areas, high building density and traffic congestion
further exacerbate the UHI effect. Conversely, the presence of trees has a significant
cooling effect on LST, particularly evident in suburban areas and regions with more green
space. Trees reduce the temperature of the ground and surrounding air effectively by
providing shade and releasing water into the atmosphere through transpiration [62,63].
This cooling effect is uneven across different areas, likely related to the type and density of
vegetation, and surrounding environmental conditions. Additionally, our study found that
the coverage of earth and water contributed relatively little to lowering urban LSTs, possibly
related to Shenzhen’s urban structure and geographical characteristics, where available
earth and water are limited. These findings point to priorities for future urban planning.

The findings of this study not only provide empirical data in the specific context of
Shenzhen but also underscore the broader significance of these results for global urban-
ization processes and climate change adaptation strategies. By conducting research in a
rapidly urbanizing metropolis like Shenzhen, we revealed the complex relationships be-
tween urban-built environment features and LST, and how optimizing these environmental
features can mitigate the UHI effect. These insights significantly deepen our comprehension
of the mechanisms regulating urban microclimates. Moreover, they bear critical implica-
tions for the development of pragmatic urban planning and design strategies, aiming at
optimizing environmental conditions within cityscapes.

4.2. Policy Implications

As China’s rapid urbanization process matures, the traditional expansionist devel-
opment model becomes unsustainable, making urban renewal and the optimization of
existing resources a new direction for development. Shenzhen, one of the world’s most
populous cities and a typical high-density city [64], sets an important precedent for other
high-density cities by addressing its urban issues through urban renewal and stock devel-
opment. Urban renewal focuses on enhancing the efficiency of existing urban spaces and
resources and upgrading urban spatial structures. This requires precise and fine-grained
measurement of the comprehensive benefits of the urban environment, providing scientific
guidance for planning and construction [44]. In the context of urban renewal and stock
development, revealing the microscale-built environment characteristics and their impact
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on LST from a street perspective is crucial. This helps understand the specific cooling
effects of minor spatial elements and their spatial variability.

Based on our study’s results, we offer the following policy recommendations: First,
strengthen urban greening policies, such as increasing the number and quality of parks and
urban green belts, encouraging rooftop greening and vertical greening to enhance the city’s
overall ecological benefits and residents’ quality of life. Second, optimize urban land use
planning, focusing on the diversity and rationality of land use, especially in city centers
and industrial areas. Through planning guidance, reduce overly dense building layouts,
and increase open space and green areas.

To further enhance the environmental performance of roads and buildings, it is recom-
mended to promote the use of high-reflectivity surface materials and exterior wall materials
that reduce solar radiation absorption. Encouraging green building design and the use of
sustainable materials aligns with Shenzhen’s long-term goals of building a “smart city” and
“sustainable city”. Strengthen urban water body management and protection, conserve
existing water, restore urban rivers, add artificial lakes or water features, and improve the
city’s overall water environment quality. Third, implement spatially differentiated urban
planning, adopting strategies tailored to the characteristics and needs of different areas to
develop more refined planning strategies. These policy suggestions aim to promote a more
sustainable and livable urban environment, enhance the scientific and forward-looking
nature of urban management, and address the environmental and social challenges of rapid
urbanization. These not only comply with Shenzhen’s overall planning requirements but
also provide a reference for Shenzhen and other Chinese cities to address environmental
and social challenges in the process of rapid urbanization.

4.3. Limitations and Future Directions

This investigation delved into the effects of the urban-built environment on LST
through the analysis of street view photographs and the deployment of machine learning
technologies, presenting a novel viewpoint for comprehending the UHI. However, it’s
important to note the limitations of this study. First, the research relies on street view images,
meaning the analysis is constrained by the coverage and update frequency of the images.
While street view imagery affords a ground-level perspective of the urban landscape, its
ability to accurately represent environmental features may be compromised under the
coverage of tall buildings or dense foliage, potentially resulting in less precise delineation
of certain elements of the built environment. Second, while this study explored the impact
of urban-built environment characteristics on LST and spatial variability through MGWR,
it did not examine other factors that might affect the UHI effect, such as population density,
economic activities, or traffic flow. The comprehensive impact of these socio-economic
factors is crucial for a full understanding of the UHI effect. Third, the interactions between
different built environment elements and their relationship with LST were not considered
in this study. Lastly, this study analyzed cross-sectional data, lacking consideration of the
relationship between urban-built environment and LST over time and unable to determine
causality. Therefore, we suggest using multi-year data in future research to assess the
impact of long-term changes in the built environment on the UHI effect.

5. Conclusions

In the context of global climate change, understanding the distribution of urban LST
and its driving factors is crucial for optimizing urban planning and enhancing the residents’
well-being. This study, leveraging machine learning and street view images, delved into
the association between urban-built environment features and LST. Our results highlight
the profound impact of the urban-built environment on the UHI effect. The semantic
segmentation of street view images revealed features of the urban-built environment. High
values of sky features indicate the openness of space, while the widespread distribution of
buildings and roads reflects the high degree of urbanization in Shenzhen. Trees, as primary
agents of urban greening, exhibit high spatial variability, pointing to the uneven distribution
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of green spaces. The LST results show a temperature range between 29 ◦C and 69 ◦C, with
relatively higher temperatures in urban centers and industrial areas, exhibiting a typical
UHI effect. Spatial autocorrelation analysis further elucidated the clustering characteristics
of LST distribution, with high–high clusters concentrated in urban centers and industrial
areas along major transportation routes, while low–low clusters predominantly located in
suburban areas and city forests.

This study provides an in-depth exploration of the relationship between microscale-
built environment elements and LST. Using three different models—OLS, GWR, and
MGWR—we found that the MGWR model performs optimally in explaining the relation-
ship between microscale-built environment characteristics and LST. The MGWR model
identifies spatial variations in the impact of different urban features on LST at various
locations. Specifically, the visibility of the sky and the presence of roads and buildings
generally promote LST. In contrast, trees, shrubs, and grass have a significant cooling effect,
although this effect shows spatial heterogeneity. Their influence is more pronounced in
urban green spaces and residential areas, while it is limited in commercial and industrial
zones. Earth contributes to temperature reduction, underscoring the cooling capacity of
natural surfaces. The impact of sidewalks varies by area, which may reflect the influence of
the materials and design of the sidewalk surfaces.

Our research underscores the importance of understanding and optimizing urban
structure and functions based on insights into the microscale-built environment’s impact
on LST for regulating urban thermal environments and mitigating urban heat island effects.
These findings have practical implications for urban planning and management, suggesting
the importance of focusing on green infrastructure, rational architectural layout, and road
design to enhance urban environmental quality and resident welfare. Additionally, this
study aids in a more precise understanding of urban thermal environments, guiding
urban planners and policymakers to implement spatially differentiated measures, thereby
promoting sustainable urban development and providing scientific references for other
global cities.
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Abbreviations

Abbreviation Full term
LST Land surface temperatures
UHI Urban heat island
GEE Google earth engine
OLS Ordinary Least Squares
GWR Geographically weighted regression
MGWR Multiscale geographically weighted regression
GIS Geographic information systems
OSM Open street map
AIC Akaike information criterion corrected
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