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Abstract: Dam is an essential structure in hydraulic engineering, and its surface cracks pose significant
threats to its integrity, impermeability, and durability. Automated crack detection methods based
on computer vision offer substantial advantages over manual approaches with regard to efficiency,
objectivity and precision. However, current methods face challenges such as misidentification,
discontinuity, and loss of details when analyzing real-world dam crack images. These images often
exhibit characteristics such as low contrast, complex backgrounds, and diverse crack morphologies.
To address the above challenges, this paper presents a pure Vision Transformer (ViT)-based dam crack
segmentation network (DCST-net). The DCST-net utilizes an improved Swin Transformer (SwinT)
block as the fundamental block for enhancing the long-range dependencies within a SegNet-like
encoder–decoder structure. Additionally, we employ a weighted attention block to facilitate side
fusion between the symmetric pair of encoder and decoder in each stage to sharpen the edge of crack.
To demonstrate the superior performance of our proposed method, six semantic segmentation models
have been trained and tested on both a self-built dam crack dataset and two publicly available datasets.
Comparison results indicate that our proposed model outperforms the mainstream methods in terms
of visualization and most evaluation metrics, highlighting its potential for practical application in
dam safety inspection and maintenance.

Keywords: Swin Transformer; Vision Transformer; feature fusion; concrete dam; crack detection

1. Introduction

Dams are essential hydraulic structures of hydropower stations, playing a significant
role in economic development and societal advancement. However, prolonged exposure
to environmental erosion, internal chemical reactions, and various loads can precipitate
damage within the concrete dam structure [1]. Among the foremost concerns are cracks,
which pose a significant threat to the integrity, durability, strength, and stability of concrete
dams [2,3]. For instance, both the Koelnbrein Dam in Australia and the Chencun Dam
in China have experienced breaches in their grouting curtains due to the presence and
propagation of dam cracks [4]. Hence, conducting routine and methodical inspections to
identify and assess cracks in concrete dams is paramount to guaranteeing their safe and
stable operation. The current primary approach for detecting dam surface cracks relies
on traditional visual inspection [5], which is inherently subjective in both quantitative
and qualitative assessments of cracks. Additionally, this method presents drawbacks such
as time-consuming procedures, labor-intensive efforts, safety concerns, and limitations
in monitoring accuracy and coverage due to the environmental conditions and scale of
dams. Moreover, achieving continuous crack monitoring and longitudinal comparisons
over time proves unrealistic under manual monitoring practices. Tragically, errors in crack
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detection contributed to the failure of the Canyon Lake Dam, resulting in the deaths of
236 individuals, as documented [6]. Additionally, the tragic loss of 76 lives occurred in
the failure of the Austin Dam due to insufficient attention and maintenance of cracks
and defects [7]. Therefore, the formulation and implementation of a highly precise and
efficacious crack detection methodology is essential for the autonomous evaluation of
dam integrity.

With the rapid advancements in computer hardware and computer vision technology,
vision-based automated detection methods have demonstrated notable success in detecting
concrete surface cracks in civil infrastructure [8–10]. In these vision-based approaches, a
crucial step is to extract features from the images that are sensitive to cracks. Previous
studies [11–13] have proposed utilizing image processing techniques to extract crack-
sensitive features. For instance, Fan et al. [12] designed CrackLG for underwater dam crack
detection. First, a k-means clustering algorithm was employed to distinguish the image
blocks including cracks. Then, the final crack areas were extracted using global feature
information. However, handcrafted feature-based crack detection approaches suffer from
limitations in terms of accuracy and generalization.

Deep learning (DL), with its ability to automatically extract relevant features from
data, has become a preferred approach for crack detection [14], yielding promising results
in various applications [15]. DL-based concrete surface crack detection methods can be
classified into classification-oriented, object-oriented, and segmentation-oriented methods.
For example, Zhang et al. [16] proposed a dam crack detection method based on an
improved ResNet algorithm using knowledge distillation. Initially, the improved residual
neural networks were trained on mini-ImageNet for multi-classification. Subsequently, a
parameter/model transfer method was employed to achieve crack detection. However, the
image classification-based algorithms just ascertain whether cracks are present or absent
within images, without providing specific information about the structural characteristics
of the cracks [17], such as their width, length, or orientation.

One potential solution is the object recognition-based method that enables the direct
acquisition of both the positional coordinates and categorical labels of objects through
the utilization of bounding boxes. The most popular architecture used for performing
object recognition in crack detection area is faster R-CNN [18], such as for concrete crack
detection [19] and road crack detection [20]. For dam crack detection, Xu et al. [21] proposed
AF-RCNN (Attention-based Faster-RCNN), achieving an mAP (mean Average Precision)
of 81.07% on an expanded dam crack dataset, surpassing the performance of the original
Faster-RCNN. YOLO families are also used as the main architectures in object recognition
tasks. For example, YOLOX [22] and YOLOv5 [23] are used for dam crack detection.
However, these object recognition-based methods, with the aid of bounding boxes, still
suffer from the drawback of coarse crack localization and struggle to encompass a full
longitudinal crack within a single bounding box [5].

Another alternative approach performing crack classification is the semantic segmentation-
based method. By distinguishing between the background and the cracks at the pixel level,
the semantic segmentation-based method inherently confers a distinctive merit in terms of
achieving superior accuracy in demarcating the spatial boundaries of cracks within images.
Considering the crack images with high resolution, Zhang et al. [24] introduced a dam
crack detection method. Initially, a CNN was trained for crack classification, followed by
the utilization of an FCN to achieve crack segmentation. Similarly, Pang et al. [25] firstly
employed a target detection method to identify cracks using bounding boxes. Subsequently,
crack segmentation was performed using image-processing techniques. Within the domain
of crack detection research, the majority of crack segmentation tasks are predominantly
executed through the utilization of encoder–decoder architectures [26–28]. Various well-
known architectures and their improvements such as UNet [29,30] and DeepLabv3+ [31,32]
were also proposed to conduct dam crack detections. These deep learning-driven se-
mantic segmentation methodologies have been found to offer enhanced detection results
under challenging and noisy environmental scenarios, and precision measurement in
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cracks [27,31]. However, due to the inherent bias in the convolutional structure, it cannot
fully understand global semantic information, which to some extent limits the accuracy
and robustness of crack detection.

Comparative to CNNs, the transformer architecture has emerged as a formidable
paradigm, exhibiting notable prowess in the domain of Natural Language Processing
(NLP) by leveraging its capacity to capture global and long-range information. Google
introduced the Vision Transformer (ViT) in 2020 [33], employing transformer structures for
image classification and establishing itself as the leading network at that juncture [34]. The
ViT-based methods introduce novel model design concepts for CV tasks. In the research
field of crack detection, it has been demonstrated that ViT-based methods can be employed
for autonomous and efficient dam crack segmentation [35]. For example, CrackFormer [36]
is designed for fine-grained carack detection. Ref. [37] introduced a ViT-based framework
for crack segmentation on concrete surfaces, showcasing the robust performance of ViT
across various types of noise signals. ViT utilizes a self-attention mechanism to extract
and integrate contextual information. Nevertheless, ViT’s tokens are fixed in number and
dimensions, limiting its ability to train and predict at multiple scales. Additionally, employ-
ing the ViT algorithm for crack identification entails substantial computational expenses.
To address these constraints, Liu et al. [38] introduced the Swin Transformer, which utilizes
non-overlapping shift windows for self-attention computation, enabling distinct windows
to interact with one another. Swin Transformer has demonstrated significant success in
pavement crack detection tasks [39–41]. Some studies utilized the Swin Transformer as an
encoder for extracting deep feature representations [42,43]. However, unlike pavement
cracks, dam surface cracks in the real world exhibit distinct characteristics such as signif-
icant image noise, high background complexity, and considerable scale diversity. When
applying these advanced methods directly for dam crack detection purposes, there is a
tendency for suboptimal performance outcomes [44].

This paper introduces a new semantic segmentation network for dam crack detection,
named DCST-net. To the best of our knowledge, DCST-net is a pioneering instance of a pure
ViT-based SegNet-like structure for dam surface crack segmentation. Specifically, its sym-
metric encoder and decoder are both constructed based on the improved Swin Transformer
blocks (SwinT blocks). In addition, it employs a weighted attention block on the encoder
and the corresponding decoder features for activating crack features and suppressing the
non-crack ones. The principal contributions of this paper can be summarized as follows:

1. It is the first attempt to perform dam surface crack detection with a pure ViT-based
encoder–decoder network (DCST-net); our approach yields superior crack segmenta-
tion performance on the dam crack dataset collected from a real dam surface as well
as two open benchmark crack datasets, outperforming state-of-the-art models;

2. To establish long-range pixel interaction, we propose an improved SwinT-block as
the fundamental unit of the DCST-net; this block efficiently extracts contextual in-
formation across feature channels through the utilization of depth-wise separable
convolution kernels (DWConv); moreover, it integrates spatial domain contextual
information through a proficient position-encoding scheme, thereby capturing a wide
receptive field;

3. To alleviate the loss of semantic details, we introduce a weighted attention module;
it utilizes features from the encoder to produce an attentive mask, which serves as
attention coefficients; these coefficients are then multiplicatively applied element-wise
to the corresponding features in the decoder, thus suppressing non-crack features
while enhancing crack features.

4. To facilitate the training of deep networks, we propose a multi-level label supervision
training method, which directly supervises different depth feature layers with crack
labels; in addition, we design a hybrid loss function to overcome the problem of class
imbalance in crack images.

The rest of the paper is organized as follows: Section 2 presents the proposed DCST-net
and elaborates its each block; Section 3 introduces the implementation details, datasets
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and evaluation metrics; Section 4 demonstrates the extensive experiments results and
companions; and Section 5 summarizes the findings and the superiority of our model.

2. Methodology

Generally, crack segmentation networks use feature extractors to reduce feature reso-
lution and extract high-dimensional semantic features to identify cracks. Subsequently, the
low-resolution and high-dimensional features are restored to the original image resolution
through interpolation or deconvolution, thus producing semantic segmentation results.
Convolutional structure-based crack segmentation methods extract features by stacking
convolutional layers [16,17,26,32]. In shallower layers, convolution kernels have a smaller
receptive field, observing only local features of cracks, which is not favorable for crack
orientation detection. Larger receptive fields are only available in deeper layers. In contrast,
ViT-based crack segmentation networks [35,44] utilize a self-attention mechanism [21,27,36]
to construct a feature extractor and acquire the global semantic features of cracks. This
approach addresses the issue of inadequate global information in low-dimensional features,
thereby enhancing the prediction of crack direction. In addition, the encoding–decoding
structure [26,29–31,36] is a commonly employed design in semantic segmentation networks,
where encoding corresponds to feature extraction, and decoding involves resolution re-
covery. Moreover, skip connections [16,26,32] are implemented between the encoding and
decoding layers of the identical resolution to mitigate the loss of fine-grained details and
boost crack segmentation. Motivated by these effective mechanisms, we propose DCST-net
to enhance the segmentation performance for dam cracks in real-world scenarios.

2.1. Architecture of DCST-Net

The DCST-net embraces a SegNet-like encoder–decoder design, as depicted in Figure 1,
comprising an encoder, decoder, and a weighted attention module. To effectively capture
global and long-range semantic interdependencies, the encoder–decoder module is built
upon an improved SwinT-block (presented in Section 2.2), serving as its fundamental unit.
In order to refine the segmentation results in detail-rich regions, a weighted attention
module (presented in Section 2.4) is adopted between the symmetric encoder and decoder,
serving as a filter suppressing other interfering features.

Firstly, the input image, dimension as [H, W, 3], undergoes a patch-embedding module,
dividing it into non-overlapping patches (size of 4 × 4). This results in each patch having a
feature dimension of 4 × 4 × 4 = 48. Meanwhile, a local detail module (the upper right
of Figure 1) is designed to down-sample the original image by a factor of 2 to obtain local
detail features with a dimension of [H/2, W/2, 48]. Subsequently, these patch tokens are
inputted into a five-stage Swin Transformer-based encoder network, to extract multi-scale
features. Within this process, the patch-merging layer [38,45] is tasked with down-sampling
and expanding the feature dimension, while the improved SwinT-block focuses on feature
representation learning. In contrast, the corresponding Swin Transformer-based decoder
network works to enable the restoration of the resolution of the encoder output feature.
Specifically, a patch-expanding layer [38,45] is employed for the purpose of up-sampling.
This is achieved stage by stage, until the feature map resolution is regained as one-half of
the authentic image size. Finally, at each stage, the weighted attention module is designed
to concatenate the features from the corresponding encoder and decoder, generating an
attentive mask to refine the predicted crack. Subsequently, the fused feature at the current
stage undergoes up-sampling by a factor of 2 before being passed to the next stage. This
process iterates five times, yielding the final predicted results with identical dimensions as
the original input images. Each block of the DCST-net is elaborated in the following.
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Figure 1. Overview of DCST-net architecture.

2.2. The improved Swin Transformer Block

In Figure 2, the replacement of the MLP in the original SwinT-block [38] with a 1 × 1
DW-Conv results in the two sequential improved SwinT-blocks. Each block comprises a
multi-head self-attention module, layer normalization (LN), residual connection and 1 × 1
depth-wise separable convolutions (DW-Conv). The W-MSA module and the SW-MSA
module, adopted in the two consecutive improved SwinT-blocks, utilize improved self-
attention computation, as illustrated in Figure 3. These modifications lead to an enlarged
receptive field and the acquisition of cross-channel semantic features.
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Let X ∈ Rdin×W×H be the input tensor, where W, H and din are the width, height and
dimension of the input tensor, respectively. Similar to the work [45], the computation of
self-attention proceeds as follows:

Fc = So f tMax
(

qkT
√

d
+ b

)
v (1)
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where q, k and v, are generated by 1 × 1 DW-Conv and denote the query, key and value
matrices, respectively. The dimension of the query or key is set as d; b presents a relative
position vector and is a learnable weight parameter.
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The two successive improved SwinT-blocks utilize W-MSA and SW-MSA in pairs.
W-MSA efficiently reduces the computational cost during self-attention computation, while
SW-MSA conducts cross-region self-attention computation to obtain a global perspective, ef-
fectively enhancing the segmentation performance of dam surface cracks. The computation
of continuous SwinT-blocks is given as follows:

ẑl = W − MSA
(

LN
(

zl−1
))

+ zl−1, (2)

zl = DWConv
(

LN
(

ẑl
))

+ ẑl , (3)

ẑl+1 = SW − MSA
(

LN
(

zl
))

+ zl , (4)

zl+1 = DWConv
(

LN
(

ẑl+1
))

+ ẑl+1. (5)

where ẑl and zl are the outputs of the (S)W-MSA module and the DW-Conv module of the
lth block, respectively.

2.3. Swin Transformer-Based Encoder

The encoder of DCST-net comprises improved SwinT-blocks and patch merging layers,
organized into 5 stages based on the {2,2,2,6,2} layout. As depicted in Figure 1, except
for the initial stage, which lacks patch-merging layers, the subsequent stages consist of
either 2 or 6 improved SwinT-blocks succeeded by a patch-merging layer. The patch tokens
undergo representation learning within the two successive improved blocks, preserving
the consistency of feature dimension and resolution. Simultaneously, the patch-merging
layer [38,45] down-samples the token number by a factor of 2 and increases the feature
dimension to double its original dimension. Therefore, the feature sizes outputted by the
5 stages are, respectively, 1/4, 1/4, 1/8, 1/16 and 1/32 of the original image size.

2.4. Swin Transformer-Based Decoder

Referring to the encoder, the decoder of the DCST-net has a symmetrical layout of
{2,6,2,2,2}. On the contrary, the patch-merging layer located behind the improved SwinT-
blocks is replaced by the patch-expanding layer. It serves as the inverse process of patch
merging, doubling the resolution of the input feature tensor while halving the number of
channels. Finally, the feature sizes outputted in decoder are, respectively 1/32, 1/16, 1/8,
1/4 and 1/2 of the original image size.
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2.5. Weighted Attention Block

The SwinT-blocks have been demonstrated to be effective for modeling global depen-
dencies, making them valuable for segmenting long cracks [21]. However, relying solely on
SwinT-blocks may not be sufficient for addressing cases involving fine-grained cracks with
strong background noise. To address this problem, drawing inspiration from the attention
gate in U-Net [46] and the scaling attention in SegNet [36], it is evident that suppressing
irrelevant regions while highlighting salient features crucial for the segmentation task
offers a straightforward yet effective solution. To achieve this, similar to [36], we adopt a
weighted attention model between the symmetric encoder and decoder at the same stage.
The features from the encoder are utilized to generate a self-attention mask as attention
coefficients ranging from 0 to 1, which are then element-wise multiplied with the related
features in the symmetric decoder. This process, depicted in Figure 4, functions as a filter
that activates crack-related features while suppressing the non-crack ones.
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Let us take the feature fusion with the two continuous Swin Transformers in stage n as
an example. Features in the symmetric encoder and decoder are denoted as

{
Xn

1 , Xn
2 , Xn

3
}

and
{

Yn
1 , Yn

2 , Yn
3
}

, respectively. As presented in Figure 4, the mask Ln
mask is then given by

(Equation (6)) as follows:

Ln
mask = δ(BN(⊗3 × 3(Concat(Xn

1 , Xn
2 , Xn

3 )))) (6)

where Concat() is the concatenation operation, ⊗3× 3 represents the convolution operation
with a 3 × 3 convolution kernel, BN is the batch normalization operation, δ denotes the
sigmoid activation function. Subsequently, the fusion result, Sk

side denoted as side output, is
obtained by the weighted attention block as follows:

Sk
side = Lk

mask ⊙ BN(⊗3 × 3(Concat(Yn
1 , Yn

2 , Yn
3 ))), (7)

where ⊙ denotes an element-wise multiplication operation. The side output is then up-
sampled by a factor of 2 using the patch-expending operation. As shown in Figure 1, this
procedure is repeated 5 times, ultimately obtaining a semantic segmentation prediction
image that matches the dimensions of the original image.

2.6. Loss Function

In general, crack segmentation tasks suffer from a severe imbalance between positive
and negative samples [47]. For example, through the analysis of our self-built dataset
(Section 3.1), it can be found that the average proportion of crack pixels is only 1.34%, while
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background pixels reach 98.66%. A substantial quantity of background samples facilitate
the model’s fast learning of background prediction, resulting in a more rapid reduction in
background prediction loss compared to that of crack samples. Additionally, despite the
small loss for each background pixel, the overall background loss is substantially higher
than the crack loss due to the high proportion of background samples. Consequently, the
network prioritizes learning background information, leading to challenges such as low
accuracy and suboptimal performance in crack segmentation. To tackle the issue of class
imbalance between crack and background, one intuitively simple method is to randomly
exclude some background pixels from the training process. However, its effectiveness in
improving the crack segmentation is limited. Essentially, the poor performance in crack
segmentation is caused by the overwhelming effect of crack loss being dominated by
background loss. Therefore, we seek the help from hybrid loss function.

In this work, Weighted Cross-Entropy loss and Dice loss are employed to form the
hybrid loss function. It is calculated as follows:

loss = losswce + λ ∗ lossdice (8)

where losswce and lossdice present Weighted Cross-Entropy loss and Dice loss, and λ is the
weight ratio between these two loss functions. As the network progresses through multiple
epochs and gains preliminary understanding of both background and crack foreground
information, the Weighted Cross-Entropy loss tends to be a certain multiple of the Dice loss.
Accordingly, λ is set to an appropriate multiple to optimize the performance of the hybrid
loss function.

By introducing weight coefficients for positive and negative samples separately, the
Weighted Cross-Entropy loss function becomes more sensitive to the higher-weighted parts,
thereby enhancing the learning focus on the target category. Weighted Cross-Entropy loss
is defined as follows:

losswce =
1
n

n

∑
i

w f true f log
(

pred f

)
+ wbtrueb log(predb), (9)

where w f is the weight for crack loss; wb is the weight for background loss; ture f and trueb
refer to the crack label and the background label, respectively; pred f and predb denote the
predicted probabilities of cracks and background, respectively; and n presents the total
number of pixels.

The Dice loss quantifies the dissimilarity between crack prediction values and the true
values by directly utilizing Intersection over Union (IoU), aiming for model optimization.
Its formulation is represented by Equation (10) as follows:

lossdice =
2 ∗ true ∩ pred

true ∪ pred + true ∩ pred
(10)

where true is the ground truth value and pred is the predicted value.

2.7. Multiple-Level Label Supervision

To enhance the utilization of features at different levels, the implementation in this
paper adopts three additional low-resolution labels during the training phase to supervise
the parameter updates of deep networks. These low-resolution labels are obtained by
down-sampling the original image labels by 1/2, 1/8, and 1/32, respectively (as shown
in Figure 1). The rationale behind incorporating these low-resolution labels is based on
their unique information content; the 1/2 scale contains richer details of crack information,
the 1/32 scale encompasses broader global crack backbone information, and the 1/8 scale
lies between these two, exhibiting larger discrepancies. This comprehensive approach en-
hances model performance and generalization ability, striking a balance between accuracy
and speed.
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Training the model at different resolutions facilitates a better understanding and
adaptation to images of various scales and resolutions, thereby improving the model’s
generalization ability. Additionally, introducing extra low-resolution labels can increase
the training data volume, reducing the risk of overfitting. Implementing multi-level label
supervision during training increases the training burden and diminishes training speed,
while the multi-level label structure is removed during testing, thus exerting no influence
on inference speed.

3. Experiment Preparation
3.1. Dataset Description

In order to evaluate the effectiveness of our proposed crack segmentation network in
real-world engineering scenarios, we compiled a dataset named DamSCrack, specifically
focusing on dam surface cracks. Furthermore, two openly accessible datasets, namely
DeepCrack [48] and Crack500 [49], were employed to validate the generalization capability
of the proposed network.

DamSCrack: The dam surface crack images were initially captured using a drone at
a hydropower station located in Sichuan, China. As shown in Figure 5, the hydroelectric
power station employs a concrete gravity dam design, incorporating eight surface spillways
in the overflow section and five bottom outlets in the non-overflow section. Spanning
a length of 995.4 m, the dam rises to a height of 465 m. Then, these real-world images
underwent cropping and selection. We further meticulously screened, diagnosed, and man-
ually annotated them under the guidance of domain experts, utilizing the ImgAnnotation
software as our annotation tool. The annotation process is detailed as follows: firstly, we
employed the 1 × 1 pixel-sized annotation pen from ImgAnnotation to outline the crack’s
edge and refine its shape; secondly, based on the crack width, we utilized an annotation pen
ranging from 3 × 3 to 10 × 10 pixels to fill the crack, achieving pixel-level labeling; finally,
DamSCrack was generated, comprising 1000 crack images with a resolution of 448 × 448,
and each crack image had a binary label image, with red denoting the crack and black
representing the background.

In our experiments, the DamSCrack dataset was randomly divided into training,
validation, and test set with the ration of 8:1:1, respectively. Then, five image augmentation
strategies, including random brightness variation, random rotation, erasing, blending, and
shear blending, were applied to the training set images. These strategies aimed to provide
the network with more challenging samples, thereby improving the model’s robustness.
Regarding every crack image within the training dataset, the five strategies independently
occurred with a probability of 0.5. This way, the training dataset expanded from 800 images
to 2800 images.
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Crack500: This dataset consists of 500 RGB images depicting pavement cracks. Each
image with a resolution of 2000 × 1500 is accompanied by a pixel-level binary label image,
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featuring a black background and a white representation of the crack. Due to the limited
number and high resolution of this dataset, we cropped each image into 12 non-overlapping
sub-images with a resolution of 448 × 448. Following the approach in [49], we retained
the sub-images containing a minimum of 1000 pixels of cracks. Subsequently, a total of
3368 crack images were selected and subsequently partitioned into distinct subsets for
training, validation, and testing purposes, with the ratio of 8:1:1, in our experiments.

DeepCrack: There are 537 RGB crack images with a resolution of 544 × 384 in this
dataset, covering concrete surface cracks with various scenes and multiple scales. Each crack
image corresponds to a manually annotated pixel-level mask label, where the background
is white, and the cracks are black. In our experiments, the original images in the DeepCrack
dataset underwent a scaling operation, where the long side was scaled to 448, and the
short side was padded with black pixels to achieve an RGB image with a resolution of
448 × 448. Similarly, training images, verification images, and test images were set with the
ratio of 8:1:1.

3.2. Experiment Settings

All experiments in this paper operate in an identical hardware and software environ-
ment. The details of experiment settings are listed in Table 1. The DCST-net was optimized
by using the stochastic gradient descent (SGD) method. The initial learning rate was
1 × 10−5 and the batch size was 8. In addition, the parameters of the comparative methods
(Section 4.3) were set to be the same as those in the original paper.

Table 1. Software and hardware configuration.

Hardware/Software Parameters/Version

CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz
GPU 2 × NVIDIA GTX TITAN Xp, 24 GB memory
RAM DDR4, 32 GB

Operating System Ubuntu18.04
Python 3.6
CUDA 10.2
Cudnn 8.0.2

TensorRT 7.0

3.3. Evaluation Metrics

Three commonly used evaluation metrics for binary classification, namely precision
(Pre), recall (Rec), and F1 score (F1s) were employed in this work. Meanwhile, the com-
monly used intersection over union (Iou) metric for measuring the segmentation effect
was also adopted in this work. Similar to other works, calculation formulas of these four
evolution metrics are as follows:

Pre =
TP

TP + FP
, (11)

Rec =
TP

TP + FN
, (12)

F1s =
2 × Pre × Rec

Pre + Rec
, (13)

Iou =
TP

TP + FN + FP
. (14)

where TP (True Positive) and FP (False Positive) mean that a crack is correctly predicted
as a crack and a non-crack is wrongly detected as a crack at pixel level, respectively; FN
(False Negative) denotes that a crack is wrongly detected as a non-crack at pixel level.
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4. Experimental Results and Discussion
4.1. Analysis of Training Results

Figure 6 illustrates the loss curve of training and validation during the training process
of the DCST-net on DamSCrack dataset. It can be observed that the model’s loss rapidly
decreased from an initial value of 51 to below 10 in just over 10 epochs, with a decrease
of over 80%. This indicates that the selection of training parameters and the design of
the loss function in this paper are appropriate, leading to a rapid convergence of the
network. As the training epoch hits the 600th round, the network has essentially reached
the convergence limit, maintaining stability in loss with an average intersection over union
of 67.21%. Throughout the entire training process, the validation loss curve maintains a
consistent and proximate alignment with the training loss curve, indicating that the model
avoids overfitting and possesses strong generalization capabilities.
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Figure 7 presents the curves of precision, recall, and average intersection over the
union on validation dataset during the training process. These curves clearly show that
in the early stages of network training, precision and average intersection over union
rapidly increase. Meanwhile, recall, starting from a relatively high value, quickly opti-
mizes downwards. This indicates that the network is rapidly learning crack segmentation
knowledge, improving its ability to segment cracks and outlining the general framework
of cracks. By the 600th training round, although the network loss remains stable, the three
evaluation metrics continue to improve. This suggests that the class-balanced loss function
designed in this paper continues to play a role, allowing the network to continuously
learn and optimize for crack details, enhancing the segmentation of crack details. By the
900th training round, the three evaluation metrics essentially stop changing, indicating that
the network has completed training without overfitting and exhibits high performance in
crack segmentation.

Figure 8 shows the prediction results of the DCST-net on the typical dam surface crack
images in the test dataset of DamSCrack. These results clearly indicate that the DCST-net
can accurately address the practical problem of dam surface crack detection, even when
faced with challenging cracks, such as those with complex branching structures, slender
characteristics, intensity in-homogeneity, and strong background interference.
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4.2. Ablation Study

To further validate the advantage derived from each improved module in DCST-net,
an ablation analysis is conducted on the DamSCrack dataset. Specifically, the proposed
improvement modules in this paper are added one by one to the Swin Transformer network,
resulting in a total of 6 ablation methods (method a, b,. . .,f), as presented in Table 2. The
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resulting evaluation metrics are presented in Table 3, and the related predictions are visually
shown in Figure 9.

Method a: It utilizes the Swin Transformer [38] serving as the backbone for feature
extraction, employs up-sampling to restore feature resolution, and thus, outputs the se-
mantic segmentation results. Benefiting from the powerful global representation capability
of the self-attention mechanism, method a can segment the crack backbone. However, its
segmentation of the local parts of cracks is not satisfactory due to the loss of low-level
features, as illustrated in the third column of Figure 9.

Method b: It replaces all SwinT-blocks in method a with improved SwinT-blocks. As
indicated in the third row of Table 3, the improved SwinT-blocks considerably boosts the
evaluation metrics Pre, Rec, F1s and mIoU by 4.50%, 0.80%, 2.92% and 3.24%, respectively,
achieving better segmentation performance.

Method c: It introduces only the weighted attention block to method a. The weighted
attention module generates a self-attention mask to suppress non-semantic features, leading
to the optimized segmentation of the local parts of cracks (the fifth column in Figure 9),
with an increase in Pre, Rec, F1s and mIoU by 4.78%, 1.69%, 3.30%, and 3.66%, respectively.

Method d: Both the improved SwinT-blocks and the weighted attention module
are introduced to method a. These two modules jointly significantly boost the crack
segmentation performance, with a corresponding to an increase in mIoU by 8.42% and the
maximum value of 86.40% for Rec.

Method e: Methods a, b, c, and d utilize the cross-entropy loss function provided
by PyTorch for loss computation without any weight coefficients. By substituting the
loss function in method d with the hybrid loss function, method e demonstrates superior
performance over method d (the seventh column in Figure 9), indicating that the problem
of class imbalance in crack images is effectively alleviated.

Method f: Finally, the multi-level label supervision training method is implemented
to train method e. Through the combined effect of the improved SwinT-blocks, weighted
attention module, hybrid loss function and multi-level label supervision training method,
method f achieves the optimum segmentation performance, with the best evaluation
metrics values.
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Table 2. Methods in ablation study.

Method Improved
SwinT-Blocks

Weighted
Attention Block

Hybrid
Loss Function

Multiple-Level
Label

Supervision

a × × × ×
b

√
× × ×

c ×
√

× ×
d

√ √
× ×

e
√ √ √

×
f(DCST-net)

√ √ √ √

Table 3. Evaluation metrics of methods in ablation study on DamSCrack dataset.

Method Pre (%) Rec (%) F1s (%) mIou (%)

a 68.16 73.46 69.10 54.42
b 72.66 74.26 72.02 57.66
c 72.94 75.15 72.40 58.08
d 69.80 86.40 76.43 62.84
e 77.81 81.73 79.48 66.65
f 78.41 82.02 79.96 67.21

In conclusion, the experimental results of the ablation study indicate that the crack
segmentation network presented in this work, by progressively encoding crack features
using the improved SwinT-blocks, enhances the global perception of cracks. In addition,
the utilization of the weighted attention module to cross-integrate features from various
levels of the encoder and decoder improves the segmentation of local crack parts. More-
over, the combined effects of the crack segmentation loss function and multi-level label
supervision effectively alleviate the issue of class imbalance and optimize the network’s
weight parameters.

4.3. Comparative Study

The performance of the DCST-net is empirically validated on the DamSCrack dataset
and compared with some classical segmentation models, such as the SegNet [50], FCN-
8s [51], DeepLab v3+ [52], U-Net [53], and LR-ASPP [54]. Table 4 presents the quantitative
comparison results of performance indices, and Figure 10 demonstrates some typical
prediction outcomes generated by the DCST-net and other comparative methods.

Table 4. Evaluation metrics of comparison methods in DamSCrack dataset.

Method Pre(%) Rec(%) F1s (%) mIou (%)

SegNet [50] 61.05 58.87 57.53 42.26
FCN-8s [51] 54.90 71.17 61.98 44.91

DeepLab v3+ [52] 69.75 79.69 73.49 58.86
U-Net [53] 72.32 76.47 73.02 58.80

LR-ASPP [54] 54.15 66.76 58.18 42.11
DCST-net (ours) 78.41 82.02 79.96 67.21

It can be seen from Table 4 that SegNet [50] and LR-ASPP [54] exhibit the poorest
segmentation outcomes for dam surface cracks, achieving an mIoU score of merely 42.26%
and 42.11%, respectively. Obvious deficiencies are observed in their segmentation results
(column 3 and 7 of Figure 10), such as incorrectly identifying many non-crack areas as crack
areas and mis-detecting some of the crack regions. FCN-8s [51] delivers suboptimal seg-
mentation results, with an mIoU of 44.91 and a high recall of 71.17%. While FCN-8s [54] can
predict the rough outline of cracks, its performance on fine details remains unsatisfactory.
DeepLab v3+ [52] and U-Net [53] offer improved segmentation results for performance
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metrics, particularly achieving an mIoU score of 58.86% and 58.80%, respectively. From
columns 5 and 6 of Figure 10, one can discern that these two approaches can effectively
predict the crack backbone and provide relatively adequate, detailed information. These
observations align well with the existing research literature [55–59], which highlights the
superior accuracy of U-Net and DeepLabv3+ compared to other SOTA models (such as
FCN and SegNet) in semantic segmentation tasks related to road pavement and concrete
cracks. However, CNNs rely on convolutional and pooling layers to process input im-
ages, granting them translational invariance by uniformly filtering each patch. While this
characteristic is essential for CNNs’ effectiveness compared to fully connected networks
in vision tasks, prioritizing local pixel connectivity compromises a global context [60,61].
Consequently, CNNs are susceptible to image distortions such as translation and scal-
ing, making them less robust [62]. Hence, U-Net and DeepLabv3+ still face challenges
in achieving continuous predictions and struggle in complex regions when dealing with
the DamSCrack. On the contrary, ViTs are not limited by local pattern operations and
can instead concentrate on information from various distances around the input target
area [61]. Therefore, the proposed DCST-net equipped with a ViT-based encoder and
decoder demonstrates superior segmentation results, presenting continuous and detailed
outputs without the misidentification of crack segmentation. It outperforms the other five
mainstream algorithms, as illustrated in the visual comparison figures (last column of
Figure 10). In the quantitative comparisons presented in Table 4, the proposed DCST-net
achieves superior scores across all performance metrics compared to those related to the
classical algorithms. Specifically, its precision is 6.09% higher than that of U-Net [53], and
its recall, F1 score, and mIoU are 2.33%, 6.47%, and 8.35% higher than those related to
DeepLab v3+ [52], respectively. To sum up, in addressing the practical challenge of dam
crack detection, the current mainstream crack segmentation algorithms appear unsuitable
and cannot be directly applied.
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4.4. Generalization Study

To validate the generalizability and further demonstrate the effectiveness of the pro-
posed DCST-net, comparison experiments were performed on openly accessible datasets,
DeepCrack [48] and Crack500 [49], against five mainstream segmentation networks.
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Comparative results on the DeepCrack dataset: Figure 11 illustrates the prediction
results of some typical sample cracks of DeepCrack [48]. Evaluation metrics including
inference time are presented in Table 5. It is observable that LR-ASPP [54] has the lowest
crack detection accuracy, with an mIoU of 65.19%, but the fastest forward inference speed
of 18.27 ms. U-Net [53] achieves more consistent performance across evaluation metrics,
compared with those obtained by FCN8s [51] and SegNet [50]. Obviously, DeepLab v3+ [52]
demonstrates the strongest crack segmentation performance on DeepCrack [48], achieving
Pre of 84.87%, Rec of 82.89%, F1s of 82.46%, and mIoU of 71.41%, respectively, but with
the longest inference time of 31.29 ms. The notable performance of DeepLabv3+ can be
attributed to its extensive utilization of separable convolutions and spatial pyramid-pooling
modules which enable the model to effectively capture multi-scale contextual information
while maintaining a wide field of view [63]. However, the proposed DCST-net achieves a
balance between performance and speed on the DeepCrack dataset. While its evaluation
metrics are slightly lower than those of DeepLab v3+ [52], the forward inference time
is approximately 30% faster than that of DeepLab v3+. This suggests that DeepLab v3+
prioritizes higher accuracy at the expense of reduced inference speed. Consequently, the
proposed DCST-net achieves better overall performance compared to DeepLab v3+ in the
dataset of DeepCrack.
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Method Pre (%) Rec (%) F1s (%) mIou (%) Time (ms)

LR-ASPP [54] 81.61 77.34 77.79 65.19 18.27
FCN8s [51] 87.10 74.15 80.10 66.81 20.15
U-Net [53] 83.50 82.58 81.30 68.31 19.52

DeepLab v3+ [52] 84.87 82.89 82.46 71.41 31.29
SegNet [50] 82.71 73.57 75.93 62.98 18.17

DCST-net (ours) 84.64 81.31 80.36 69.46 19.77

Comparative results on the Crack500 dataset: Figure 12 presents the crack segmen-
tation results derived by DCST-net and the comparison methods. It can be observed, in
Figure 12, that LR-ASPP [54] achieves the poorest performance, while the detection effect
of the DCST-net is better compared with that of comparison methods from visualization
aspects. However, all the algorithms incorrectly predict non-crack areas as cracks (row 2 of
Figure 12). This is attributed to the presence of image background noise that is challenging
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even for the human eye to distinguish. As evidenced in Table 6, the DCST-net has achieved
the best scores over most of the evaluation indices.
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Method Pre (%) Rec (%) F1s (%) mIou (%) Time (ms)

LR-ASPP [54] 65.68 73.04 65.85 51.20 16.03
FCN8s [51] 65.44 79.21 69.24 54.83 19.97
U-Net [53] 60.98 80.05 67.03 52.10 18.88

DeepLab v3+ [52] 63.64 81.15 69.13 54.55 26.11
SegNet [50] 64.64 75.86 67.41 52.78 18.14

DCST-net (ours) 70.78 75.35 73.00 57.48 22.42

The typical sample cracks in DamSCrack, DeepCrack, and Crack500 are presented
in the first column of Figures 10–12, respectively. Obviously, DamSCrack, collected from
dam scenes, presents more challenges compared to the other two datasets. It includes weak
cracks, diverse crack patterns, low contrast, and significant noise. In contrast, DeepCrack
possesses relatively high contrast, making crack regions visually distinguishable even in
complex scenes. The primary challenge in Crack500 is that some cracks closely resemble
the background. From the evaluation metrics, it is evident that LR-ASPP [54], FCN8s [51],
U-Net [53], and SegNet [50] perform adequately when the background noise is weak
(Table 5), but exhibit relatively lower performance in the presence of strong background
noise (Tables 4 and 6). In contrast, DCST-net and DeepLabv3+ demonstrate distinctive
capabilities in extracting global contextual layers, resulting in higher precision in crack
segmentation. However, due to dilated convolutions leading to the loss of very fine-grained
information, DeepLabv3+ falls short of achieving the high accuracy attained by DCST-
net equipped with a ViT-based encoder–decoder architecture in precisely discerning the
extremely sharp boundaries of cracks and restoring the connectivity among crack pixels.
It is worth mentioning that the proposed algorithm outperforms the other five advanced
algorithms on these three datasets, even though it is specifically designed for dam surface
crack segmentation.

5. Conclusions

In this paper, a pure ViT-based dam surface crack segmentation network, named DCST-
net, is developed for automatic crack detection at pixel level to enhance dam assessment and
maintenance in practical engineering applications. Specifically, the improved SwinT-block
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serving as the basic component of the DCST-net is proposed for characterizing features
and learning cross-channel and long-range semantic information. Additionally, to enhance
segmentation performance and sharpen crack detection, a weighted attention block is
incorporated to combine features between the symmetric encoder and decoder. Moreover,
to address the challenge of class imbalance in crack segmentation, we propose a hybrid
loss function combining Weighted Cross-Entropy loss and Dice loss. Furthermore, in the
training process, we adopt a multi-level label supervision training method to enhance the
utilization of features at different levels.

Based on the methodology and experimental findings presented by this work, sev-
eral main conclusions can be outlined. (1) The comparison results for the self-built dam
crack dataset demonstrate that our DCST-net outperforms mainstream methods such as
SegNet [50], FCN-8s [51], DeepLab V3+ [52], U-Net [53], and LR-ASPP [54] for pixel-level
crack segmentation. In particular, its precision surpasses that of U-Net by 6.09% [53], while
its Rec, F1s and mIoU exceed those of DeepLab v3+ by 2.33%, 6.47%, and 8.35%, respec-
tively [52]. This superiority is particularly evident when dealing with various categories of
dam cracks, such as elongated, slender, and complex geometry cracks under heavy noise.
These findings highlight the potential of the adoption of ViT-based approaches for dam
crack detection at pixel level. (2) The comparison results of ablation study reveal that the im-
proved strategies adopted in this work, including the improved SwinT-block, the weighted
attention block, the hybrid loss function and the multiple-level label supervision training
method, contribute to the performance enhancement of the model to varying degrees.
(3) The experimental comparison results both on pavement cracks (Crack500 [49]) and
concrete surface cracks (DeepCrack [48]) further demonstrate that the DCST-net possesses
good generalization, which is a necessity for real-world applications [37].

The precise segmentation of crack width and the effective elimination of crack-like
patterns pose significant challenges in crack detection automation [56,57,64]. Despite
the proposed DCST-net demonstrating the best performance in both visualization and
quantitative indicators across three crack datasets, it occasionally misidentifies defects or
backgrounds as cracks under conditions characterized by extremely weak or significantly
disturbed backgrounds. In future work, it is essential to consider the impact of other
crack-like defects on crack detection to further enhance accuracy. One possible approach
would be to create a more diverse and extensive dataset by collecting images from various
dams worldwide to meet the requirements of ViTs [65]. In our study, due to the lack of
a rigorous calibration procedure and the shaking of the drone during the collection of
crack images, the quantification of segmented cracks cannot be achieved with a unified
model. However, precise geometric features of dam cracks are crucial for monitoring
and assessing dam safety. Additionally, adopting cost-effective, rapid, and highly precise
online systems for crack segmentation in real-world scenarios is imperative. Therefore,
developing an encoder–decoder architecture integrated with a Vision Transformer (ViT)
capable of enabling real-time applications on edge devices is another research direction.
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