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Abstract: Forecasting streamflow in stream basin systems plays a crucial role in facilitating effective
urban planning to mitigate floods. In addition to employing intricate hydrological modeling sys-
tems, machine learning and statistical techniques offer an alternative means for streamflow forecasts.
Nonetheless, the precision and dependability of these methods are subjects of paramount importance.
This study rigorously investigates the effectiveness of three distinct machine learning techniques and
two statistical approaches when applied to streamflow data from the Göksu Stream in the Marmara
Region of Turkey, spanning from 1984 to 2022. Through a comparative analysis of these methodolo-
gies, this examination aims to contribute innovative advancements to the existing methodologies
used in the prediction of streamflow data. The methodologies employed include machine learning
methods such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Ma-
chine (SVM) and statistical methods such as Simple Exponential Smoothing (SES) and Autoregressive
Integrated Moving Average (ARIMA) model. In the study, 444 data points between 1984 and 2020
were used as training data, and the remaining data points for the period 2021–2022 were used for
streamflow forecasting in the test validation period. The results were evaluated using various metrics,
such as the correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE),
mean absolute percentage error (MAPE), coefficient of determination (R2), and Nash–Sutcliffe effi-
ciency (NSE). Upon analyzing the results, it was found that the model generated using the XGBoost
algorithm outperformed other machine learning and statistical techniques. Consequently, the models
implemented in this study demonstrate a high level of accuracy in predicting potential streamflow in
the river basin system.

Keywords: streamflow forecast; machine learning; statistical techniques; Göksu Stream

1. Introduction

Accurate and reliable streamflow forecasting plays a vital role in many hydrological
and environmental studies such as flood risk assessment, hydroelectric energy, irrigation
planning, timely and effective water resource management [1–6]. It is constantly empha-
sized in the literature that streamflow forecasting requires continuous research and progress
due to its impact on the river basin system [7]. Streamflow forecasting is extremely impor-
tant in making decisions about a project and in retrospectively completing the data of a
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newly established observation station or one that has not been able to make measurements
for a certain period of time [8]. In addition, streamflow forecasting plays a crucial role in
influencing drought mitigation strategies and decision-making for water managers and
policy makers [9].

The complexity, non-linearity and non-stationarity of the process render streamflow
forecasting very challenging. However, it is difficult to predict both in the short and
long-term due to the variability in spatial and temporal domains [10,11]. The challenges
encountered in accurately forecasting streamflow have made it an interesting research
area among hydrologists [12]. Especially in recent years, artificial intelligence (AI) tech-
niques have been increasingly employed alongside hydrological models for streamflow
forecast [13]. Moreover, accurate and continuous data forecasting is critical for effective
decision-making in flood mitigation activities [14].

Some artificial intelligence and statistical models that can be used for streamflow
forecast have appeared in the literature in recent years [15–25]. Artificial neural networks
(ANN) are often favored in numerous studies due to their non-empirical nature and their
ability to achieve high accuracy rates [19,20,24]. In this context, streamflow forecasting is
often favored because it does not necessitate field surveys or physical assessments, un-
like other hydrological models. It can also accurately account for non-linear processes
such as temporal changes in streamflow [26]. Machine learning algorithms such as Deci-
sion Tree (DT) and Support Vector Machine (SVM) have been successfully used in both
monthly [27–29] and daily streamflow forecasting [30–32]. Various studies in the literature
show that machine learning methods have shown that they can numerically capture nonlin-
ear processes without knowledge of the underlying physical processes [3,33]. Among these
machine learning methods, ANNs stand out as a self-learning function approximation
tool in modeling non-linear hydrological data [10]. By identifying non-linear relation-
ships between inputs and outputs, ANNs can reproduce strong nonlinear relationships
well, especially in cases where these relationships are unknown or cannot be explained
in advance [34]. Therefore, ANNs provide advantages over other methods due to greater
accuracy, reduced testing time and faster implementation [35].

Streamflow modeling in hydrological studies can be developed by statistical methods.
Forecasting studies using the internal dependency between time series values in hydro-
logical models are within the scope of autoregressive modeling. Time series values to
be used in these modeling studies can be daily, weekly, monthly, seasonal and annual.
Generally, natural events do not have stationary model features. In order for the series to be
modeled using autoregressive models, they must have a normal distribution and stationary
structure. This comes in three forms: linear stationary stochastic models, autoregressive,
moving average and autoregressive moving average model [36]. Moreover, many models
containing time series such as wind speed, precipitation, evaporation, and flowrate can
be modeled with statistical methods. Simple exponential smoothing techniques (SES),
renowned for their simplicity and effectiveness, find extensive application in forecasting
and are similarly employed in the forecast of rainfall [37]. This is because SES facilitates
the production of accurate and short-term forecasts with robust forecasting capabilities
on time series [38]. However, the Autoregressive Integrated Moving Average (ARIMA)
method is a widely used method for time series analysis in hydrology and streamflow
estimation studies. This model utilizes the structural properties of historical time series to
forecast future values. Usually, in hydrological data, variables such as rainfall, runoff or
water depth are represented as time series and the ARIMA model can be used to analyze
these data.

The present study examines the applicability of three different machine learning
methodologies and two statistical approaches in analyzing streamflow data from the Göksu
Stream in the Marmara Region of Türkiye. The data cover the period from 1984 to 2022.
Machine learning techniques, including Extreme Gradient Boosting (XGBoost), Random
Forest (RF), and Support Vector Machine (SVM) are utilized alongside statistical techniques,
including Simple Exponential Smoothing (SES) and the Autoregressive Integrated Moving
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Average model (ARIMA). Therefore, the results obtained by the methods used in this study
were assessed using various metrics. The significance of this study emanates from its
inclusion of future streamflow forecasts for a dam projected to be constructed within the
study area. The application of five diverse methodologies demonstrates clear advantages
for water resources projects within this basin in the upcoming years. This research will
act as a pivotal guide for future investigative efforts, offering a comparative analysis
among these methodologies and contributing to the advancement of innovative practices
in hydrological forecasting.

2. Materials and Methods

2.1. Data and Site Description

Göksu Stream is a stream originating from the Marmara Region of Türkiye and flowing
into the Black Sea. Göksu Basin is located within the borders of Istanbul and Kocaeli
provinces in Türkiye. The total basin area is approximately 482 km2. Göksu Stream flows
into the Black Sea from the Ağva neighborhood of Istanbul Province. Ağva is an important
touristic coastal town located on the Black Sea coast of Istanbul. That is why the population
increases threefold in summer [39]. The region is confronted with a critical scarcity of water
resources, a situation exacerbated by the concentration of tourist accommodations, beaches,
and a marked population surge during the summer months. There are two artificial lakes
and one regulator on Göksu Stream. In addition, strategic planning is in progress for
the construction of a dam, an initiative aimed at securing a sustainable water supply for
Istanbul in the foreseeable future. This proactive measure underscores a comprehensive
approach to addressing the water scarcity challenge, highlighting the innovative strategies
adopted to ensure the adequacy of water resources in response to both current needs and
future demands. In the scope of this research, the study area was defined to encompass the
Göksu Basin outlet, which is represented by flow station named D02A004 within the basin’s
stream network. Figure 1 describes the region determined as the study area. Accordingly,
the drainage area at the flow station (D02A004) is about 395 km2 [40]. Approximate mean
elevation is 295 m, varying from 19 m to 647 m. The mainstream length is 43 km with many
tributaries feeding the river. The flow data for station D02A004 were obtained from the
head office of the General Directorate of State Hydraulic Works (DSİ) in Istanbul, Turkey.
Monthly streamflow data covers the period 1984–2022.

Figure 2 shows that monthly average flowrates of Göksu Stream between 1984 and
2022. Considering the highest and lowest averages, although 2014 was quite dry in terms of
precipitation, the flow rate reached its highest level in the following year with the effect of
precipitation. Although the Göksu Basin varies each year that receives the highest rainfall
in the December-February period and the lowest rainfall in the June-August period. The
amount of precipitation in the winter months is more intense than in the spring. Natural
events and precipitation may not be consistent over the same period each year. As a
result, various environmental challenges arise. Due to occasional flooding, especially the
surrounding agricultural lands and biological ecosystems can be damaged. For these
reasons, it is quite important to prevent flooding, mitigate its impacts and implement flood
management strategies.
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Figure 1. The location, elevation, stream network, and streamflow observation stations within the
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Figure 2. The monthly average flowrate between 1984–2022 obtained from General Directorate of
State Hydraulic Works (DSI).
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2.2. Machine Learning Methods

The machine learning models used in this study were selected based on their ability
to handle the complexity of nonlinear dataset in hydrological systems affected by various
environmental factors. Several different machine learning models were tested in the
feasibility studies prior to the study. Considering the data structure, XGBoost, RF and SVM
algorithms were selected in this study.

2.2.1. Extreme Gradient Boosting (XGBoost)

ANN finds use in various fields, especially classification, modeling and prediction
processes. The XGBoost method, one of the improved algorithms of the artificial neural
networks set, is an innovative machine learning algorithm whose article was first published
by Chen and Guestrin (2016) [41]. The published article was met with interest by data
scientists. The XGBoost algorithm is an optimized variant of the Gradient Boosting algo-
rithm. The advantages it provides over previous versions are the most important reason for
the widespread use of XGBoost. XGBoost uses the maximum depth value when building
the tree. If the created tree shows excessive downward progress, pruning is performed.
In this way, overlearning is prevented. While the Gradient Boosting algorithm uses a
first-order function to calculate the loss function, XGBoost performs these calculations
using second-order functions [41].

XGBoost operates within the boosting framework, an ensemble technique that com-
bines weak learners sequentially to form a strong learner, typically using decision trees [42].
The core of the algorithm is the optimization of a regularized objective function that
balances the model’s fidelity to the data against its complexity (Equation (1)) [41].

L(θ) = ∑n
i=1 l(Yi − ýi) + ∑K

k=1 Ω ( fk) (1)

where, L (θ) is the total loss to be minimized, l represents a differentiable convex loss
function measuring the discrepancy between the prediction ýi and the actual target Yi, fk
denotes the regularization term, defined as Ω, fk = γ T + ½ λ ||W||2, with T representing
the tree’s number of leaves, W is the scores on leaves, γ is the complexity.

2.2.2. Random Forest (RF)

RF, proposed as a combination of decision trees, is used as an improved version of the
bagging method by adding the randomness feature [43]. RF algorithm is an algorithm that
helps solve regression problems within the decision tree. It also enables creating a subtree
with randomly selected features within the created tree. There is no pruning process for
the trees within the algorithm. The random tree algorithm can have a high accuracy rate
in evaluations with the large number of random trees created [43,44]. One of the most
important advantages of the algorithm is that it solves the overfitting problem in decision
trees. The random tree method uses tree type classifier as follows (Equation (2)):

{h(x, θk)k = 1, . . . }
∑ ∑

j ̸= i
( f (Ci , T)/|T|)( f (Cj , T)/|T|) (2)

The input data is x and the random vector is represented by θk [44]. The random
tree algorithm uses the GINI index given below to determine the best branch among the
available branches [45]. T is the training data set, Ci is the class to which the data belongs, f
(Ci, T)/|T|. It shows the probability that the selected data belongs to the Ci class [46,47].
The random tree algorithm provides better generalization and accurate prediction than
other algorithms because it includes random sampling and an improved structure of
ensemble algorithms techniques [47].
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2.2.3. Support Vector Machine (SVM)

SVM is a machine learning algorithm based on statistical learning theory. This algo-
rithm, which can classify and predict both linear and non-linear data, is frequently used in
regression and classification problems. This method creates an optimal separating hyper-
plane that divides the data into two separate categories using support vectors and class
intervals. The main purpose that is optimally separate the data points with a hyperplane.
Then, the original training data is transformed using a non-linear mapping in a higher
dimension. This transformation ensures that a hyperplane can always be used to separate
data into two different classes [48,49]. Mathematically, the SVM decision function for binary
classification can be expressed as follows:

f (x) = sign +
N

∑
i=0

yi αi K (x, xi)+ b (3)

where, f (x) is the prediction of the example class, x is the example to be predicted, yi is the
label of the i-th support vector, αi is the Lagrange multiplier of the i-th support vector, K
(x,xi) is the Kernel function (a transformed version of the dot product between x and xi), b
is the bias term of the decision function.

The kernel function used here allows SVM to operate in higher dimensional spaces
with a technique called kernel trick.

2.3. Statistical Methods

The statistical methods used in this study are methods that aim to estimate the flowrate
in a certain time period by using seasonality and time series for the analysis of flow data.
These methods have been successfully applied in similar studies in the literature. Although
there are many different statistical methods in the literature, it is possible to analyze
seasonal and sudden changes in stream with time series. SES and ARIMA methods are
preferred in this study thanks to the suitability of the available data structure.

2.3.1. Simple Exponential Smoothing (SES)

SES is a statistical method used to predict future values of a time series. This method
aims to predict future values by making heavy use of historical data. SES method includes
three basic components that form time series smoothing, smoothed forecasts and future
forecasts. These are level, trend and seasonality. SES predicts future values using a combina-
tion of these three components. Essentially, the impact of historical data diminishes relative
to the past. However, it allows important features such as level, trend and seasonality to be
taken into account over time [50]. Here, the parameter values of SES are used as follows in
the literature (Equation (4)) [51]:

ýt= α· γt−1 + (1 − α)·ýt−1 (4)

where, ýt is the predicted value at time t, γt−1 is the actual value of the previous time,
ýt−1 is the predicted value of the previous time, α is the parameter used between
values 0–1.

2.3.2. Autoregressive Integrated Moving Average Model (ARIMA)

ARIMA (p, d, q) Box Jenkins Model proposed by Box and Jenkins is one of the common
methods used to create a univariate time series forecasting model [52]. An ARIMA process
is a mathematical model used for prediction. Box-Jenkins modeling involves defining an
appropriate ARIMA process, fitting it to the data, and then using the appropriate model
for prediction. One of the attractive features of the Box Jenkins approach to forecasting is
that ARIMA processes include a very rich class of models and generally provide adequate
explanation of the data [53]. A non-seasonal ARIMA model is denoted by ARIMA (p, d, q),
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which is a combination of Autoregressive (AR) and Moving Average (MA) and the order of
integration or divergence [54]. In general, the ARIMA model is as follows (Equation (5)):

∆d Zt = c + (Ø1 ∆d Zt − 1 + . . . + Øp ∆d Zt − p) − (θ1 et − 1 + . . . + θq et − q) + et
∆Zt = Zt − Zt − 1 ∆2 Zt − 1 = ∆Zt − ∆Zt − 1

(5)

where, c is the constant term, θq is the q-th moving average parameter, and et − k is the
error term at time tk, Øp is the p-autoregressive parameter, and et is the error term at time
t, ∆ denotes the difference as shown below. Zt − 1 and Zt − p are the values of the past
series with delays of 1 and p, respectively.

2.4. Model Performance Metrics

In this study, some performance criteria were used to show the goodness of fit of the
models. These are the correlation coefficient (r), mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination
(R2), and Nash–Sutcliffe efficiency (NSE).

The correlation coefficient (r) quantifies the degree of closeness of points in a scatter
plot to a linear regression line formed by those points (Equation (6)). It varies between −1
and +1. A value of −1 signifies a perfectly linear negative correlation (sloping downward),
while a value of +1 signifies a perfectly linear positive correlation (sloping upward). The
correlation coefficient, r, is directly related to the coefficient of determination R2 in an
obvious way (Equation (7)). The R2 value is a measure of how well the regression line
approximates the observed data, taking a value between 0 and 1. When R2 = 1, it suggests
a perfect fit. And, when R2 = 0, it indicates no discernible relationship between the
two variables.

r =
n (∑ xy)− (∑ x)(∑ y)√[

n∑ x2 − (∑ x)2
][

n∑ y2 − (∑ y)2
] (6)

where, n is the number of observations, ∑xy is the Sum of the products of x and y values,
∑x and ∑y are the sum of x and y values, ∑x2 and ∑y2 are the sum of the squares of x and
y values.

R2 = 1 − ∑(yi − ýi)
2

∑(yi − y)2 (7)

where, yi is the actual y values, ýi is the predicted y values (output of the regression
equation), y is the mean of y values.

The MAE is the sum of the absolute value of the differences between the actual values
and the predicted values in the data set divided by the number of samples (Equation (8)).
The mean absolute error takes values between 0 and ∞. The lower the value, the better
the performance.

MAE =
1
n
=

n

∑
i=1

|Xi − X| (8)

The RMSE is the sum of the squares of the differences between the actual and predicted
values in the data set, divided by the number of samples (Equation (9)). If there are outliers,
the mean square error may be high. However, RMSE is calculated by taking the square root
of the value found.

RMSE =

√
1
n∑n

i=1 x2
t (9)

The MAPE is a statistical measure of the prediction accuracy of a prediction method
(Equation (10)). It is also used as a loss function in machine learning problems. MAPE
scales the size of the error as a percentage [55].

MAPE =
1
N

n

∑
t=1

∣∣∣∣ At − Ft

At

∣∣∣∣ (10)
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where, n is the number of fitted points, At is the actual value, Ft is the forecast value.
The model first proposed by Nash and Sutcliffe approached calibrations from a linear

regression perspective. Particularly in hydrology, Nash–Sutcliffe efficiency (NSE) is one of
the most important measurements used to perform model comparison and validation [56]
(Equation (11)).

NSE = 1 − ∑i (Oi − Si)
2

∑i (Oi − Oi)
2 (11)

where, Si and Oi denote simulations and observations, Oi is the observed mean.

3. Results

Forecasting of flowrates was conducted employing machine learning methods XG-
Boost, RF and SVM, and statistically ARIMA and SES methods, using streamflow data
obtained from the Göksu Stream between 1984 and 2022. The dataset of this study was
divided into 70% training and 30% testing. Then, the amount of data was divided equally
by cross-validation method. Separate success percentages were calculated to determine the
performance of each model used separately. The data used in this study was first trained
with artificial neural networks and validated with 1984–2020 data. The dataset covering
the years 1984 to 2020 was utilized as the training set, while the data from 2021 to 2022
served as the test set for evaluation purposes.

3.1. Machine Learning Methods Results

Figures 3–5 depict the comparative analysis between actual and predicted data for
XGBoost, RF and SVM modeling, respectively. Figure 6 illustrates a comparative graphic
presenting all ANN model simulation results alongside the actual data.
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In Figure 3, a notable observation is the highest percentage of error occurring between
the actual and predicted values in February and March of 2022. In addition, since the
expected precipitation in April is lower than in previous years, there is a difference between
the predicted value and the actual value. Similarly, in 2021, the highest difference is again
observed in March. The reason for this is that two years in a row, floods occurred in
this region as a result of excessive rainfall. The sudden increase in water volume led to
anomalies in the observations, a situation evident in the dataset. The difference between
the actual and predicted values in November and December in the same year is due to the
fact that the region receives rainfall below seasonal norms. The prediction model employed
is unable to anticipate such abrupt fluctuations. However, a good agreement was observed
between the actual and predicted values in January and February 2021. The margin of
error appears to be negligible in this context. While there were substantial differences,
particularly in December and March, close estimates were achieved with errors below 5%
from June to November. It is noticeable that the calculated error is significantly lower,
especially during the summer months or when rainfall amounts are diminished. Therefore,
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both the data set and the mathematical structure of the XGBoost algorithm directly affect
the results.
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Figure 4 shows that the RF model shows quite consistent results during the summer
months within every two years. However, there is a difference between actual and predicted
values due to sudden natural events in November–December and April–May 2021, April
2022. Unusual weather patterns not captured well by the model’s training data lead to
inaccuracies in predictions. In summer seasons, the margin of error is calculated below
5%. According to the XGBoost model, it is seen that the predictions made in the summer
months when precipitation is low and the data are consistent are closer to the reality.

Figure 5, shows that forecasts are far from the actual values in November-December-
March 2021 and February 2022, when natural phenomena change rapidly. Like other
machine learning algorithms, it is evident that the results obtained in periods with low
precipitation are close to reality. Especially in the months with high flow rates, the predicted
error rates increase. March-2021 and February-2022 are the months with the highest
difference between actual and predicted values. Compared to the XGBoost algorithm,
in these two machine learning algorithms, as the amount of streamflow increases, the
difference between the actual and predicted values begins to increase. This allows us to
observe the performance of each dataset across various models.

In Figure 6, the results of three machine learning models are provided alongside the
actual values. For a more precise assessment of the model’s performance, it is advisable to
utilize metrics such as the R2 value or other performance indicators based on these test data.
The R2 values calculated for XGBoost, RF, and SVM are 0.72, 0.68, and 0.61, respectively.
A R2 value of 0.72 for XGBoost indicates that the model explains a substantial portion of
the variance in the dependent variable. This implies that the model consistently responds
to changes in the independent variables associated with the dependent variable, thereby
showcasing its effectiveness as a predictive tool in real-world scenarios. R2 value exceeding
60% signifies that the model effectively explains the independent variables associated with
the dependent variable. When the R2 value is above 60%, it generally implies that the model
makes forecasts better than the mean value and that the flow rate forecasts are reliable.

The highest values for the correlation coefficients of the estimated data are 0.845, 0.825,
and 0.778 for XGBOOST, RF, and SVM, respectively. The correlation coefficient seriously
affects the accuracy of the forecasts. Therefore, the correlation scale is always taken into
consideration in experimental studies that require measurement. Hence, the closer the
forecasts of the model are to the actual data, the more reliable the model is for these data.
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The highest MAPE percentage RF value found for the predicted 2021 and 2022 values
is 87.08%. MAPE is used to determine the degree to which a model or forecast is correct or
incorrect. It is used as an indicator of how accurately a model can predict future forecasts.
It is therefore often used as a measure of accuracy. The results of other evaluation criteria
are given in Table 1.

The performance metrics, as shown in Table 1, unequivocally demonstrate how well
the XGBoost model outperforms rival forecasting models on a number of important fronts.
The robust association between the predicted and actual values is demonstrated by the
XGBoost model, which has a correlation coefficient of 0.845. It’s remarkable accuracy
in forecasting values is demonstrated by its lowest MAE of 2.294 and lowest RMSE of
3.664. With a MAPE of 62.28%, the XGBOOST model likewise obtains the lowest, demon-
strating its capacity to produce forecasts with little percentage difference from the actual
data. Moreover, XGBoost has the maximum score of 0.711 for the NSE, which measures
predictive capability.

3.2. Statistical Methods Result

Figures 7 and 8 show the data for the actual and predicted values for 2021–2022
generated by statistical methods. When Figure 7 is analyzed, it is evident that the largest
disparity between the actual and predicted values occurs in March 2021 and February 2022.
In November-December 2021 and January–February 2022, there is an inconsistency in the
predicted values as a result of the anomaly caused by natural phenomena. The fact that
the highest percentage of error is observed in the winter months in both years seems to be
related to precipitation and thus the increase in the amount of data. Also, Figure 8 shows
that the predicted and actual error percentages are quite low, especially in the summer
months. Considering the performance metrics in Table 1, the SES model achieves the
highest MAPE value. It shows that statistical methods used in time series analysis cannot
make successful predictions in the case of sudden changes.
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When analyzing Figure 7, similar to Figure 8, it can be observed that the error rates
between actual and predicted values during the winter months across the two years. In the
predictions made in October-December and March-April 2021, the predictions were made
with much larger numbers compared to the ARIMA method. The highest error percentages
are found in the SES method. The most significant disparity emerges in February 2022,
where despite the actual flow rate being 25 m3/s, the model predicted a considerably lower
value. This discrepancy resulted in an error percentage of 44%, marking the highest error
rate in this study.

In Figure 9, the results of two statistical models are presented alongside the actual
values. The R2 values calculated for ARIMA and SES are 0.63 and 0.55, respectively. The
R2 value of 0.55 suggests that the model insufficiently explains the relationship between
independent variables and the dependent variable in the case of SES. However, it is seen
that statistical forecasts except for the summer months have high error percentages and
lower forecast performances compared to machine learning methods.
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Table 1. Performance metrics for the simulations of machine learning and statistical methods.

Machine Learning Methods Statistical Methods

Performance Metrics XGBOOST RF SVM SES ARIMA

R2 0.72 0.68 0.61 0.55 0.63

r 0.845 0.825 0.778 0.74 0.79

MAE 2.294 2.659 2.36 2.94 2.55

RMSE 3.664 3.919 4.683 4.59 4.19

MAPE 62.28% 87.08% 68.40% 133.40% 92.70%

NSE 0.711 0.669 0.528 0.546 0.622

Total Number of Instances 24 24 24 24 24

4. Discussion

The predictive performance of three different machine learning techniques and
two statistical methods employed in this study was evaluated using various success met-
rics. The irregular behavior of some natural phenomena involved in hydrological studies
requires some pre-processing to ensure these conditions before modeling. However, in
modeling using artificial intelligence models, all natural phenomena can be modeled in
a simple way without any pre-processing. In the evaluation made for the correlation
coefficient depending on the amount of data in all models, it was observed that all models
produced prediction data that converged to the targeted data in high correlation. As the
general evaluation criterion, the correlation coefficients of the three different machine
learning models were found to be at least 0.78. This shows the confidence rate of the model
and the correct relationship between the data. Additionally, XGBoost model has the lowest
error rate with MAE and RMSE ratios of 2.294 and 3.664, respectively. Examining the
actual values from 2021 to 2022 alongside the forecasts generated by machine learning
methods reveals that particularly during the summer months, the forecasts closely align
with the actual values, resulting in very low error rates. When we look at the figure of
three models, it is seen that all actual and predicted values are consistent except for March
2021 and February 2022. The reason for the inconsistencies for these two months is the
flooding and inundation explained separately in the result section. As shown in Table 1,
the consistency rate of the forecasts is high. According to the MAPE results, the XGBoost
algorithm performed better than RF and SVM. One of the main reasons for this is that the
algorithm is suitable for complex hydrological modeling tasks due to its ability to analyze
non-linear relationships and high-dimensional data. Furthermore, the NSE, a commonly
utilized metric in studies of hydrology and water resources management, is employed
to assess the accuracy of model predictions. XGBoost model achieved the highest NSE
accuracy rate of 0.711. Considering the results of machine learning models, XGBoost model
suitable forecast models for hydrological studies.

Considering the outcomes derived from the two different statistical methods employed
in the study, the performance metrics have reached lower success percentages compared to
machine learning methods. Although the correlation coefficients of both methods are at
acceptable levels of 0.74 and 0.79 for ARIMA and SES, respectively, MAPE values are well
above the acceptance limits. Especially the MAPE value of the SES model is around 133%
and the predicted values are significantly different from the actual values. Therefore, this is
not acceptable as the percentage error between actual and predicted values is much higher
than expected. The reason why the margin of error in statistical analysis using time series
is considerably higher than in machine learning methods is that sudden changes (floods,
storms, etc.) cannot be calculated statistically. As a result, all statistical data is based on
historical data and attempts to draw meaningful inferences from it. In artificial intelligence
algorithms, on the other hand, it is understandable that the data is divided into a test and
training set, first trained and then tested with real data, resulting in realistic values and
high accuracy percentages. Then, all the findings of our study are analyzed and brought
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together and the data set is taken into consideration, the analysis obviously indicates that
the XGBoost model is the best choice for generating accurate forecasts.

5. Conclusions

In this study, it was aimed to forecast the monthly average streamflows measured
on Göksu Stream with machine learning and statistical methods. The average monthly
streamflow data obtained from DSI for the years 1984–2022 were processed and estimated
by machine learning (XGBoost, RF and SVM) and statistical (SES and ARIMA) methods.
The accuracy of the models was demonstrated by statistical comparison of actual (observed)
and predicted values. Moreover, models were compared in terms of monthly streamflow
forecast. Finally, various performance metrics such as correlation coefficient (r), mean abso-
lute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE),
coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) were calculated to
assess model accuracy and examine error percentages. Therefore, the following conclusions
have been reached based on the outcomes of this study:

i. The study confirmed the effectiveness of selected machine learning and statistical
methods in predicting streamflows, demonstrating their utility in hydrological
studies.

ii. The findings indicated the potential of these methods to support decisions related
to water resource systems.

iii. For a variety of hydrological and environmental applications, including flood
flowrate estimation, hydroelectric generation, and water resource management, the
study highlights the need of precise streamflow forecast.

iv. The prediction results calculated in the study coincide with the actual streamflow
data. After analyzing all the findings from our study and considering the dataset,
it is concluded that the XGBoost model is the best choice for making accurate
forecasts.

v. The study successfully demonstrates the effectiveness of machine learning and
statistical methods in forecasting monthly average streamflows, highlighting their
crucial role in hydrological studies and related applications.

vi. It underscores the importance of continuous innovation in modeling techniques
and dataset diversification for improving flood predictions, essential for effective
basin management and urban planning. Overall, the study contributes to ad-
vancing the field of hydrology and provides valuable insights for future research
and application.
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writing—review and editing, M.G., İ.B.P. and S.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would also like to thank the General Directorate of State Hydraulic
Works (DSI) and Turkish State Meteorological Service (TSMS) and General Directorate of Water
Management (SYGM) for their data support and valuable discussions in undertaking this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Erdal, H.I.; Karakurt, O. Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms.

J. Hydrol. 2013, 477, 119–128. [CrossRef]
2. Ni, L.; Wang, D.; Singh, V.P.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J. Streamflow and rainfall forecasting by two long short-term

memory-based models. J. Hydrol. 2020, 583, 124296. [CrossRef]

https://doi.org/10.1016/j.jhydrol.2012.11.015
https://doi.org/10.1016/j.jhydrol.2019.124296


Water 2024, 16, 1125 15 of 16

3. Yaseen, Z.M.; El-Shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial intelligence-based models for stream-flow forecasting:
2000–2015. J. Hydrol. 2015, 530, 829–844. [CrossRef]

4. Fathian, F.; Mehdizadeh, S.; Sales, A.K.; Safari, M.J.S. Hybrid models to improve the monthly river flow prediction: Integrating
artificial intelligence and non-linear time series models. J. Hydrol. 2019, 575, 1200–1213. [CrossRef]

5. Tongal, H.; Booij, M.J. Simulation and forecasting of streamflows using machine learning models coupled with base flow
separation. J. Hydrol. 2018, 564, 266–282. [CrossRef]

6. Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel forecasting approaches using combination of
machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag. 2018, 217, 1–11. [CrossRef]
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