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Abstract: Robust and accurate flood hazard maps are essential for early warning systems and flood
risk management. Although physically based models are effective in estimating pluvial flooding,
the computational burden makes them difficult to use for real-time flood prediction. In contrast,
data-driven models can provide faster flood predictions if trained offline. While most studies have
focused on predicting maximum water depth, in this study, we predict pixel-wise water depth
maps for entire catchments at a lead time of 2 h. To that end, we propose a deep learning approach
that uses a sequence encoding network with temporal self-attention. We also adapt the popular
hydrological performance metric Nash–Sutcliffe efficiency (NSE) as our loss function. We test the
effectiveness and generalizability of our method using a new dataset called SwissFlood, which consists
of 100 catchments and 1500 rainfall events extracted from real observations in Switzerland. Our
method produces 2 m spatial resolution flood maps with absolute error as low as 27 cm for water
depth exceeding 1 m.

Keywords: flood estimation; pluvial flooding; deep learning; flood forecasting

1. Introduction

Flooding is considered one of the most catastrophic natural hazards and with climate
change, this natural hazard is predicted to become more prevalent and drastic [1]. Extreme
rainfall and flood events have risen more than 50% globally this decade [2]. This growing
frequency of flood events underscores the importance of having dependable strategies for
mitigating floods. Flood modelling is an important tool for such a task.

The utilisation of two-dimensional (2D) physically based hydrodynamic models has
been prevalent in predicting urban floods. Despite their effectiveness in predicting ur-
ban floods, they are computationally expensive which makes it difficult to use them for
real-time flood forecasting [3,4]. Although high-performance computing technology has
advanced over the years and new computational methods have been developed there are
still significant challenges in using these for operational flood forecasting [3]. Cellular
automata models were introduced to improve the computational speed of physically based
models and make them compatible with parallel processing.

In the last decade, machine learning has emerged as an effective alternative to physically-
based models [5–10]. machine learning models are not as computationally expensive and
still produce useful and accurate results for real-time flood forecasting [4,11]. Given suffi-
cient example data, machine learning models aim to learn the mapping from the observable
input to the desired output without explicitly taking into account the underlying physical
processes. In particular, deep learning constitutes a form of representation learning, where
one aims to learn data representations that are well suited for the associated predictive
modelling. It involves the composition of numerous nonlinear transformations to generate
more abstract and eventually more helpful representations [12,13]. Deep learning requires
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a significant amount of training data to fit the model. However, once trained, the model
can quickly perform predictions in a single forward pass. If trained on a large, diverse
dataset that is representative of the underlying distribution, deep learning models gener-
alise rather well to unseen data. This reduces the need for case-specific calibration when a
flood event occurs, unlike hydrodynamic models that often require manual fine-tuning.
Both classical and deep machine learning models have been employed for flood analysis
and prediction [4,5,8,10,14–16].

The main contributions of our study can be summarised as follows:

• We propose a deep learning approach that predicts water depths at high spatial
resolution for a two-hour lead time, given elevation data, water depth at starting time,
and rainfall intensity values for the forecast duration.

• We introduce the new, large-scale pluvial flood dataset SwissFlood (which is avail-
able for download at https://doi.org/10.5281/zenodo.7797844) and make it publicly
available. It contains pluvial floods for 100 catchments in Switzerland generated with
a hydrodynamic flood model [17]. The rainfall events were extracted from rainfall
observation data of the last forty years collected in Switzerland by MeteoSwiss [18].

• In our study, we aim to analyse the ability of our data-driven model to generalise the
prediction of future water depth across catchments and rainfall events. All rainfall
events used in this study are unique. We provide a quantitative as well as a qualitative
analysis of our approach to evaluate its performance.

We illustrate the comprehensive workflow of our method in Figure 1. Our process
starts with the acquisition of DEM data for catchments, as well as a collection of diverse
rainfall events. From the data gathered from three meteorological stations between 1981
and 2021, we chose 380 rainfall events for our analysis. Additionally, to ensure the model
is unbiased with respect to the rainfall intensity, we added and subtracted small random
values from rainfall events. With this approach, we generate 1500 unique rainfall events.
Employing both the digital elevation model (DEM) data and the identified rainfall events,
we simulate the water depth over a span of five hours with the CADDIES 2D cellular
automata flood model [17]. Subsequently, we divide our dataset into three mutually
exclusive partitions: training, validation, and test sets. We train a variant of the UTAE [19]
model (see Section 4.1 for more details) using the training set and find hyperparameters
that maximise predictive skill on the validation set. Subsequently, the model is tested on the
hitherto unseen test set, producing water depth predictions with a lead time of two hours.

https://doi.org/10.5281/zenodo.7797844
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Figure 1. The flowchart of our entire workflow from data collection to water depth predictions with a
two-hour lead time.
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2. Related Work

It is important to generate precise flood predictions for flood risk warnings and to
support decision-making and ultimately mitigate flood risks [20]. Traditionally, flood
hazard maps are obtained using numerical methods which are robust and effective, but
not fast and accurate [21]. Due to the fact that not all sub-processes of the hydrological
cycle can be accurately explained, those models include simplifications that may result
in simulation errors [22]. The alternative is to use data-driven models based on machine
learning, which have become more common during the last decade [23]. For feature
extraction, traditional machine learning algorithms need meticulous engineering and
significant domain knowledge. In contrast, deep learning methods automatically discover
a latent data representation that supports the prediction task. These multi-layered sets
of “attributes” are derived in a data-driven fashion, an approach that has proven highly
effective in detecting intricate patterns in high-dimensional data, across a wide range of
scientific disciplines [12].

Recently, with the growth of public data sharing over the internet, research has been
conducted about utilising images as a basis for flood estimation [24,25]. In several studies,
such as [26–28], the use of social media images combined with deep neural network
models has shown potential in predicting flood levels. Another interesting work is [29]
where existing surveillance camera systems are used to predict flood level trends. It has
the advantage that camera networks exist in many municipalities, with high operational
reliability. Drawbacks include a lack of control over the camera placement and privacy
concerns. Additionally, Lütjens et al. [30,31] investigated unsupervised learning techniques
to produce flood images after an event, given images before the flood event and a flood
extent map. Another line of research [32] has explored the potential of reinforcement
learning, training a model to actively regulate pond levels using present and predicted
events in (artificial) urban catchments.

The recent work has highlighted the potential of flood modelling with data-driven
approaches. In [8,14], a convolutional neural network (CNN) is adopted to predict the
maximum water depth and velocity of the catchment area based on rainfall and elevation
data. Another work Löwe et al. [5] used U-Net to predict 2D maps of maximum flood
depth for the city of Odense, Denmark, complemented by an exhaustive assessment of
which spatial input variables should be considered. A modified version of U-Net with
self-attention is also proposed in Yokoya et al. [10] to regress maximum water levels
for simulated disaster scenarios. Berkhahn et al. [7] design an artificial neural network
ensemble for predicting maximum water levels based on precipitation forecasts. Similarly,
ref. [1] predict maximum flood levels with a novel physics-guided deep learning method
that uses a conditional generative adversarial network (cGAN). They first use the cGAN
model to identify wet cells and then estimate their water depths. Deep neural networks
are often perceived as black boxes; to address this issue, Chaudhary et al. [33] proposed
a probabilistic deep learning approach that predicts maximum water depth along with
a well-calibrated uncertainty estimate for every water depth. That value indicates how
reliable the water depth predictions are. All these studies predict only the maximum water
depth [34], whereas our present work aims to predict pixel-wise water depth maps for the
entire catchment area with some lead time. Ivanov et al. [35] present an innovative flood
forecasting method that performs complex analysis of information on flooding impacts
well before a future storm event, with example results for Hurricane Harvey flooding
in Houston, USA. In [36], a PredRNN model is trained to emulate the transient, three-
dimensional integrated hydrological model ParFlow. Muñoz et al. [37] fuse multi-spectral
imagery using a CNN trained and evaluated on the Hurricane Matthew event to produce
flood maps at 30 m spatial resolution. Kao et al. [38] develop a method that uses a stacked
autoencoder (SAE) to compress and reconstruct flood inundation depth and a recurrent
neural network (RNN) to forecast flood features on 31 historic and 24 designed rainfall
events with a 40 m grid resolution. Chang et al. [39] develop datasets of rainfall intensity
hyetographs and simulated inundated water depths, and use similarities between rainfall
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patterns to search and retrieve the associated flood depths, so as to promptly predict
the potential pluvial flood. Hu et al. [6] combine the long short-term memory (LSTM)
framework with a reduced order model (ROM) to perform predictive and prescriptive
analytics for the Okushiri tsunami test case.

Lin et al. [40] have developed a multi-step flood forecast method for their study area of
Kulmbach, Germany with a spatial resolution of 4 × 4 m2. They employ an artificial neural
network (ANN) that ingests seven inflows to the study area and returns corresponding
output inundation maps at 3, 6, 9 and 12 h. In comparison to our work, that study focuses
on a single catchment area, whereas we train and test our method across 100 different
catchments. Their approach was also trained on synthetic floods and tested on three
historical events, while our rainfall events are extracted from the real precipitation records
of Switzerland. We use an attention-based network that is adept at identifying complex
temporal patterns and predicting water depth in the form of 2D maps for the catchment
area. Another work closely related to ours is [41], where the authors use a Random Forest
(RF) as a surrogate model for urban flood predictions. The model was trained on the most
prone as well as all 16,914 road segments in the coastal city of Norfolk, USA, and tested in
the same city. Moreover, rainfall features like hourly rainfall, maximum 15 min rainfall in
an hour, etc. were used as input to the RF, whereas our deep learning model only receives
the rainfall intensity per 10 min interval as input.

3. Datasets
3.1. Catchments

We consider 100 catchments in Switzerland for our case study. These include urban,
rural and mixed types of catchments. The elevation data, in the form of gridded DEMs with
2 m grid spacing, were taken from [14], who in turn obtained them by collecting the original
data from the Swiss national mapping agency (swisstopo). The different catchment areas in
our SwissFlood dataset and their spatial distribution are shown in Figure 2, where violet
colour denotes catchments in the training set, yellow denotes the validation set and pink
denotes the test set. Additionally, we also show the terrain characteristics of the selected
catchments: Figure 3 shows statistics of catchment area (km2), mean and maximum slopes
(degrees) and maximum elevation difference (m).

Train
Val
Test

Zurich

Lucerne

Germany

Glarus

Switzerland

France

Figure 2. Location of Swissflood catchments, colour-coded to denote the training, validation and
test sets.
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Figure 3. Overview of SwissFlood catchment properties: maximum slope, mean slope, elevation
difference, and area of the catchments.

3.2. Rainfall Data

The rainfall events used in our study were collected from the Federal Office of Meteo-
rology and Climatology in Switzerland [18]. We examined the rainfall observations at three
meteorological stations, Bern/Zollikofen, Pully, and Zürich/Kloten shown in Figure A1.
We analysed the data from 1981 until 2021 at each station and identified suitable rainfall
events for generating simulations for the SWISSFLOOD catchments. From each station, we
selected a diverse range of rainfall events spanning a duration of five hours. We divided
these 380 rainfall events into three ranges based on their volume: >40 mm, 30–40 mm, and
<30 mm within five hours. Ideally, the machine learning model should be able to predict
water depth for large rainfall events as well as for rainfall events that cause mild or no flood-
ing. To adequately cover the range from substantial to no flooding, we have selected seven,
five, and three rainfall events, respectively, from the >40 mm, 30–40 mm, and <30 mm
ranges. Overall, those events correspond to return periods from below 1 year to ≈50 years.
The temporal resolution of the hyetographs is 10 min, and we assume spatially uniform
rainfall across catchments. To avoid a bias towards specific intensity values, we add small
random perturbations up to ±10% to the observed values. With that approach, we generate
1500 unique rainfall events for all catchments, in order to learn a model that generalises
across different events. Exemplary hyetographs are shown in Figure 4. Events tr35_121,
tr35_343 were originally observed at the Pully meteorological station, and the remaining
events were selected from the Bern/Zollikofen station. The hyetographs in Figure 4 depict
several distinct rainfall patterns present in SwissFlood, including single peaks and double
peaks. This diversity of precipitation patterns enables our model to generalise to new,
unseen events.
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Figure 4. Illustration of hyetographs used for simulations. The name of the event is given in the
upper right corner. Examples are taken from the training (top row), validation (middle row) and test
sets (bottom row).

3.3. Water Depth

With the SWISSFLOOD catchment and rainfall data described above, we drive simula-
tions with the CADDIES 2D cellular automata flood model [17] to generate the reference
water depths for machine learning. CADDIES improves upon the methodology used in [42]
and employs a weight-based approach to simplify the transition rules that determine the
flow movement, thereby reducing the need for complex and computationally demanding
numerical solvers. CADDIES is a lot faster than models that solve shallow water equations
(SWE), with little loss of accuracy: R2 values between the two solutions at 2 m resolution
remain >0.95 [17]. Using the CADDIES model enables us to generate a much larger dataset
in an acceptable time. Figure 5 depicts the distribution of water depths for a specific exam-
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ple, namely rainfall event tr35_343 over catchment 809, which has an area of 12.88 km2

spanning elevations between 357 m 702 m a.s.l. The event is shown in Figure 4 and has
two peaks with intensities up to 60 mm/h. The dominant water depth of 0–5 cm has been
omitted to keep the bar chart readable, and that portion can be calculated by completing the
bar heights to 100. As expected, there are no locations with depths >50 cm at the beginning
of the rainfall event, but that percentage gradually increases with time.
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Figure 5. Distribution of water depth values within catchment 809 when simulating rainfall event
tr35_343.

4. Methodology

The present paper focuses on the development of a data-driven method for flood
depth prediction with a lead time of two hours, and able to generalise across different
terrain characteristics and rainfall events. In other words, the model should be able to
predict the water depth for catchments it has not seen during training and validation, and
for previously unobserved rainfall events.

We cast the task to predict spatially explicit flood depth maps as a supervised learning
problem. The input provided to our neural network are:

• A raster map of terrain elevations for catchment c.
• Water depth at time-step wdt for catchment c.
• Rainfall intensity values for the two-hour time window between starting time t and

target time t+ 120. The intensity is discretised to steps of 10 min, i.e., the input consists
of 12 rainfall values [rt, rt+10, rt+20, . . . , rt+110].

The output of the trained model is water depth with a spatial resolution of 2 m after
two hours, wdt+120 = wdend, as shown in Figure 6. Compared to other studies [5,8,14], we
do not extract any hand-crafted features from the data but instead let the model learn the
necessary feature extraction during training.
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minutes

minutes
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t

t + 120

t + 120

DEM

RF[t, t+110]

WDt

WDt + 120

UTAE

Input Output

Figure 6. The overview of our deep learning approach. The model receives as input the digital
elevation model (DEM), current water depth, and rainfall values for the forecast period. The output
consists of a pixel-wise water depth estimation across the DEM with a two-hour lead time.

4.1. Deep Learning Model

We build on the U-TAE model of Garnot and Landrieu [19] to predict water depth
maps, as shown in Figure 7. The name stands for “U-net with Temporal Attention Encoder”
and denotes a spatio-temporal encoder–decoder architecture originally developed for the
segmentation of image sequences. It uses a combination of multi-scale spatial convolutions
and temporal attention. The advantage of U-TAE is that its attention masks can extract
salient and robust spatio-temporal features at different resolutions simultaneously, in
contrast to other methods like convolutional and recurrent networks that only extract
temporal features at the lowest and/or highest spatial resolutions only [19]. We adapt
the U-TAE method to ingest an elevation map, an initial water depth map and rainfall
values instead of a time series and to predict water depth after 2 h instead of semantic
category labels.

Computational attention mechanisms have been studied across multiple fields includ-
ing psychology, neuroscience, and more recently computer vision. They are motivated by
how human visual attention selectively concentrates on relevant details while ignoring
others in a complex scene. Such a mechanism can be viewed as an active adjustment of
feature weights, where high attention weight corresponds to the higher importance of a
feature [43,44]. The U-TAE network is composed of three components: a spatial encoder, a
temporal encoder, and a spatial decoder.

The encoder follows the popular U-net [45]: multiple levels of convolution, non-linear
activation and normalization encode each input layer separately into a latent representation
as depicted in Figure 7. Each level halves the spatial height and width of the input.
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Figure 7. The network architecture of U-TAE as used in this paper.

The temporal encoder merges the information in different input maps into a singular
map per scale level. In the U-TAE framework, the attention mechanism operates only
on the lowest resolution feature maps; then, the same attention masks are upsampled
and applied at all resolutions. Attention is implemented via the Lightweight Temporal
Attention Encoder (L-TAE) network, a simplified variant of multi-head self-attention [46].
At the lowest resolution level, the L-TAE generates G temporal attention masks for each
pixel of the feature map sequence. These attention masks are spatially upsampled to other
encoder levels (respectively, scales) with bilinear interpolation [19].

After temporal encoding, the temporally aggregated feature maps are fed into a con-
volutional decoder, where each block again consists of convolutions, ReLU activations [47],
and batch normalisation [48]. Each block doubles the spatial width and height of the feature
maps and then appends the feature maps of the corresponding scale level, following the
U-Net principle [19].

To train the model, the following loss function is minimized:

LNSE =
∑n

i=1(yi − xi)
2

∑n
i=1(xi − x̄)2 , (1)

where yi is the predicted water depth at pixel i, xi,t is the simulated water depth at pixel i
and x̄ is the mean simulated water depth. The loss function is inspired by the Nash–Sutcliffe
efficiency (NSE),

NSE = 1 − ∑n
i=1(yi − xi)

2

∑n
i=1(xi − x̄)2 . (2)

The NSE was proposed by [49] and is arguably the most popular performance metric
for hydrological model evaluation [50–52]. It can be computed as the difference between one
and the absolute sum of squared residuals of simulated and predicted values, normalised
by the variance of the simulated value. The NSE metric measures model performance on a
scale (−∞, 1]. A value of 1 indicates perfect agreement between predicted and reference
water depth, and smaller values indicate lower agreement [51].

4.2. Model Training

The SwissFlood dataset is divided into distinct training and test sets. We set aside
10 (10% of the dataset) catchment areas for testing. We further allocate 18 (20% of the
training set) catchments as the validation set to optimise the model performance. The
validation serves to assess model skill on samples not used during the update of the model
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parameters in order to tune hyper-parameters of the training process. Moreover, three
rainfall events are also held out from the training set to test model performance on unseen
events. The input data to the model and its architecture are described in Section 4. The
output is the estimated water depth predictions for every pixel in the catchment for the
end of the two-hour prediction window. The boundary conditions are the same for all the
catchments and they are defined as an infinite sink.

As outlined in Section 3.2, we assume spatially uniform rainfall intensity over the
catchment area. To provide this information to the network, we create a 2D map with the
same rainfall value at every pixel and feed those maps to the network as separate channels.
We create 12 such channels [rt, rt+10, rt+20, . . . , rt+110] for the forecasting period. Together
with the elevation map and the initial water depths at time t, the model therefore receives
14 channels.

The full catchments are too large to process; therefore, we crop patches of size
256 × 256 pixels and feed those to the network. For training, the patches are sampled
randomly at run-time with a batch size of 16 patches. The randomization offers greater
diversity than using a fixed patch layout. Only patches with at least 10% of the pixels inside
the catchment boundary are used. The network is initialised with random weights and
trained by minimising the objective function as described in Equation (1). The network
weights are updated with back-propagation as is common for neural networks, using the
Adam [53] optimizer. We train the model for 1000 epochs, where an epoch corresponds to
the number of iterations it takes for the model to go through the complete training set. The
base learning rate is set to 0.0001. We use L-TAE with 4 heads for temporal encoding. As is
common in deep learning applications, these hyper-parameter settings were chosen based
on performance on the validation set.

5. Results

In this section, we present the results obtained by our model, i.e., its skill in predicting
the water depth two hours in advance.

In addition to the U-TAE model, we also run a simpler convolutional neural network
(CNN) with three convolution+activation layers as a baseline approach. That baseline
receives the same inputs and is trained with L1, L2 and LNSE loss functions. From now
on, we refer to the CNN model trained with L1 loss as Baseline-1, and to the CNN model
trained with L2 loss as Baseline-2. The CNN trained with LNSE loss will be labelled as
Baseline-3. The L1 and L2 loss functions are defined as the mean absolute, respectively,
squared, prediction residuals:

L1 =
n

∑
i=1

|ȳi − yi|, (3)

L2 =
n

∑
i=1

(ȳi − yi)
2 (4)

where ȳi denotes the model prediction of and yi the target value.
As outlined in Section 3, we have a total of one hundred catchments in our SwissFlood

dataset, divided into 72 training, 18 validation, and 10 test catchments, see Section 4.2. The
CADDIES simulations were performed with 15 different rainfall events for each catchment.
For the 72 catchments in the training set, we hold out three rainfall events for evaluation.
We call this set SEEN, as the model does not know the rainfall event but has seen the
topography of the catchment while training. The 10 catchment areas which the model has
never seen during training and validation are termed UNSEEN. As previously stated all
rainfall events used in the study are unique, i.e., the same event has never been applied to
different catchments.

To evaluate the performance of our U-TAE model, we compare the resulting water
depth maps to those produced by the CADDIES flood model and generate quantitative
performance metrics as shown in Table 1. As a metric, we use the widely used and easily
interpretable mean absolute error (MAE), defined as:
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MAE =
1
N

N

∑
i=1

| ¯yi,t − yi,t|, (5)

where ¯yi,t denotes the model prediction and yi,t is the target value. A value of zero indicates
a perfect fit and the error values have the same unit as our target values. We analyse the
predicted water depth results across a range of different depth intervals to obtain a more
comprehensive picture of model performance.

Table 1. Mean absolute errors of our model (in centimetres) averaged over all rainfall events, across
different ranges of water depth.

Mean Absolute Errors (cm)

all ≥5 ≥10 ≥20 ≥50 ≥100

Baseline-1 UNSEEN 1.61 28.29 46.75 67.54 97.37 117.82
SEEN 1.45 21.15 35.51 54.87 86.60 105.35

Baseline-2 UNSEEN 2.40 27.33 44.41 63.51 91.65 112.05
SEEN 2.07 20.28 33.53 51.34 81.55 100.25

Baseline-3 UNSEEN 2.35 27.91 46.09 66.65 96.78 117.85
SEEN 2.05 20.70 34.90 54.05 86.18 105.74

Ours UNSEEN 1.18 17.99 28.99 40.79 57.06 67.76
SEEN 0.75 7.50 11.81 16.72 23.59 26.86

We report the results in six different ranges which are as follows: pixels with water
depth ≥5, ≥10, ≥20, ≥50, ≥100, and all pixels. Table 1 summarises the quantitative results
for our model and the baselines, for both the SEEN and UNSEEN test sets. The table confirms
that our approach outperforms all three baselines. Moreover, the performance of our model
on the SEEN test set is much better than on the UNSEEN one, suggesting that the deep
learning model can handle new rainfall events more effectively when it has already seen
the catchment topography before. The MAE for higher ranges ≥20, ≥50, and ≥100 is
more than 50% higher in the UNSEEN setting. Regardless of the test set, MAE values with
our approach have acceptable magnitudes, in agreement with previous research [14,33].
Especially for SEEN catchments, the prediction performance is rather good, but even when
generalizing to UNSEEN regions, there is a significant improvement over the baselines. For
all three models—Baseline-1, Baseline-2 and Baseline-3—it is evident that there is only a
slight improvement from UNSEEN to SEEN locations. This suggests that the baseline models
have not managed to learn location-specific patterns.

To complement the quantitative evaluation in Table 1, we also present the qualitative
results of our model. Figure 8 shows a box plot, with binned water depth ranges on the
x-axis and absolute errors on the y-axis. We show the results for three representative
catchments from the test set. Overall, we observe a low absolute error value in shallow
water depths that increases as we move to deeper water. For catchments 139 (minimum
elevation 708 m, maximum elevation 1429 m, area 5.72 km2) and 311 (minimum elevation
468 m, maximum elevation 2690 m, area 10.06 km2), we observe an increase in absolute
error across all levels except 0–10 cm. In more detail, median errors actually remain low, but
the worst predictions, at only a few pixels, are increasingly further off as the water depth
increases. Catchments 139 and 311 experienced significantly deeper simulated water depth
compared to catchment 714. Catchment 139 had a maximum depth of 13.21 m for rainfall
event tr35_135, which peaked at around 65 mm/h with two smaller peaks of 40 mm/h at
the beginning and end of the event. Catchment 311 reached a maximum depth of 15.06 m
for event tr20_57, with a peak of 20 mm/h lasting approximately 15 min. In contrast,
catchment 714, with an elevation range of 399 m to 831 m and an area of 9.27 km2, only
reached a maximum depth of 6.6 m for event tr35_367. This event had no distinct peak but
rather near-constant rainfall, contributing to overall higher absolute errors in catchments
139 and 311.
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Figure 8. Predicted water depths and corresponding absolute errors, shown as a box plot. The
predictions are provided for our model tested on catchments 139, 311, and 714, with rainfall events
tr35_135, tr20_57 and tr35_367, respectively.

In Figures 9–12, we show an example of the qualitative performance of our model.
Figure 9 depicts the complete reconstruction of catchment 127 for rainfall event tr35_161
and a timestep of 190 min. The red bounding box is shown magnified in Figure 10. A
visual analysis of the figures suggests that the water depth predictions of the model are
reasonably accurate. The rightmost plot shows the absolute residual errors between ground
truth and prediction. Here, a darker colour corresponds to a higher error. We zoom into
regions with particularly high errors in Figure 10. In the top right corner, marked by a
yellow bounding box, the extent of a high water depth area has been underestimated by
the model. We also see a mild smoothing effect in the green bounding box. Figure 10 shows
lower absolute errors compared to Figure 9, implying the presence of isolated pixels with
high error, as previously observed in the box plot figure. Similarly, Figure 11 shows another
reconstruction, for catchment 151, with high water depth values. When we zoom into
the patch area in Figure 12, we observe a fuzzy border around the high water depth area
in the yellow bounding box instead of sharp water depth changes. As suggested by the
quantitative results, absolute error is positively correlated with water depth, i.e., errors are
larger for deeper water.
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Figure 9. On the left are the water depths predicted by our model for the complete catchment 127 at
at a specific time step of rainfall event tr35_161. In the middle are the ground truth water depths. On
the right is the absolute error between ground truth and prediction.

Figure 10. Zoom into the region marked in Figure 9. On the left is the model prediction; in the middle
is the ground truth; on the right is the absolute deviation between ground truth and prediction.

Figure 11. On the left are the water depths predicted by our method for the complete catchment 151
at a specific time step of rainfall event tr35_719. In the middle are the ground truth water depths. On
the right is the absolute error between ground truth and prediction.



Water 2024, 16, 1286 15 of 19

Figure 12. Zoom into the region marked in Figure 11. On the left is the model prediction; in the middle
is the ground truth; on the right is the absolute deviation between ground truth and prediction. Note
the fuzzy border around a pronounced depth change.

Ablation Studies

To train a deep neural network, one minimizes a loss function [54]. It is therefore
critical to find a loss function that aligns well with the intended model behaviour. In
this section, we study the impact of different loss functions on the predictive skill of our
approach. Specifically, we compare our NSE loss (Equation (1)) with the most common loss
functions for regression tasks, namely the L1 and L2 losses as given in Equations (3) and (4).
For computational efficiency, the three variants are trained and validated only on a subset of
catchments from the SWISSFLOOD dataset, while the test set of unseen catchments remains
the same. We report the results for different water depth ranges in Table 2. One can see
that the NSE loss performs better than the L2 loss function for all water depth ranges. The
L1 loss performs similarly to the NSE loss overall (in fact even marginally better), but
this is entirely due to a slightly lower error at very low water depths between 0 and 5 cm,
presumably due to the well-established tendency of L1 to drive very low values to exactly
0. At all water depths ≥5 cm, NSE still prevails.

Table 2. Mean absolute errors of our model (in centimetres) on test data, with different loss functions
used for training.

Mean Absolute Errors (cm)

All ≥5 ≥10 ≥20 ≥50 ≥100

NSE UNSEEN 1.56 23.16 37.49 53.61 78.09 97.58

L1 UNSEEN 1.47 24.7 40.53 58.46 85.02 106.03

L2 UNSEEN 1.70 24.6 39.47 56.74 83.93 105.55

6. Discussion and Conclusions

A large body of literature exists about flood prediction and management strategies [55].
Some recent works [5,34] have explored deep learning for flood forecasting and prediction
as described in Section 2. Seleem et al. [34] use multiple predictive features, including
topographical elements derived from the digital elevation model. Similarly, Löwe et al. [5]
and Guo et al. [14] have also defined varying numbers of such features to help a neural
network learn the dynamics of water movement over terrain. In contrast to these works,
our approach requires only three inputs to predict water depth with a lead time of 120 min:
a DEM of the catchment, rainfall values, and the pixel-wise water depth at the starting
time. Unlike previous research [14], we have also evaluated model performance thoroughly
both in the setting of unseen rainfall in seen catchments and in the more challenging
setting of unseen rainfall in unseen catchments. The results demonstrate that our model,
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as expected, works better in the former case but also generalizes quite well to the latter.
As far as we are aware, our research is one of the first data-driven works to demonstrate
high-resolution, spatially explicit flood depth prediction for previously unobserved rainfall
events and/or catchments.

When compared to the physically grounded flood model, our data-driven technique
eliminates the need for exhaustive manual fine-tuning for every individual scene and rain
event, which can be challenging and time-consuming in practice. While the physically
based flood model requires expertise in hydrology and the catchment specifications, our
model only uses a standard rainfall forecast and a digital elevation model of the area under
study. We acknowledge that there are other factors such as land use patterns, infrastructures,
soil characteristics, backwater effects, and storm water systems that can influence flood
predictions. Building upon the work presented in the present paper, the methodology can
be improved by including these additional factors. This would ideally offer a more detailed
representation of urban flood dynamics and can be incorporated as new input layers to
the model in addition to the DEM and rainfall values. We hypothesise that integrating
these additional data, once they become available at a large scale, would likely improve the
performance of our model in simulating urban inundations.

6.1. Limitations of the Proposed Approach

In our work, we estimate water depth for a two-hour lead time (e.g., to inform an
early warning system). However, for a different lead time requirement, the model would
need to be re-trained. A possible direction for future work could be to design a network
that gives multiple outputs associated with different lead times. Figures 8–11 show high
absolute errors for very deep water. We hypothesise that the underlying reason is the
very small number of training samples with such large water depths, which leads the
global loss function to focus on shallower regions. This limitation can be addressed in
future work by designing a loss function that puts more weight on large depth values,
or by collecting more data that includes many large depth values. We assume in our
work spatially uniform rainfall over the catchment area, which could be addressed in
future works by integrating spatially variable rainfall which can more accurately capture
precipitation variability. Because our model was trained on simulations from the CADDIES
flood model, its performance is implicitly bounded by that simulator. CADDIES only
approximates the true, underlying physical principles and we used it to generate our
dataset because we found it to be reasonably computationally efficient. Our analysis is
strongly dependent on the simulated data. Furthermore, an independent validation of the
accuracy of the CADDIES 2D model with reference data collected in situ is not feasible for
our large data set. Lastly, deep learning models excel at accurately fitting to observational
data and have a proven ability to emulate physical principles within the data distribution.
However, when encountering inputs that considerably diverge from the training dataset,
data-driven models may generate physically inconsistent or implausible predictions, due
to extrapolation or observational biases [56–58]. This can cause a considerable degradation
in performance, a limitation not present in physics-based hydrodynamic models.

6.2. Conclusions

We have presented a novel method for predicting high-resolution water depth maps
with a two-hour lead time for urban pluvial flooding. We use a deep learning network
with sequence encoding and temporal attention to forecast future water depths based on
elevation data, current water depths, and precipitation forecasts. For our study, we have
moreover introduced the SwissFlood dataset, which includes simulations for 100 Swiss
catchments and 1500 rainfall events extracted from real observations.

We have trained the proposed model on the SwissFlood dataset and have compared it
with simulation outcomes from CADDIES, hydrodynamic flood model. We demonstrate
that the trained model can predict water depth maps with fair accuracy and that it is
capable of generalizing to unseen rainfall events and unseen catchments. The mean
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absolute error remains as low as 27 cm even in instances of severe flooding with water
depths surpassing 1 m. Ablation studies with different loss functions confirmed that the
Nash–Sutcliffe efficiency (NSE) as a loss function outperforms L1 and L2 loss functions for
higher water depth ranges. We hope to have shown that attention-based neural models can
be a promising tool for future pluvial flood alert systems.
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