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Abstract: Many properties of special polynomials, such as recurrence relations, sum formulas, and
symmetric properties, have been studied in the literature with the help of generating functions and
their functional equations. In this paper, we define the generalized (p, q)-Bernoulli–Fibonacci and
generalized (p, q)-Bernoulli–Lucas polynomials and numbers by using the (p, q)-Bernoulli num-
bers, unified (p, q)-Bernoulli polynomials, h(x)-Fibonacci polynomials, and h(x)-Lucas polynomials.
We also introduce the generalized bivariate (p, q)-Bernoulli–Fibonacci and generalized bivariate
(p, q)-Bernoulli–Lucas polynomials and numbers. Then, we derive some properties of these newly
established polynomials and numbers by using their generating functions with their functional
equations. Finally, we provide some families of bilinear and bilateral generating functions for the
generalized bivariate (p, q)-Bernoulli–Fibonacci polynomials.

Keywords: q-Bernoulli numbers; (p, q)-Bernoulli numbers; unified (p, q)-Bernoulli polynomials;
h(x)-Fibonacci polynomials; generating functions

MSC: 05A19; 11B37; 11B39; 11B83

1. Introduction

Special polynomials and special numbers are frequently used in many branches of
mathematics, especially in areas such as mathematical physics, mathematical modeling,
difference equations, and analytical number theory. With the help of the generating func-
tions of these polynomials and numbers, some identities, sum formulas, and symmetric
identities containing these polynomials have been obtained. Many special numbers and
special polynomials including Fibonacci and Lucas numbers have been studied with inter-
est by mathematicians from past to present. For n ≥ 2, Fibonacci and Lucas numbers [1]
are defined by

Fn = Fn−1 + Fn−2,

and
Ln = Ln−1 + Ln−2,

with the initial values F0 = 0, F1 = 1, L0 = 2, and L1 = 1. In [2], Nalli and Haukkanen de-
fined the h(x)-Fibonacci polynomials and h(x)-Lucas polynomials, including the Fibonacci
polynomials, Pell polynomials, Lucas polynomials, and Pell–Lucas polynomials. Let h(x)
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be a polynomial with real coefficients. The recurrence relations of the h(x)-Fibonacci
polynomials and h(x)-Lucas polynomials are defined by

Fn,h(x) = h(x)Fn−1,h(x) + Fn−2,h(x), n ≥ 2

and
Ln,h(x) = h(x)Ln−1,h(x) + Ln−2,h(x), n ≥ 2

where F0,h(x) = 0, F1,h(x) = 1, L0,h(x) = 2, and L1,h(x) = h(x). They derived the generat-
ing functions of h(x)-Fibonacci polynomials and h(x)-Lucas polynomials as follows:

∞

∑
n=0

Fn,h(x)ζn =
ζ

1− h(x)ζ − ζ2 ,

and
∞

∑
n=0

Ln,h(x)ζn =
2− h(x)ζ

1− h(x)ζ − ζ2 .

For more information on Fibonacci- and Lucas-type polynomials, numbers, and their
applications, for example, in the theory of geometric functions, see [3–15]. On the other
hand, the Bernoulli numbers Bn are defined with the help of the following generating
function as [16]

∞

∑
n=0

Bn
ζn

n!
=

ζ

eζ − 1
, |ζ| < 2π.

In [17], Rahmani defined the p-Bernoulli numbers by means of the following generating
function as

∞

∑
n=0

Bn,p
ζn

n!
= 2F1(1, 1; p + 2; 1− eζ), (1)

where p ≥ −1 integer and 2F1(a, b; c; u) denotes the Gaussian hypergeometric function
defined by

2F1(a, b; c; u) =
∞

∑
n=0

(a)n(b)n
(c)n

un

n!
,

and (x)n denotes the shifted factorial defined by (x)n = x(x + 1)(x + 2) . . . (x + n− 1) for
n > 0, (x)0 = 1, and x any real or complex number. Substituting p = 0 into (1), Bn,0 = Bn,
ordinary Bernoulli numbers are obtained. Moreover, Rahmani gave some important
properties of p-Bernoulli numbers. Rahmani also defined the p-Bernoulli polynomials
as follows:

∞

∑
n=0

Bn,p(x)
ζn

n!
= exζ 2F1(1, 1; p + 2; 1− eζ). (2)

Substituting x = 0 into (2), Bn,p(0) = Bn,p, p-Bernoulli numbers are obtained. The readers
can also see [18]. After Rahmani, Pathan [19] generalized these numbers and polynomials
called (p, q)-Bernoulli numbers and (p, q)-Bernoulli polynomials, respectively. The (p, q)-
Bernoulli numbers are defined by means of the following generating function as

2F1(1, q + 1; p + 2; 1− eζ) =
∞

∑
n=0

Bn,p,q
ζn

n!
. (3)

For q = 0, (3) reduces to (1). Moreover, the author introduced the unified (p, q)-Bernoulli
polynomials defined by

exζ 2F1(1, q + 1; p + 2; 1− eζ) =
∞

∑
n=0

Bn,p,q(x)
ζn

n!
, (4)

for every integer p ≥ −1. For x = 0, (4) reduces to (3).
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In the light of the above paper, with the help of the (p, q)-Bernoulli numbers, unified
(p, q)-Bernoulli polynomials, h(x)-Fibonacci polynomials, and h(x)-Lucas polynomials, we
define the generalized (p, q)-Bernoulli–Fibonacci and generalized (p, q)-Bernoulli–Lucas
polynomials and numbers. We also introduce the generalized bivariate (p, q)-Bernoulli–
Fibonacci and generalized bivariate (p, q)-Bernoulli–Lucas polynomials and numbers.
Then, we derive some properties of these newly established polynomials and numbers
by using their generating functions with their functional equations. Finally, we provide
some families of bilinear and bilateral generating functions for the generalized bivariate
(p, q)-Bernoulli–Fibonacci polynomials.

2. Generalized (p, q)-Bernoulli–Fibonacci and Generalized (p, q)-Bernoulli–Lucas
Polynomials and Numbers

In this part of the paper, we introduce the generalized (p, q)-Bernoulli–Fibonacci
polynomials and generalized (p, q)-Bernoulli–Lucas polynomials. Then, we derive some
properties of these polynomials by using the their generating functions.

Definition 1. The generalized (p, q)-Bernoulli–Fibonacci polynomials BFn,h,p,q(x) are given by
the following generating function:

ζ(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ) =
∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
, (5)

for every integer p ≥ −1.

Some special cases of the generalized (p, q)-Bernoulli–Fibonacci polynomials BFn,h,p,q(x)
are as follows:

• Setting q = 0 into (5), BFn,h,p,0(x) =B Fn,h,p(x), generalized p-Bernoulli–Fibonacci
polynomials are obtained.

• Setting h(x) = x into (5), generalized (p, q)-Bernoulli–Fibonacci polynomials become
(p, q)-Bernoulli–Fibonacci polynomials.

• Setting h(x) = 1 into (5), generalized (p, q)-Bernoulli–Fibonacci polynomials become
(p, q)-Bernoulli–Fibonacci numbers.

• Setting h(x) = 2x into (5), generalized (p, q)-Bernoulli–Fibonacci polynomials become
(p, q)-Bernoulli–Pell polynomials.

• Setting h(x) = 2 into (5), generalized (p, q)-Bernoulli–Fibonacci polynomials become
(p, q)-Bernoulli–Pell numbers.

Definition 2. The generalized (p, q)-Bernoulli–Lucas polynomials BLn,h,p,q(x) are given by the
following generating function:

(2− h(x)ζ)(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ) =
∞

∑
n=0

BLn,h,p,q(x)
ζn

n!
. (6)

Some special cases of the generalized (p, q)-Bernoulli–Lucas polynomials BLn,h,p,q(x)
are as follows:

• Setting q = 0 into (6), BLn,h,p,0(x) =B Ln,h,p(x), generalized p-Bernoulli–Lucas polyno-
mials are obtained.

• Setting h(x) = x into (6), generalized (p, q)-Bernoulli–Lucas polynomials become
(p, q)-Bernoulli–Lucas polynomials.

• Setting h(x) = 1 into (6), generalized (p, q)-Bernoulli–Lucas polynomials become
(p, q)-Bernoulli–Lucas numbers.

• Setting h(x) = 2x into (6), generalized (p, q)-Bernoulli–Lucas polynomials become
(p, q)-Bernoulli–Pell–Lucas polynomials.
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• Setting h(x) = 2 into (6), generalized (p, q)-Bernoulli–Lucas polynomials become
(p, q)-Bernoulli–Pell–Lucas numbers.

We can rewrite (5) as

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
=

∞

∑
n=0

Fn,h(x)ζn
∞

∑
j=0

Bj,p,q
ζ j

j!
.

Comparing the coefficients of ζn on both sides of the above equation, we have

BFn,h,p,q(x) = n!
n

∑
j=0

Fn−j,h(x)
Bj,p,q

j!
.

Similarly, we may reformulate (6) as

∞

∑
n=0

BLn,h,p,q(x)
ζn

n!
=

∞

∑
n=0

Ln,h(x)ζn
∞

∑
m=0

Bm,p,q
ζm

m!
.

Thus, we have

BLn,h,p,q(x) = n!
n

∑
m=0

Ln−m,h(x)
Bm,p,q

m!
.

Theorem 1. The representation of (p, q)-Bernoulli numbers in terms of generalized (p, q)-Bernoulli–
Fibonacci polynomials is

Bn,p,q

n!
=

BFn+1,h,p,q(x)
(n + 1)!

−
h(x)BFn,h,p,q(x)

n!
− BFn−1,h,p,q(x)

(n− 1)!
, n ≥ 1.

Proof. By using (5), we have

2F1(1, q + 1; p + 2; 1− eζ) = (1− h(x)ζ − ζ2)
∞

∑
n=0

BFn,h,p,q(x)
ζn−1

n!

∞

∑
n=0

Bn,p,q
ζn

n!
= (1− h(x)ζ − ζ2)

∞

∑
n=0

BFn,h,p,q(x)
ζn−1

n!
.

Comparing the coefficients of ζn, we obtain the desired result.

Theorem 2. For n ≥ 1, we have

BFn,h,p,q(x) = n!
n

∑
m=0

[ m−1
2 ]

∑
i=0

(
m− i− 1

i

)
Bn−m,p,q

(n−m)!
hm−2i−1(x), (7)

where
∣∣h(x)ζ + ζ2

∣∣ < 1.

Proof. Using (5), we obtain

ζ(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ)
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= ζ 2F1(1, q + 1; p + 2; 1− eζ)
∞

∑
n=0

(h(x)ζ + ζ2)n

= ζ 2F1(1, q + 1; p + 2; 1− eζ)
∞

∑
n=0

n

∑
i=0

(
n
i

)
(h(x)ζ)n−i(ζ2)i

= 2F1(1, q + 1; p + 2; 1− eζ)
∞

∑
n=0

n

∑
i=0

(
n
i

)
(h(x)ζ)n−i(ζ2i+1).

On writing n + i + 1 = m in the right hand-side of the above equation, we have

ζ(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ)

= 2F1(1, q + 1; p + 2; 1− eζ)
∞

∑
m=0

[ m−1
2 ]

∑
i=0

(
m− i− 1

i

)
hm−2i−1(x)

ζm

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
=

∞

∑
n=0

Bn,p,q
ζn

n!

∞

∑
m=0

[ m−1
2 ]

∑
i=0

(
m− i− 1

i

)
hm−2i−1(x)

ζm.

Replace n with n−m and compare the coefficients of ζn to obtain the result (7).

Theorem 3. For n ≥ 2, we have

Bn,p,q
2
n!

= h(x)BFn,h,p,q(x)
1
n!

+ BLn,h,p,q(x)
1
n!

−h(x)
[

h(x)BFn−1,h,p,q(x)
1

(n− 1)!
+ BLn−1,h,p,q(x)

1
(n− 1)!

]
−
[

h(x)BFn−2,h,p,q(x)
1

(n− 2)!
+ BLn−2,h,p,q(x)

1
(n− 2)!

]
, (8)

and

BLn,h,p,q(x)
1
n!

= BFn+1,h,p,q(x)
2

(n + 1)!
− h(x)BFn,h,p,q(x)

1
n!

. (9)

Proof. Through the following equation, we have

2(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ) = h(x)
∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
+

∞

∑
n=0

BLn,h,p,q(x)
ζn

n!
.

So, we obtain

2
∞

∑
n=0

Bn,p,q
ζn

n!
= (1− h(x)ζ − ζ2)

[
h(x)

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
+

∞

∑
n=0

BLn,h,p,q(x)
ζn

n!

]

= h(x)
∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
+

∞

∑
n=0

BLn,h,p,q(x)
ζn

n!

−h(x)ζ

[
h(x)

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
+

∞

∑
n=0

BLn,h,p,q(x)
ζn

n!

]

−ζ2

[
h(x)

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
+

∞

∑
n=0

BLn,h,p,q(x)
ζn

n!

]
.

Comparing the coefficients of ζn, we obtain the result (8). By virtue of (6), we obtain

(2− h(x)ζ)(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ) =
∞

∑
n=0

BLn,h,p,q(x)
ζn

n!
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2
∞

∑
n=0

BFn,h,p,q(x)
ζn−1

n!
− h(x)

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
=

∞

∑
n=0

BLn,h,p,q(x)
ζn

n!
.

Comparing the coefficients of ζn, we obtain the our assertion (9).

3. Generalized Bivariate (p, q)-Bernoulli–Fibonacci and Generalized Bivariate
(p, q)-Bernoulli–Lucas Polynomials and Numbers

Definition 3. The generalized bivariate (p, q)-Fibonacci–Bernoulli polynomials are defined by the
following generating function as

ζ(1− h(x)ζ − ζ2)−1eyζ 2F1(1, q + 1; p + 2; 1− eζ) =
∞

∑
n=0

BFn,h,p,q(x, y)
ζn

n!
, (10)

for every integer p ≥ −1.

Letting y = 0 in (10), BFn,h,p,q(x, 0) =B Fn,h,p,q(x), the generalized (p, q)-Bernoulli–
Fibonacci polynomials are obtained.

Definition 4. The generalized bivariate (p, q)-Lucas–Bernoulli polynomials are defined by the
following generating function as

(2− h(x)ζ)(1− h(x)ζ − ζ2)−1eyζ 2F1(1, q + 1; p + 2; 1− eζ) =
∞

∑
n=0

BLn,h,p,q(x, y)
ζn

n!
, (11)

for every integer p ≥ −1.

Letting y = 0 in (11), BLn,h,p,q(x, 0) =B Ln,h,p,q(x), the generalized (p, q)-Bernoulli–
Lucas polynomials are obtained.

Theorem 4. The following summation formula holds true:

BFn,h,p,q(x) =
n

∑
m=0

(
n
m

)
(−y)m

BFn−m,h,p,q(x, y), (12)

and

BLn,h,p,q(x) =
n

∑
m=0

(
n
m

)
(−y)m

BLn−m,h,p,q(x, y). (13)

Proof. By using (10), we have

ζ(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ) = e−yζ
∞

∑
n=0

BFn,h,p,q(x, y)
ζn

n!

=
∞

∑
m=0

(−y)m ζm

m!

∞

∑
n=0

BFn,h,p,q(x, y)
ζn

n!
∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
=

∞

∑
n=0

∞

∑
m=0

(−y)m
BFn−m,h,p,q(x, y)

ζn

m!(n−m)!
.

Using the Cauchy product and comparing the coefficients of ζn, we obtain (12). The proof
of (13) is similar.
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Theorem 5. Let p ≥ −1. The following representations for generalized bivariate (p, q)-Bernoulli–
Fibonacci polynomials and generalized bivariate (p, q)-Bernoulli–Lucas polynomials involving
Euler polynomials En(x) hold true:

BFn,h,p,q(x, y) =
1
2

[
n

∑
m=0

m

∑
k=0

(
n
m

)(
m
k

)
En−m(y)BFm−k,h,p,q(x)

+
n

∑
m=0

(
n
m

)
En−m(y)BFm,h,p,q(x)

]
, (14)

and

BLn,h,p,q(x, y) =
1
2

[
n

∑
m=0

m

∑
k=0

(
n
m

)(
m
k

)
En−m(y)BLm−k,h,p,q(x)

+
n

∑
m=0

(
n
m

)
En−m(y)BLm,h,p,q(x)

]
. (15)

Proof. The generating function for the Euler polynomials En(y) gives

eyζ =
eζ + 1

2

∞

∑
n=0

En(y)
ζn

n!
.

Substituting this values of eyζ in (10) gives

eζ + 1
2

∞

∑
n=0

En(y)
ζn

n!
ζ(1− h(x)ζ − ζ2)−1 2F1(1, q + 1; p + 2; 1− eζ)

=
∞

∑
n=0

BFn,h,p,q(x, y)
ζn

n!

1
2

[
∞

∑
m=0

ζm

m!

∞

∑
n=0

En(y)
ζn

n!

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!
+

∞

∑
n=0

En(y)
ζn

n!

∞

∑
n=0

BFn,h,p,q(x)
ζn

n!

]

=
∞

∑
n=0

BFn,h,p,q(x, y)
ζn

n!
.

Using the Cauchy product and comparing the coefficients of ζn, we obtain (14). The proof
of (15) is similar.

4. Some Families of Generating Functions for the Generalized Bivariate
(p, q)-Bernoulli–Fibonacci and Generalized Bivariate
(p, q)-Bernoulli–Lucas Polynomials

In this section, we derive bilinear and bilateral generating functions for the generalized
bivariate (p, q)-Bernoulli–Fibonacci polynomials by using some methods that were used
earlier in [20] (see also [21–24]).

Theorem 6. Suppose that Λµ(T) is an identically non-vanishing function of m complex variables
t1, . . . , ts (m ∈ N) and of complex order µ. Additionally, let the function Λµ(T) have the following
generating function:

Υµ,ν(T; w) : =
∞

∑
k=0

akΛµ+νk(T)wk

(ak 6= 0; µ, ν ∈ C; T =(t1, . . . , ts); s ∈ N).
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Then, for Ψn,r,µ,ν(x, y; T; h) given by

Ψn,r,µ,ν(x, y; T; h) :=
[n/r]

∑
k=0

ak
BFn−rk,h,p,q(x, y)

(n− rk)!
Λµ+νk(T)hk, (16)

∞

∑
n=0

Ψn,r,µ,ν

(
x, y; T;

v

vr

)
vn (17)

= Υµ,ν(T; v)v(1− h(x)v− v2)−1eyv 2F1(1, q + 1; p + 2; 1− ev),

where n, r ∈ N.

Proof. By substituting

Ψn,r,µ,ν

(
x, y; T;

v

vr

)
from the definition (16) into the left-hand side of (17), we can write the following form of
the left-hand side of the equality (17) of Theorem 6:

∞

∑
n=0

Ψn,r,µ,ν

(
x, y; T;

v

vr

)
vn =

∞

∑
n=0

[n/r]

∑
k=0

ak
BFn−rk,h,p,q(x, y)

(n− rk)!
Λµ+νk(T )vkvn−rk,

which, upon replacing n with n + rk, we have

∞

∑
n=0

Ψn,r,µ,ν

(
x, y; T;

v

vr

)
vn =

∞

∑
n=0

∞

∑
k=0

ak
BFn,h,p,q(x, y)

n!
Λµ+νk(T )vkvn

=

(
∞

∑
k=0

akΛµ+νk(T )vk

)(
∞

∑
n=0

BFn,h,p,q(x, y)
vn

n!

)
= Υµ,ν(T; v)v(1− h(x)v− v2)−1eyv 2F1(1, q + 1; p + 2; 1− ev),

which is the right-hand side of the generating function (17) asserted by Theorem 6.

To give some examples of the generating functions expressed by Theorem 6 above, we
first set

s = 1 and Λµ+νk(γ ) = Bµ+νk,p(γ) (k, µ, ν ∈ N0)

in Theorem 6. Here, Bn,p(x) denotes the p-Bernoulli polynomials defined by (2). Thus, we
deduce from Theorem 6 the following result, which provides a class of bilateral generating
functions for the p-Bernoulli polynomials and the generalized bivariate (p, q)-Bernoulli–
Fibonacci polynomials.

Corollary 1. If Υµ,ν(γ; w) :=
∞
∑

k=0
akBµ+νk,p(γ)wk ,(ak 6= 0 , k, µ, ν ∈ N0), and

Wn,r,µ,ν(x, y; γ; ζ) :=
[n/r]

∑
k=0

ak
BFn−rk,h,p,q(x, y)

(n− rk)!
Bµ+νk,p(γ)ζ

k

where n, µ, ν ∈ N0; r ∈ N, then

∞

∑
n=0

Wn,r,µ,ν

(
x, y; γ;

u
tr

)
tn

= Υµ,ν(γ; u)t(1− h(x)t− t2)−1eyt 2F1(1, q + 1; p + 2; 1− et).
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Remark 1. Using (10) and taking ak =
1
k! , µ = 0, ν = 1, we have

∞

∑
n=0

[n/r]

∑
k=0

BFn−rk,h,p,q(x, y)
(n− rk)!

Bk,p(γ)

k!
uktn−rk

= eγu 2F1(1, 1; p + 2; 1− eu)t(1− h(x)t− t2)−1eyt 2F1(1, q + 1; p + 2; 1− et).

Finally, in terms of the generalized bivariate (p, q)-Fibonacci–Bernoulli polynomials
BFn,h,p,q(x, y) generated by (10), we set

s = 2 and Λµ+νk(x1, y1) =B Fn,h,p,q(x1, y1)

in Theorem 6. We find that the following class of bilinear generating functions for the
bivariate polynomials BFn,h,p,q(x, y).

Corollary 2. If Υµ,ν(x1, y1; w) :=
∞
∑

k=0
ak BFn,h,p,q(x1, y1)wk ,(ak 6= 0 , µ, ν ∈ N0), and

Wn,r,µ,ν(x, y; x1, y1; ζ) :=
[n/r]

∑
k=0

ak
BFn−rk,h,p,q(x, y)

(n− rk)! BFµ+νk,h,p,q(x1, y1)ζ
k

where n, µ, ν ∈ N0 and r ∈ N, then

∞

∑
n=0

Wn,r,µ,ν

(
x, y; x1, y1;

u
tr

)
tn

= Υµ,ν(x1, y1; u)t(1− h(x)t− t2)−1eyt 2F1(1, q + 1; p + 2; 1− et).

Remark 2. By virtue of (10), and if we set ak =
1
k! , µ = 0, ν = 1, we have

∞

∑
n=0

[n/r]

∑
k=0

BFn−rk,h,p,q(x, y)
(n− rk)!

BFk,h,p,q(x1, y1)

k!
uktn−rk

= u(1− h(x1)u− u2)−1ey1u 2F1(1, q + 1; p + 2; 1− eu)

×t(1− h(x)t− t2)−1eyt 2F1(1, q + 1; p + 2; 1− et).

5. Conclusions

In this paper, using the (p, q)-Bernoulli numbers, unified (p, q)-Bernoulli polynomials,
h(x)-Fibonacci polynomials, and h(x)-Lucas polynomials, we define the generalized (p, q)-
Bernoulli–Fibonacci and generalized (p, q)-Bernoulli–Lucas, generalized bivariate (p, q)-
Bernoulli–Fibonacci, and generalized bivariate (p, q)-Bernoulli–Lucas polynomials and
numbers, respectively. We obtain some important identities and relations of these newly
established polynomials by using their generating functions and functional equations.
Finally, we provide some generating functions for the generalized bivariate (p, q)-Bernoulli–
Fibonacci polynomials. For the last section, every proper choice of the coefficients ak
(k ∈ N0), if the multivariable function Λµ+νk(t1, . . . , ts), (s ∈ N), is expressed as a proper
product of many ordinary functions, the allegations of Theorem 6, are able to be applied
to obtain various families of bilinear and bilateral generating functions for the families of
the polynomials BFn,h,p,q(x, y). With the help of this article, different types of polynomial
families can be defined. Different types of polynomial families can be defined by taking
bivariate Fibonacci and bivariate Lucas polynomials instead of h(x)-Fibonacci and h(x)-
Lucas polynomials, which we discussed in this article. Our work is to define a new
polynomial family with the help of different types of polynomial families that differ from
previous studies. For future studies, researchers can define different types of polynomials
with the help of this study.
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7. Kızılateş, C. New families of Horadam numbers associated with finite operators and their applications. Math. Methods Appl. Sci.

2021, 44, 14371–14381. [CrossRef]
8. Pathan, M.A.; Khan, W.A. On a class of generalized Humbert–Hermite polynomials via generalized Fibonacci polynomials. Turk. J.

Math. 2022, 46, 929–945. [CrossRef]
9. Pathan, M.A.; Khan, W.A. On h(x)-Fibonacci-Euler and h(x)-Lucas-Euler numbers and polynomials. Acta Univ. Apulensis Math.

Inform. 2019, 58, 117–133. [CrossRef]
10. Bala, A.; Verma, V. Some properties of bi-variate bi-periodic Lucas polynomials. Ann. Rom. Soc. Cell Biol. 2021, 25, 8778–8784.

Available online: http://annalsofrscb.ro/index.php/journal/article/view/3598/2921 (accessed on 31 March 2023).
11. Catalani, M. Generalized bivariate Fibonacci polynomials. arXiv 2004, arXiv:math/0211366v2.
12. Panwar, Y.; Gupta, V.K.; Bhandari, J. Generalized Identities of Bivariate Fibonacci and Bivariate Lucas Polynomials. Jauist 2020,

1, 142–150.
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