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Abstract: The formulations of polynomials over a topological simplex combine the elements of
topology and algebraic geometry. This paper proposes the formulation of simplicial polynomials
and the properties of resulting topological manifolds in two classes, non-degenerate forms and
degenerate forms, without imposing the conditions of affine topological spaces. The non-degenerate
class maintains the degree preservation principle of the atoms of the polynomials of a topological
simplex, which is relaxed in the degenerate class. The concept of hybrid decomposition of a simplicial
polynomial in the non-degenerate class is introduced. The decompositions of simplicial polynomial
for a large set of simplex vertices generate ideal components from the radical, and the components
preserve the topologically isolated origin in all cases within the topological manifolds. Interestingly,
the topological manifolds generated by a non-degenerate class of simplicial polynomials do not
retain the homeomorphism property under polynomial extension by atom addition if the simplicial
condition is violated. However, the topological manifolds generated by the degenerate class always
preserve isomorphism with varying rotational orientations. The hybrid decompositions of the
non-degenerate class of simplicial polynomials give rise to the formation of simplicial chains. The
proposed formulations do not impose strict positivity on simplicial polynomials as a precondition.
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1. Introduction

The representations of homotopy paths as a set of polynomials are interesting in the
domains of algebraic topology and algebraic geometry. In this context, the decompositions
of polynomials in real algebraic sets or real semi-algebraic sets expose several interesting
properties. It is known that if R denotes an algebraically closed real field and g ∈ R[x] such
that g > 0, then there exists { fk : 0 < k ≤ m} ⊂ R[x], revealing the decomposition to be
g = ∑

k
f 2
k considering the respective real algebraic sets [1]. However, a similar result is not

guaranteed if we consider g ∈ R[x1, x2, . . . , xn], and Hilbert showed that, in this case, ratio-
nal functions are required [1,2]. The generalized decomposability of f ∈ R[x1, x2, . . . , xn]
in terms of a set of rational functions {hk : 0 < k ≤ m} ⊂ R[x1, x2, . . . , xn] in the form
f = ∑

k
h2

k in a subset A ⊂ Rn is an interesting area to study, and it invites the notion

of semi-algebraic sets in Euclidean spaces [1]. Moreover, topological concepts are often
required in algebraic geometry, including the Zariski algebraic sets. For example, it has been
shown that the decomposability of f ∈ R[x1, x2, . . . , xn] and topological separations of two
convex cones (i.e., algebraically ordered cones) by linear functionals are interrelated [1,3].
Often, monomials play important roles in determining the decomposability of polynomials.
Interestingly, special classes of polynomials, for example, Hermite polynomials, can reveal
quadratic decomposition in bivariate forms under certain conditions [4]. First, we present
the preliminary concepts, motivations and the contributions made in this paper in the
following sections.
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1.1. Preliminaries

Recall that if S ⊂ F[x1, x2, . . . , xn] is given over an algebraically closed field F, then
Zr(S) is an algebraic set, which is topologically Zariski closed. On the other hand, the de-
compositions of multivariable (positive real) polynomials often involve real semi-algebraic
sets. The definition of a real semi-algebraic set is presented as follows [3].

Definition 1. Let A ⊂ R be a real subring and B f (R) =
{
⟨ai⟩n

i=1 ∈ Rn : f (⟨ai⟩n
i=1) > 0

}
be a

set such that f ∈ A[x1, x2, . . . , xn]. The S ⊂ Rn is a semi-algebraic set over A ⊂ R if S ⊂ Rn is a
Boolean set of algebraic combinations of B f (R).

Interestingly, the concept of the semi-algebraic set has close similarity to the concept
of the quasi-algebraic set. Note that the positivity of f ∈ R[x1, x2, . . . , xn] depends on the
lower bound of the minima of the respective polynomial on a bounded algebraic set or
semi-algebraic set in Rn, and it can be computed by using Lojasiewicz inequalities involving
an n − simplex in Rn [2,5]. The concept of Lojasiewicz inequality is presented in the following
definition [6].

Definition 2. Let us consider f ∈ R[x] with f (0) = 0 and An(R) ⊂ Rn such that Zr( f ) ⊂
An(F). If a topological subspace Bn(R) ⊂ Rn is compact, then there exists the constants b > 0 and
c > 0 such that

∣∣∣ f ∣∣∣≥ cd(x, Zr( f ))b for every x ∈ Bn(R).

Note that the Lojasiewicz inequality considers a real n − space, which is metrizable. It
is possible to decompose a geometric topological object such as a polyhedral space by em-
ploying the polynomial maps and Minkowski summation considering that the polynomials
are in the non-degeneracy class [6]. Let us consider a set of non-degenerate polynomials
P = {p1, p2, . . . , pk} and a corresponding polynomial map P : Rn\{0, 0, . . . , 0} → Rk such

that 1 ≤ k ≤ n. Suppose we denote the Minkowski summation as
k
∑

j=1
M(pj) such that

k
∑

j=1
M(pj) ⊂ Rk\{0}. Thus, a polyhedral face ∆ ∈

k
∑

j=1
M(pj) under the polynomial map

can be presented in the form ∆ =
k
∑

j=1
∆j, where ∆j is a face of the respective M(pj) of the

polyhedral space. Note that the positivity of a polynomial f ∈ R[x1, x2, . . . , xn] and the
n − simplex are interrelated through the applications of Pólya’s theorem. The interrelation-
ship is presented in the following theorem [5].

Theorem 1. Let f ∈ R[x1, x2, . . . , xn] be positive as well as homogeneous with deg( f ) = d and the
absolute values of coefficients be bounded below 2. If λ is the minimum of f ∈ R[x1, x2, . . . , xn] over

the n − simplex σ(n) =

{
n
∑

j=1
xj = 1 : ∀xj ≥ 0

}
, then λ−1 is bounded above, and all coefficients

of f

(
n
∑

j=1
xj

)p

are strictly positive, where p is a constant.

The proof of the aforesaid theorem is detailed in [5]. Often the polynomials can
be formulated in combinatorial forms considering a smooth function. The Bernstein
polynomials are in such a class, which can be extended over the n − simplex. The definition
of Bernstein polynomials and the extension over an n − simplex are presented in the
following definition [7].

Definition 3. Let f ([0, 1]) be a smooth function. The Bernstein polynomial B(n > 1, f , x)

is defined as B(n > 1, x, f ) =
n
∑

j=0

(
n
j

)
. f
(

j
n

)
.xj.(1 − x)n−j. Moreover, if σ(n) =

n
∑

j=0
λj.xj
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is an n − simplex, then the Bernstein polynomial extended over the n − simplex is given as

B(n > 1, x, f ) = ∑
|s|=n

f (xs).
(

n
s

)
.λs, where xs = (1/n)

n
∑

j=0
sj.xj and λ = (λ0, λ1, . . . , λn).

Note that the Bernstein polynomials can be asymptotically expanded, and it includes
an error term [7]. A similar type of formulation of a polynomial over a simplicial complex
involving combinatorial terms is the Sterling polynomial [8]. If we consider the complex

field C and f ∈ C[z], then it is proved that the polynomial f (z) = 1+
n
∑

j=1
aj.zj has real zeros,

and it represents a simplicial complex [9]. This leads to the following lemma [9].

Lemma 1. If f ∈ C[z] is a polynomial of deg( f ) = n with all real zeros in [−1, 0], then f ∈ C[z]
represents a simplicial complex.

The proof of the lemma and the associated properties are detailed in [9].

1.2. Motivations

The generation of algebraic curves over the topological n − simplex within an affine
topological space Bn ⊂ Rn is an interesting domain of study. It involves the elements of ge-
ometric topology and algebraic geometry. The polynomial forms and their decomposability
have applications in analyzing dynamics of complex systems, non-linear systems, biological
data analysis and graph theory based on polynomials and simplicial complexes [10]. In
general, the formation of positive polynomials over a simplex considers that the coefficients
are in R [3]. On the other hand, the formulation of f ∈ R[x1, x2, . . . , xn] over a topologi-
cal n − simplex σ(n) in Bn ⊂ Rn involving the respective polynomial ring considers that
f ∈ Z[x1, x2, . . . , xn] and f > 0, indicating that it is strictly positive when coefficients are
in the field of integers [2]. It was shown that the lower bound of f > 0 largely depends
on deg( f ) and the dimension of the space. Interestingly, the complex analytic function
over a Newton polyhedral space can be given in the form h : (C0, 0) → (Cp, 0) considering
the non-degeneracy class [11]. It is important to note that it is often assumed that the
polynomials are in the non-degeneracy class irrespective of the algebraic fields [2,11]. On
the other hand, it was noted earlier that the polynomials can be formulated in combi-
natorial forms over an n − simplex. An example is the univariate Bernstein polynomial
extended over an n − simplex [7]. Moreover, it was shown earlier that the finite simplicial
complexes can be determined by employing the algebra of polynomials involving the
baricentric coordinates of the simplexes with coefficients of the polynomials in the integral
domains [12]. Furthermore, the homotopy theory of algebraic topology can be employed to
find the isolated solutions of polynomials within the zero-sets [13]. However, in this case,
the complex space Cn is considered, which is in the Euclidean class. On the other hand,
the polyhedral homotopies are employed to solve the polynomial systems [14]. It was
shown that an f − polynomial can be generated over a simplicial complex σ(n−1), which

is given in the form f (t) =
n
∑

j=0
f j−1tj, where f j is a j − simplex in the σ(n−1) complex [15].

This formulation has applications in analyzing convex polytopes as topological objects. It
is known that the topological properties have close interrelationships with the elements
of algebraic geometry [16–19]. It was shown that the simplicial triangulations of an affine
topological space can be established by employing h − polynomials, and the topology of
an algebraic curve changes when the changes in its coefficients force it to pass through
singularities [17,18,20]. Evidently, the formations of polynomials over simplexes offer new
perspectives in the views of geometric topology and algebraic geometry. This serves as
the motivation to ask the following topological as well as algebraic questions: (1) What are
the roles of monomials (called atoms in this paper considering the degrees in the real algebraic field
maintaining atomic degree conditions, as explained in Remark 1) in the formations of simplicial
polynomials in topological spaces without restriction to affine spaces? (2) Can it reveal the degener-
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acy class in some forms? (3) Is it possible to relax the requirement of positivity of polynomials in the
formation of simplicial polynomials as a generalization? And, finally, (4) what are the properties of
the resulting topological manifolds generated by them? This article addresses these questions in
relative detail by combining the elements of geometric topology and algebraic geometry.

1.3. Contributions

The contributions made in this paper can be summarized as follows. This paper
proposes the formulation of polynomials over the n-simplex (which are called simplicial
polynomials) in a topological space (without imposing the condition of topologically
affine spaces), preserving the degree preservation principle of atoms of the polynomials
representing a simplex and the formation of topological manifolds as a result. The simplicial
polynomials preserve the properties of the Noetherian class of ideals so that the respective
zero-set is not empty and Zariski closed. We introduce the concept of hybrid decomposition
of a simplicial polynomial and the inclusion of the degeneracy class in the formulations. It
is shown that the topological manifolds generated by the simplicial polynomials in a non-
degenerate class do not retain the homeomorphism property if we increase the number of
atoms of the simplicial polynomials in additive forms including the multiplicative scaling.
The generations of the degeneracy class of simplicial polynomials relax the atomic degree
preservation principle. Interestingly, the resulting manifolds show homeomorphisms with
varying orientations (i.e., manifold rotation). The properties of decomposition of simplicial
polynomials in a non-degenerate class are analyzed in detail. It is illustrated that the
decomposition forms ideal components for sufficiently large degrees, which preserves the
topologically isolated origin in topological manifolds in all cases. Moreover, the hybrid
decomposition of a non-degenerate class of simplicial polynomial is admissible, and it
invites the formation of a simplex chain within the topological spaces in lower dimensions.
The two distinctive properties of the proposed formulations are: (1) the formulations do
not consider that the simplicial polynomials are strictly positive as a precondition, and
(2) they consider the formations of simplicial polynomials involving the non-degeneracy
class as well as the degeneracy class, generating different varieties of topological manifolds.
The relaxation of the strict positivity of a simplicial polynomial allows the formation of
topological manifolds over the positive as well as negative regions, exposing various axes
of symmetries.

The rest of the paper is organized as follows. The concept of simplicial polynomials
in different classes and the related decompositions are presented in Section 2. Section 3
presents a set of topological as well as algebraic properties of the proposed formulations.
The comparative analysis of the proposed formulations with respect to the related works is
presented in Section 4. Finally, Section 5 concludes the paper.

2. Concept of Simplicial Polynomials

In this section, we present the concept of simplicial polynomials in a topological
n − space and the related degenerates in lower dimensional spaces by combining the
elements of algebraic topology and algebraic geometry. We consider that the underlying
real algebraic field F is always closed in topological n − space An(F), and the set of integers
is denoted as Z. Let σ(n) be an n − simplex representing a topological space

∣∣∣σ(n)∣∣∣ generated

over the vertex set V(σ(n)) = ⟨x1, x2, . . . , xn⟩ such that σ(n) =
n
∑

j=1
tjxj, where tj ∈ [0, 1]

and
n
∑

j=1
tj = 1. We consider that σo

(n) is a simply connected open topological space with

dimension n < +∞. First, we present the formulation of simplicial polynomials and the
concept of hybrid decomposition.
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2.1. Simplicial Polynomials and Hybrid Decomposition

Let F be a closed real algebraic field. If F[x1, x2, . . . , xn] is a polynomial ring and f ∈
F[x1, x2, . . . , xn], then every a1....jx

b(1)
1 xb(2)

2 . . . xb(n)
n is called an atom of f ∈ F[x1, x2, . . . , xn],

where a1....j ∈ F and b(j) ∈ Z (the details about the concept of the atom are given in

Remark 1). Let us consider the algebraic curve f ∈ F[x] in the form given by f =
n
∑

j=1
ajxj,

maintaining generality. The corresponding simplicial polynomial with respect to the pair〈
f , σ(n)

〉
is defined as follows.

Definition 4. If f ∈ F[x] is a polynomial, then the simplicial polynomial fσ(n) ∈ F[x, y] generated

over
〈

f , σ(n)

〉
is defined as fσ(n) =

n
∑

j=1
(tjaj)x−jyj+1 such that

n
∑

j=1
(tjaj) = 1.

Remark 1. Note that every monomial β j = tjxj in σ(n) maintains deg(β j) = 1. On the other
hand, the simplicial polynomial fσ(n) ∈ F[x, y] preserves the condition that, for every monomial
β f j = (tjaj)x−jyj+1 in fσ(n), the degrees are not altered such that deg(β f j) = deg(β j). We refer
to it as the atomic degree condition (ADC), and the monomials preserving ADC are called atoms.

Moreover, if the
n
∑

j=1
(tjaj) = 1 condition is maintained, then it is said to be a proper simplicial

polynomial preserving the simplicial condition. Note that we are not requiring that (tjaj) ∈ [0, 1]
in all cases (which is a strict simplicial condition) by generalizing the concept of proper simplicial
polynomials.

Example 1. We present the manifold structure (MS) generated by the simplicial polynomials
considering three different cases. First, we consider the polynomial in R[x, y] with two atoms, which
is given by −2x−1y2 + 3x−2y3. The resulting MS is illustrated in Figure 1.
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Figure 1. Manifold of simplicial polynomial with two atoms.

Next, we increase the number of atoms in additive forms such that fσ(n) = −2x−1y2 +

3x−2y3 − 4x−3y4, and the resulting MS is illustratedin Figure 2. Note that it maintains the
ADC, but it violates the proper simplicial condition. The generated MS for fσ(n) = 2(−2x−1y2 +

3x−2y3 − 4x−3y4) + 7x−4y5, preserving the ADC and proper simplicial condition, is illustrated
in Figure 3.

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 15 
 

 

not requiring that ]1,0[)( ∈jjat  in all cases (which is a strict simplicial condition) by general-
izing the concept of proper simplicial polynomials.  

Example 1. We present the manifold structure (MS) generated by the simplicial polynomials 
considering three different cases. First, we consider the polynomial in ],[ yxR  with two atoms, 

which is given by 3221 32 yxyx −− +− . The resulting MS is illustrated in Figure 1. 

 
Figure 1. Manifold of simplicial polynomial with two atoms. 

Next, we increase the number of atoms in additive forms such that 
433221

)( 432 yxyxyxf n
−−− −+−=σ , and the resulting MS is illustrated in Figure 2. Note that 

it maintains the ADC, but it violates the proper simplicial condition. The generated MS for 
54433221

)( 7)432(2 yxyxyxyxf n
−−−− +−+−=σ , preserving the ADC and proper simplicial 

condition, is illustrated in Figure 3. 

 
Figure 2. Manifold of simplicial polynomial with three atoms (addition). 

 
Figure 3. Manifold of simplicial polynomial with four atoms (with multiplicative scaling and ad-
dition). 

Note that the topological homeomorphism property is not always preserved by the 
manifolds due to the increase in the numbers of atoms in the simplicial polynomials in 
additive forms if the simplicial condition is violated while maintaining the ADC. Let us 
consider polynomial ],[)( yxFf n ∈σ , which is algebraically decomposable. The defini-
tion of the hybrid decomposition is given as follows. 

Figure 2. Manifold of simplicial polynomial with three atoms (addition).



Symmetry 2024, 16, 102 6 of 14

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 15 
 

 

not requiring that ]1,0[)( ∈jjat  in all cases (which is a strict simplicial condition) by general-
izing the concept of proper simplicial polynomials.  

Example 1. We present the manifold structure (MS) generated by the simplicial polynomials 
considering three different cases. First, we consider the polynomial in ],[ yxR  with two atoms, 

which is given by 3221 32 yxyx −− +− . The resulting MS is illustrated in Figure 1. 

 
Figure 1. Manifold of simplicial polynomial with two atoms. 

Next, we increase the number of atoms in additive forms such that 
433221

)( 432 yxyxyxf n
−−− −+−=σ , and the resulting MS is illustrated in Figure 2. Note that 

it maintains the ADC, but it violates the proper simplicial condition. The generated MS for 
54433221

)( 7)432(2 yxyxyxyxf n
−−−− +−+−=σ , preserving the ADC and proper simplicial 

condition, is illustrated in Figure 3. 

 
Figure 2. Manifold of simplicial polynomial with three atoms (addition). 

 
Figure 3. Manifold of simplicial polynomial with four atoms (with multiplicative scaling and ad-
dition). 

Note that the topological homeomorphism property is not always preserved by the 
manifolds due to the increase in the numbers of atoms in the simplicial polynomials in 
additive forms if the simplicial condition is violated while maintaining the ADC. Let us 
consider polynomial ],[)( yxFf n ∈σ , which is algebraically decomposable. The defini-
tion of the hybrid decomposition is given as follows. 

Figure 3. Manifold of simplicial polynomial with four atoms (with multiplicative scaling and
addition).

Note that the topological homeomorphism property is not always preserved by the
manifolds due to the increase in the numbers of atoms in the simplicial polynomials in
additive forms if the simplicial condition is violated while maintaining the ADC. Let us
consider polynomial fσ(n) ∈ F[x, y], which is algebraically decomposable. The definition of
the hybrid decomposition is given as follows.

Definition 5. A decomposable simplicial polynomial fσ(n) ∈ F[x, y] is in the class of hybrid
decomposition if it can be expressed in the form given by fσ(n) = u.v.q(w), where u ∈ F[y] and
v, w ∈ F[x, y].

Note that the hybrid decomposition reveals the condition on the corresponding al-
gebraic set that Zr( fσ(n)) = Zr(u) ∪ Zr(v) ∪ Zr(q(w)). Moreover, the dimensions of the
irreducible components in the hybrid decomposed class vary, and the compositions of
polynomials are involved.

2.2. Degenerated Simplicial Polynomials

We can formulate the degenerated forms of simplicial polynomial fσ(n) ∈ F[x, y] in
topological spaces if we relax the ADC while allowing topological decomposition of the
degenerated fσ(n) ∈ F[x, y], where at least one topological component is an irreducible va-
riety (i.e., irreducible algebraic zero-set). Note that the degenerated simplicial polynomials
retain the simplicial condition on coefficients to form the corresponding topological space.
The degenerate form of fσ(n) ∈ F[x, y] is defined as follows.

Definition 6. The degenerated form of fσ(n) ∈ F[x, y] over
〈

f , σ(n)

〉
in a topological space is

defined as fσ(n) = p(x, y) = qh, where q ∈ F[x] and h ∈ F[y] without retaining the ADC.

Note that a degenerated fσ(n) ∈ F[x, y] is algebraically decomposed, and, as a result, it
is topologically separable in A3(F).

Example 2. Let us consider the degenerated form of fσ(n) ∈ F[x, y] in A3(F), which is given as

q(x) = x and h(y) = t1 + t2y2 + t3y3 such that it preserves the simplicial condition
3
∑

j=1
tj = 1.

Suppose we choose the coefficients in a combinatorial selection as
{

t1, t2 = t2
1, t3 = (1 − t1 − t2)

}
such that

3
∑

j=1
tj = 1. The resulting topological manifold generated by the degenerated fσ(n) is

illustrated in Figure 4 considering t1 = 0.1 (i.e., keeping the first coefficient within a small
neighborhood of zero). The z-axis represents the MS generated by the polynomials in degenerate
forms.
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If we change the choice of first coefficient to higher values (i.e., t1 → 1 within an expanded
neighborhood of zero), then the resulting degenerated polynomial forms a topologically isomorphic
manifold with altered orientation through rotation. This is illustrated in Figure 5, where t1 = 0.99.
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preserved, as illustrated in Figures 6 and 7.
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3. Properties of Simplicial Polynomials

In this section, we present a set of topological as well as algebraic properties of the non-
degenerate class of simplicial polynomials, and the associated hybrid decompositions. First,
we present the properties of the topological as well as algebraic (irreducible) decomposition
of simplicial polynomials in multiplicative forms and the preservation of the additive
extension property.

Theorem 2. If S ⊂ F[x, y] is in the non-degenerate class such that S =
{

fσ(k) : k ∈ [1, n]
}

, then
the zero-set of every simplicial polynomial in S is decomposable in multiplicative 3-components with
at least one irreducible component and an ideal component generated from a radical if k > 1.

Proof. Let us consider a set of simplicial polynomials S ⊂ F[x, y] in the non-degenerate
class such that S =

{
fσ(k) : k ∈ [1, n]

}
, and let us select an fσ(m) such that m > 1. If we

consider that fσ(m) =
m
∑

j=1
λjx−jyj+1 and λj ∈ F, then it results in the following derivation:

fσ(m) =
m
∑

j=1
λjx−jyj+1,

⇒ fσ(m) = (x−1y)m.(λmy + λm−1x + λm−2x2y−1 + λm−3x3y−2 + ......),
⇒ fσ(m) = (x−1y)m.(hm ∈ F[x, y]).

Hence, the polynomial g = (x−1y)m is an ideal for m > 1 generated from the radical for
m = 1, and the multiplicative decomposition reveals the components given by Zr( fσ(m)) =
Zr(gm)∪Zr(y)∪Zr(hm/y), where Zr(y) is an irreducible component in the decomposition.
□

The following corollary illustrates that a set of finitely generated simplicial polynomi-
als of the non-degenerate class preserves the Noetherian property of zero-sets when such
polynomials are extended in additive forms.

Corollary 1. In non-degenerate class S ⊂ F[x, y] , the algebraic set Zr(S) = ∩
k

Zr( fσ(k)) is not

empty for a sufficiently large k ∈ [m, ∞) ⊂ Z+.

Proof. Let us consider simplicial polynomials S ⊂ F[x, y] such that every fσ(k) ∈ S is
finitely generated in additive forms for k ∈ [m, ∞) ⊂ Z+. Note that F represents the real
algebraic field. Thus, the field is Noetherian, and we can conclude that I(Zr(S)) = ∪

k
Ik,

where {Ik} is a Noetherian class. Hence, the algebraic zero-set Zr(S) cannot be empty if
k ∈ [m, ∞) ⊂ Z+. □

Example 3. The set A ⊂ {(x, y) : x ∈ R\{0}; y = 0} is an algebraic zero-set of a set of finitely
generated simplicial polynomials.

Remark 2. Evidently, the non-degenerate class of simplicial polynomials given as set S ⊂
F[x, y] reveals the formation of a Noetherian coordinate ring ACR(Zr(S)) = F[x, y]/I(Zr(S)).
Moreover, if g = (x−1y) and I(M ⊂ A2(F)) =

{
g−k. fσ(k)

}
, then I(M) ⊂ F[x, y] is in a finitely

generated Noetherian class.

The concept of isolated zero is a topological property, and it is widely employed in
algebraic geometry. The following theorem illustrates that any non-degenerate class of
simplicial polynomials always preserves the respective topologically isolated origin.
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Theorem 3. If S ⊂ F[x, y] is in a non-degenerate class of simplicial polynomials, then every
fσ(m) ∈ S preserves the topologically isolated origin for all m > 0.

Proof. Let S ⊂ F[x, y] be in a non-degenerate class of simplicial polynomials, and let
N((0, 0), ε > 0) be a neighborhood of (0, 0) in the topological space A2(F). Thus, we
can find a unique decomposition of every fσ(m) ∈ S given in the form fσ(m) = (gm ∈
F[x, y]).(hm ∈ F[x, y]), where g = x−1y and m > 0. Note that the zero-set of the component
Zr(gm) is reducible in a topological subspace A2(F)\N((0, 0), ε > 0) for sufficiently large
m. Hence, every fσ(m) ∈ S in a non-degenerate class of simplicial polynomials preserves
the respective topologically isolated origin. □

Example 4. The preservations of the topologically isolated origin by the decomposable and separable
radical as well as ideal components of fσ(m) are presented in the following figures (Figures 8–11).
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Interestingly, the distinct behaviors of the respective decomposable and separable
radicals and ideals are observable in all cases outside of N((0, 0), ε > 0). Furthermore,
the simplicial polynomials in a non-degenerate class can reveal hybrid decomposition, as
presented in the following theorem.

Theorem 4. Every fσ(k) ∈ S ⊂ F[x, y] admits hybrid decomposition if k > 1.

Proof. Let fσ(m) ∈ S ⊂ F[x, y] be a simplicial polynomial in a non-degenerative class such
that m > 1. The simplicial polynomial can be decomposed as fσ(m) = (gm ∈ F[x, y]).(hm ∈
F[x, y]), where a component is given by hm(x, y) = (λmy + λm−1x
+λm−2x2y−1 + λm−3x3y−2 + ......). Suppose we denote q(w) = [λm + λm−1w + λm−2w2 +
......], where w ∈ F[x, y]. We can derive it further as follows:

hm = u.q(w),
(u = y) ∈ F[y],
w = xy−1.

(1)

Note that q ∈ F[x, y] is a composite irreducible. Hence, we conclude that Zr( fσ(m)) =
Zr(gm) ∪ Zr(u) ∪ Zr(q), and it reveals hybrid decomposition. □

The hybrid decomposition leads to the following lemma, providing an interesting
insight.

Lemma 2. If l : F → E2 is a function in topological 2-space, then (l ◦ wm) generates a simplex
chain by the component q(w) in hybrid decomposed hm ∈ F[x, y] for all m.

Proof. We consider the irreducible component Zr(q) ⊂ A2(F) of an hm ∈ F[x, y] under
the hybrid decomposition. Note that λm−j ∈ F, wm(x, y) ∈ F for the values of x, y, where
j = 0, 1, 2....... If we consider that l : F → E2 is a function within the topological 2-space,
then (l ◦ wm)(x, y) ∈ E2 is finite, and it generates σq(w) = ∑

j
λm−j.(l ◦ wj), which is a

simplex chain in E2. □

4. Topological and Algebraic Comparisons

In this section, we present the comparative analysis of the proposed formulations with
respect to the related works in the domain. The simplicial complexes are the fundamental
objects in geometric topology, and the polynomial algebras are fundamental to the algebraic
geometry. Earlier, several attempts were made to bridge between the simplexes and
polynomial algebras [9,21–23]. In general, the formulations of simplicial polynomials in
a multicomplex consider the algebraic field of natural numbers N involving the complex
variables [9]. For example, the simplicial polynomial with real zeros can be given as
p(z) ∈ N[z]. Note that the formulations of simplicial polynomials proposed in this paper
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consider the closed real algebraic field R, and the variables are also in the set of reals.
The computational approaches to form simplicial polynomials consider that {Kn : n ∈ N}
is a graded simplicial set indexed over the set of natural numbers, which is equipped
with two functions given as ∂n

i : Kn → Kn−1 and µn
i : Kn → Kn+1 , representing the face

map and degeneracy map, respectively [21,22]. As a result, the simplicial polynomials
are formulated as a list of monomials such as p = 3µ4µ1∂3∂6∂7 − 2µ1∂3∂4 involving the
respective face maps and degeneracy maps [21]. Note that the indexes of face maps should
employ strictly increasing indexes in the computational formulations, where the coefficients
cannot be zero and the degrees cannot be negative for computations. On the other hand,
as a distinction, the formulations proposed in this paper employ polynomial algebraic
forms to construct the simplicial polynomials in the settings of algebraic geometry, and the
formulations are generalized in nature because they involve coefficients as well as degrees
of polynomials in the real algebraic field R. As a result, the proposed formulations in this
paper reveal formations of ideals from the radical component for sufficiently long simplicial
chains. The formulations of the k − polynomial over a simplicial complex k are represented
as pk(x) = ∑

i≥1
fixi, which is in an algebraic polynomial form [23]. The k − polynomial

is constructed by employing the counting of i − f aces. However, the formulations of
simplicial polynomials proposed in this paper do not follow a similar approach, and the
indexed face counting is not employed in the proposed constructions.

Finally, we present the distinctive topological properties of the proposed simpli-
cial polynomial and the Laurent polynomial [24,25]. Let us consider an example of the
Laurent polynomial over the real algebraic field R with three monomials as fL(x, y) =
0.2 + 0.7x−1y + 0.1xy−1, maintaining the strict simplicial conditions in standard form. On
the other hand, consider the corresponding simplicial polynomial fσ(x, y) = 0.2x−1y2 +
0.7x−2y3 + 0.1x−3y4 by following the proposed formulations. The topological manifolds
generated by the Laurent polynomial and the simplicial polynomial are illustrated in
Figures 12 and 13, respectively.
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Note that the topological homeomorphism property is not preserved by the manifolds
although the coefficients maintain strict simplicial conditions in standard form in both
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the cases. The axes of symmetries are different in the respective manifolds. Note that the
decompositions of multivariate polynomials are formulated by employing the composition
of functions to form degenerate classes [26]. However, as a distinction, the degenerate
class of simplicial polynomials proposed in this paper does not employ any function
compositions or generator functions. However, the proposed simplicial polynomials admit
hybrid decomposition.

Simplicial Polynomial in Alternate Form

In this section, we compare the structure of topological manifolds given in an alter-

native form fσ(n) =
n
∑

j=1
(tjaj)xjy−j+1 such that

n
∑

j=1
(tjaj) = 1. Note that it preserves the

ADC. Let us consider the simplicial polynomials in alternate form as fσ(n) = −2x + 3x2y−1

and fσ(n) = −2x + 3x2y−1 − 4x3y−2 such that the coefficients are equal to the respective
simplicial polynomials given in Example 1. The respective topological manifolds generated
by the simplicial polynomials in alternate form are presented in Figures 14 and 15.
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Note that the topological manifold generated from two atoms in the alternate form of
the simplicial polynomial is topologically homeomorphic to the topological manifold gen-
erated from three atoms of the original form of the simplicial polynomial given in Example
1 (i.e., by comparing Figures 2 and 14). The topological homeomorphism is observable if
we compare Figures 1 and 15. Moreover, the manifolds have attained rotational symmetry
due to the changes in the composition of atoms in the simplicial polynomials considering the
original form and the alternative form. It indicates that the changes in atomic structures
of simplicial polynomials, while maintaining ADC, induce combinatorial formations of
homeomorphic topological manifolds with varying rotational orientations. Finally, we
compare the decomposed components and degeneration of other classes of polynomials
with respect to the simplicial polynomials proposed in this paper. Interestingly, the special
class of polynomials, called Hermite polynomials, can be decomposed in the forms of
monomials under certain conditions [27]. However, the formulations of simplicial poly-
nomials proposed in this paper are not fully decomposable into a set of monomials or
atoms. The decompositions of the proposed simplicial polynomials generate topologically
irreducible components and a radical ideal. Note that, in general, the degenerate classes
of polynomials are formulated by employing the generator functions [28]. However, as a



Symmetry 2024, 16, 102 13 of 14

distinction, the degenerate class of simplicial polynomials proposed in this paper does not
employ any specific generator functions.

5. Conclusions

The formulations of simplicial polynomials consider the elements of topology and
algebraic geometry in a combination, exposing a set of interesting algebraic as well as
topological properties. The simplicial polynomials can be formulated in a non-degenerate
class and in a degenerate class depending upon the preservation of atomic degrees. The
topological manifolds generated by different classes of simplicial polynomials exhibit
various topological properties. The topological manifolds generated by the non-degenerate
class of simplicial polynomials do not retain homeomorphism, whereas the topological
manifolds generated by the degenerate class of simplicial polynomials retain isomorphism
with varying rotational orientations. The simplicial polynomials in the non-degenerate class
are decomposable, and it gives rise to radical components for the small number of vertices
of simplexes preserving the topologically isolated origin in the topological manifolds. The
hybrid decomposition of a simplicial polynomial leads to the formation of simplex chains in
topological spaces in lower dimensions. In future, it would be interesting to investigate the
interrelationships between the decompositions of simplicial polynomials and the resulting
deformations of topological manifolds.
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