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Abstract: The properties of the unique nontrivial analytic solution, defined implicitly by a functional
equation, are pointed out. This work provides local estimations and global inequalities for the
involved solution. The corresponding operatorial equation is studied as well. The second part of the
paper is devoted to the full classical moment problem, which is an inverse problem. Two constraints
are imposed on the solution. One of them requires the solution to be dominated by a concrete convex
operator defined on the positive cone of the domain space. A one-dimensional operator is valued, and
a multidimensional scalar moment problem is solved. In both cases, the existence and the uniqueness
of the solution are proved. The general idea of the paper is to provide detailed information on
solutions which are not expressible in terms of elementary functions.

Keywords: holomorphic function; implicitly defined function; self-adjoint operators; quadratic forms;
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1. Introduction

The implicit function theorem is a very important tool in obtaining the properties and
information on an implicitly defined function, which cannot be expressed in terms of ele-
mentary functions. However, the equations or problems that implicitly define the solution
can be stated in terms of elementary functions. Only the exact solution is unknown. This is
the purpose of the first part of the present work. On the other hand, finding the solutions
for moment problems, only in terms of the given moments and one or two constraints, is
an inverse problem. In other words, an unknown measure or function or linear operator
should be determined in terms of the given moments and other given data. This is the aim
of the second part of this work. From this viewpoint, one can say that a relationship and
common point exists between the first and the second part of this paper. From the point of
view of the methodology, classical analysis and functional analysis are applied. To use these
methods for solving our problems in Section 3, we partially use results in real, complex,
and functional analysis, which can be found in the books/monographs [1–7]. The books
and respective articles [6,8–15] refer to the moment problem. In many of these references,
Hahn-Banach-type theorems and/or their consequences play a significant role (for example,
see [9]). For the study of the Maximum Entropy solution for the reduced moment problem
on unbounded intervals and its approximation, see [14,15]. In [16], stability questions
in the truncated trigonometric moment problem are under attention. For the results on
sequences of important special polynomials, not necessarily related to the moment problem,
see [17,18]. These two articles could provide new ideas for other authors and for the readers
to continue and/or complete the present work. As is well-known, the Hahn-Banach typer
results are not only used in moment and related problems (for example, see [7]). In the
paper [19], we complete our study of the functional equation:

g(x) = g( f (x)), x ∈ (a, b) ⊆ R,
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where g is given with natural properties, and f

USV Symbol Macro(s) Description
2220 ∠ \textangle ANGLE

2221 ∡ \textmeasuredangle MEASURED ANGLE

2222 ∢ \textsphericalangle SPHERICAL ANGLE

2223 ∣ \textmid DIVIDES

2224 ∤ \textnmid DOES NOT DIVIDE

2225 ∥ \textparallel PARALLEL TO

2226 ∦ \textnparallel NOT PARALLEL TO

2227 ∧ \textwedge LOGICAL AND

2228 ∨ \textvee LOGICAL OR

2229 ∩ \textcap INTERSECTION

222A ∪ \textcup UNION

222B ∫ \textint INTEGRAL

222C ∬ \textiint DOUBLE INTEGRAL

222D ∭ \textiiint TRIPLE INTEGRAL

222E ∮ \textoint CONTOUR INTEGRAL

222F ∯ \textoiint SURFACE INTEGRAL

2232 ∲ \textointclockwise CLOCKWISE CONTOUR INTEGRAL

2233 ∳ \textointctrclockwise ANTICLOCKWISE CONTOUR INTEGRAL

2234 ∴ \texttherefore THEREFORE

2235 ∵ \textbecause BECAUSE

2236 ∶ \textvdotdot RATIO

2237 ∷ \textsquaredots PROPORTION

2238 ∸ \textdotminus DOT MINUS

2239 ∹ \texteqcolon EXCESS

223C ∼ \textsim TILDE OPERATOR

223D ∽ \textbacksim REVERSED TILDE

2240 ≀ \textwr WREATH PRODUCT

2241 ≁ \textnsim NOT TILDE

2242 ≂ \texteqsim MINUS TILDE

2243 ≃ \textsimeq ASYMPTOTICALLY EQUAL TO

2244 ≄ \textnsimeq NOT ASYMPTOTICALLY EQUAL TO

2245 ≅ \textcong APPROXIMATELY EQUAL TO

2247 ≇ \textncong NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO

2248 ≈ \textapprox ALMOST EQUAL TO

2249 ≉ \textnapprox NOT ALMOST EQUAL TO

224A ≊ \textapproxeq ALMOST EQUAL OR EQUAL TO

224B ≋ \texttriplesim TRIPLE TILDE

224C ≌ \textbackcong ALL EQUAL TO

224D ≍ \textasymp EQUIVALENT TO

224E ≎ \textBumpeq GEOMETRICALLY EQUIVALENT TO

224F ≏ \textbumpeq DIFFERENCE BETWEEN

2250 ≐ \textdoteq APPROACHES THE LIMIT

2251 ≑ \textdoteqdot GEOMETRICALLY EQUAL TO

2252 ≒ \textfallingdoteq APPROXIMATELY EQUAL TO OR THE IMAGE OF

2253 ≓ \textrisingdoteq IMAGE OF OR APPROXIMATELY EQUAL TO

2254 ≔ \textcolonequals COLON EQUALS

2255 ≕ \textequalscolon EQUALS COLON

2256 ≖ \texteqcirc RING IN EQUAL TO

2257 ≗ \textcirceq RING EQUAL TO

2259 ≙ \texthateq ESTIMATES

225C ≜ \texttriangleeq DELTA EQUAL TO

2260 ≠ \textneq
\textne

NOT EQUAL TO

2261 ≡ \textequiv IDENTICAL TO

2262 ≢ \textnequiv NOT IDENTICAL TO

39

id is the unique nontrivial solution.
Namely, in [19], one proves that the analyticity of g appearing in the above-stated equation
in a complex open neighborhood V of the interval (a, b), implies the analyticity of the
solution f on the entire V. We assume that g(x) ∈ R and f (x) ∈ R for all real.

x ∈ V ∩R. In our previous proofs, one assumes that there is a unique point α in the
open interval (a, b) at which the derivative g′(α) is null. It results that α is the unique fixed
point of the solution f . The analyticity of f at α was also proved. Finally, the papers [20,21]
are devoted especially to Hahn-Banach and polynomial approximation-type results on
compact and on unbounded subsets, applied to the moment problem. In the first part
of the present work, we provide detailed information on the properties and estimates of
the nontrivial solution f of the equation ze−z = f (z)e− f (z), in a complex neighborhood of
the interval (0,+∞). The behavior around α = 1 is pointed out. The related operatorial
equation in a commutative algebra of self-adjoint operators is also studied. For this first
subject, see Theorems 1 and 2 and Corollary 1. The second part of the paper is devoted
to a one dimensional and a multidimensional moment problem, respectively, with two
constraints on the linear operator (respectively, linear functional) satisfying the moment
interpolation conditions. Unlike our previous paper on this topic, here, we prove results that
are valid on concrete spaces and concrete constraints defined by convex and null operators,
respectively, on the positive cone of the domain space. In the end, a multidimensional
moment problem on [0,+∞)d, d ∈ N, d ≥ 2 is solved and a related example is emphasized.
For Hahn-Banach-type results on the extension of linear operators applied to the moment
problem and to other subjects, see [21]. The rest of the paper is organized as follows.
Section 2 resumes the methods that are going to be applied. In Section 3, the results are
stated and proved. Section 4 (Discussion) concludes the paper.

2. Methods

The basic methods used in this work are:

1. Real and complex functions. Basic inequalities and expansions in Taylor series [1,2].
Applications to functional equations.

2. Properties of holomorphic functions. Implicit function theorem for real and complex
differentiable functions, respectively [19]. Properties of unknown functions implicitly
defined, expressed in terms of elementary functions. Local approximation; local and
global inequalities.

3. Equalities and inequalities for self-adjoint operators deduced via functional
calculus [3,4,7], from the new inequalities proved in the present work. For recent
results in operator theory referring to the moment problem, see [11,16].

4. Using an order complete Banach lattice of self-adjoint operators, which is also a
commutative algebra [5].

5. Applying Hahn-Banach-type results to the existence of a positive linear solution
dominated by a convex operator for the full classical moment problem; application
of polynomial approximation on unbounded subsets to the multidimensional full
moment problem [20,21]. To this aim, we use the notion of a moment determinate
measure and a sufficient condition for determinacy [12].

6. In Corollary 3, a necessary passing to the limit condition related to Theorem 3 is
expressed in terms of quadratic forms with operator coefficients.

3. Results
3.1. Implicitly Defined Solutions of Functional and Operatorial Equations

In what follows, we apply results from [1–7,12,19–21].

Theorem 1. Let us consider the functional equation:

ze−z = f (z)e− f (z), Re(z) > 0. (1)
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There exists a unique nontrivial solution f of the Equation (1), with f (z) ̸= z for z ̸= 1, f is
holomorphic in an open complex neighborhood Ω of (0,+∞), f (x) ∈ (0,+∞) for all x ∈ (0,+∞),
and f satisfies the following conditions:

(i) The restriction of f to the interval (0,+∞) is decreasing, f (0+) = +∞, f (∞−) = 0 + .
(ii) f (1) = 1, f ′(1) = −1.
(iii) f ( f (z)) = z for all z ∈ Ω.
(iv) The function f is strictly convex in an interval (1 − ε, 1 + ε), with ε > 0 being sufficiently

small, and the following inequalities hold:

f (x) ≥ 2 − x ≥ 3x − 2x2.

In each of these inequalities, equality occurs if and only if x = 1.
(v) In a disc D(1; ε) = {z; |z − 1| < ε}, of small radius, the following two-degree polynomial

approximation of f holds:

f (z)− z ≈ 1
4

(
3z −

(
9z2 − 48z2(1 − z)

)1/2
)

.

(vi) If ε > 0 is sufficiently small and x ∈ [1, 1 + ε), then the following inequalities hold:

1
4

x[3 − (9 − 48(1 − x))1/2] ≤ f (x)− x ≤ 0.

If x ∈ (1 − ε, 1], and 0 < ε ≤ 3/16, then:

0 ≤ f (x)− x ≤ 1
4

x[3 − (9 − 48(1 − x)) 1/2
]
≤ 4ε,

Proof. Let g : C −→ C be the function defined by:

g(z) = ze−z, z ∈ C. (2)

For x ∈ [0,+∞), g(x) = xe−x has the properties easily deduced from the calculus in
one real variable: g ∈ C(∞)((0,+∞),R), g is increasing on the interval [0, 1] and decreases
on the interval [1, + ∞). The global maximum point is α = 1, with gmax = g(α) = g(1) =
e−1. On the other hand, elementary computations also using L’Hopital’s Rule yield:

lim
x↘0

g(x) = lim(x
x↘0

e−x) = 0, lim
x↗+∞

g(x) = lim(x
x↗+∞

e−x) = lim
x↗+∞

(x/ex) = lim
x↗+∞

(1/ex) = 0.

Thus, all of the requirements in the hypothesis of Theorem 3.1 from [19] (for detailed
proofs, see also the reference there) are accomplished. Applying the conclusion of the
theorem, the assertions (i) and (ii) follow; the equality

f ( f (x)) = x, x ∈ (0,+∞)

follows as well. On the other hand, since g(z) = ze−z is holomorphic on the entire
complex filed, the application of Theorem 3.4 from [19] and the uniqueness of analytic
continuation [2] lead to the conclusion that f is holomorphic on a complex open connected
neighborhood Ω of (0, + ∞), and the equality stated at point (iii) holds for all z ∈ Ω. To
prove (iv), from (1) written for z = x ∈ (0,+∞), also using (i) and (ii), we infer that
ε ∈ (0, 1) is sufficiently small, such that:

x ∈ (1 − ε, 1) =⇒ 0 <
f (x)− x

x
< 1 =⇒ − f (x)− x

x
> −1, (3)
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one obtains:
(1) =⇒ e f (x)−x = f (x)/x.

All of these further yields:

f (x)− x = log( f (x)/x) = log
(

1 + f (x)−x
x

)
=∫ ( f (x)−x)/x

0
1

1+t dt =
∫ ( f (x)−x)/x

0

(
1 − t + t2 + · · ·+ (−1)n tn + · · ·

)
dt =

f (x)−x
x − 1

2

(
f (x)−x

x

)2
+ 1

3

(
f (x)−x

x

)3
− · · · =

f (x)−x
x − 1

2

(
f (x)−x

x

)2
+ ∑

n≥1

(
f (x)−x

x

)2n+1( 1
2n+1 − 1

2n+2 ·
f (x)−x

x

)
.

(4)

Writing (4) for n = 1, the following first conclusion holds:

f (x)− x =
f (x)− x

x
− 1

2
·
(

f (x)− x
x

)2
+

(
f (x)− x

x

)3(1
3
− 1

4
· f (x)− x

x

)
. (5)

For x ̸= 1, we know that f (x)− x ̸= 0, so that (5) may be written as:

1 =
1
x
− 1

2
· f (x)− x

x2 +
( f (x)− x)2·

x3 ·1
3
+ ω(x), lim

x→1

ω(x)

( f (x)− x)2 = 0. (6)

For small ε > 0, |x − 1| < ε, Equation (6) further yields:

lim
x→1

1−1/x+( f (x)−x)/(2x2)
( f (x)−x)2

x3

=

lim
x→1

x2−x+( f (x)−x)/2
( f (x)−x)2 = 1

3 > 0.
(7)

From this last equality, it follows that for x ∈ (1 − ε, 1 + ε) with small ε > 0, the
nominator of the ration on the left-hand side must be positive; that is:

x2 − x + ( f (x)− x)/2 > 0,
f (x) > 3x − 2x2, x ∈ (1 − ε, 1 + ε), x ̸= 1.

(8)

Using l’Hopital’s rule twice in (7) and the equalities f (1) = 1, f ′(1) = −1, it results
in:

1
3
= −1

4
lim
x→1

2 + f ′′ (x)/2
f ′(x)− 1

=
1
8
(2 + f ′′ (1)/2) =

1
4
+

f ′′ (1)
16

,

f ′′ (1) =
16
12

=
4
3

.

Since f ′′ (x) is continuous and positive at x = 1, we have f ′′ (x) > 0 for all x in the small
interval (1 − ε, 1 + ε). Thus, f is strictly convex on (1 − ε, 1 + ε). Consequently, through the
subgradient inequality for strictly convex differentiable functions, the following conclusion
holds:

f (x)− f (1) = f (x)− 1 ≥ f ′(1)(x − 1) = −(x − 1),

f (x) ≥ 2 − x, x ∈ (1 − ε, 1 + ε).

In this inequality, equality occurs if and only if x = 1. Hence, the first inequality stated
at point (iv) is proved. On the other hand, the function

φ(x) = 3x − 2x2
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is strictly concave on the entire real axes. Therefore, its graph is dominated by the line
representing the graph of the tangent to the graph of φ at the point (1, 1) = (1, φ(1)) =
(1, f (1)). As

φ(1) = f (1) = 1, φ′(1) = f ′(1) = −1,

the equation of this tangent is given by y − 1 = (−1)(x − 1); that is y = 2 − x. Now
the desired inequalities from (iv) are proved. The assertion (v) follows quite easily too,
as all the involved functions are analytic in a neighborhood centered at 1. Hence, the
following remarks and equalities hold. The function: h(z) := f (z)−z

z is holomorphic (hence,
is continuous) on the disc:

D(1; ε) = {z; |z − 1| < ε}. Thus, according to the assertion (ii), h(1) = f (1)− 1 = 0,
from (4) written for complex variable z instead of x, by means of analytic continuation,
we derive:

f (z)− z =
f (z)− z

z
− 1

2

(
f (z)− z

z

)2
+ φ(z), (9)

with

φ(z) := ∑
n≥1

(
f (z)− z

z

)2n+1( 1
2n + 1

− 1
2n + 2

· f (z)− z
z

)
=

(
f (z)− z

z

)3
w(z). (10)

Here, w is holomorphic in D(1; ε), with

lim
z→1

w(z) =
1
3

. (11)

From all of these, as f (z) differs from z for all z ̸= 1, also using (6), it results:

1 =
1
z
− 1

2
· f (z)− z

z2 + ( f (z)− z)2 w(z)
z3 . (12)

Hence,

z − 1 ≈ 0 =⇒ 1 −
(

1
z −

1
2 ·

f (z)−z
z2

)
= ( f (z)− z)2 w(z)

z3 =⇒
2z2 − 2z + f (z)− z = 2( f (z)− z)2 w(z)

z .

This can be written as:

z( f (z)− z)− 2z2(1 − z) = 2( f (z)− z)2w(z), lim
z→1

w(z) =
1
3

.

2w(z)( f (z)− z)2 − z( f (z)− z) + 2z2(1 − z) = 0,
2( f (z)− z)2 − 3z( f (z)− z) + 6z2(1 − z) ≈ 0.

(13)

As z ≈ 1, f (z)− z ≈ 0, w(z) ≈ 1
3 , these approximate equalities imply:

f (z)− z ≈ 1
4

(
3z −

(
9z2 − 48z2(1 − z)

)1/2
)
≈

1
4

(
3 − (9 − 48(1 − z))1/2

)
.

(14)

Thus, the assertion stated at point (vi) is proved. To prove (vii), we write (10), where
first z is replaced by x ∈ (1, 1 + ε). For such x, we have: 0 < x − f (x) → 0 as x ↘ 1,

3x −
(

9x2 − 48x2(1 − x)
)1/2

= x
(

3 − (9 − 48(1 − x))1/2
)
< 0.

The equation
2y2 − 3xy + 6x2(1 − x) = 0,
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where y(x) stands for f (x)− x < 0, has two roots y1(x), y2(x) with the product

y1(x)· y2(x) = 3x2(1 − x) < 0.

On the other hand, Equations (8) and (4) yield:

1 =
1
x
− 1

2
· f (x)− x

x2 +
( f (x)− x)2

x3

(
1
3
− 1

4
· f (x)− x

x

)
+ 0
(
( f (x)− x)2

)
. (15)

As − 1
4 ·

f (x)−x
x > 0, for sufficiently small ε > 0, x ∈ (1, 1 + ε] implies:

1 ≥ 1
x
− 1

2
· f (x)− x

x2 +
1
3
· ( f (x)− x)2

x3 . (16)

Multiplying by 6x3 > 0, the following inequality follows:

2( f (x)− x)2 − 3x( f (x)− x) + 6x2(1 − x) ≤ 0.

This implies:

y1(x) =
1
4
[3x −

(
9x2 − 48x2(1 − x)

)1/2
] ≤ f (x)− x ≤ 0.

We next prove the second assertion form point (vii). For x ∈ [1 − ε, 1), we have
f (x)− x > 0. Since x < 1, according to Equation (4), n = 1, it follows that:

1 ≤ 1
x
− 1

2
· f (x)− x

x2 +
1
3
· ( f (x)− x)2

x3 . (17)

In Equations (12) and (13), equality occurs if and only if x = 1. Multiplying by 6x3 > 0,
from (12), after short calculation, with the reversed sense of the inequality (12), we infer that:

2( f (x)− x)2 − 3x( f (x)− x) + 6x2(1 − x) ≥ 0,
0 ≤ f (x)− x ≤ 1

4 [3x −
(
9x2 − 48x2(1 − x)

)1/2
], x ∈ [1 − ε, 1].

(18)

To prove the last inequalities from the assertion (vii), we estimate the right-hand side
member of (18). Namely, as x ∈ (1 − ε, 1] and 0 < ε ≤ 3/16, we have 0 ≤ 1 − x < ε,

9 − 48(1 − x) > 9 − 48ε = 3(3 − 16ε) ≥ 0,
0 ≤ f (x)− x ≤ 1

4 x[3 − (9 − 48(1 − x))1/2] =
12x(1−x)

3+(9−48(1−x))1/2 ≤ 12(1−x)
3 < 4ε.

This ends the proof. □

Next, we apply the results proved in Theorem 1 to the spaces of bounded linear
operators acting on a real or complex Hilbert space H. Most of the results and notations
are those from [3,5,7]. Namely, A will be the real vector space of all (bounded) self-adjoint
operators A : H −→ H, endowed with its natural order relation: A, B ∈ A, A ≤ B if and
only if (Ah, h) ≤ (Bh, h) for all h ∈ H, and with the operatorial norm: ∥A∥ := sup

∥h∥≤1
∥Ah∥ =

sup
∥h∥≤1

|(Ah; h)|. (We have denoted by ( ; ) the inner (scalar) product on H × H). Then, A is a

real ordered Banach space—that is, A is topologically complete (see below)—and the norm
is monotone, increasing on the positive cone A+ of A :

A, B ∈ A, 0 ≤ A ≤ B =⇒ ∥A∥ ≤ ∥B∥.
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With this linear order relation, A is not a lattice. The convex cone of all positive
self-adjoint operators will be denoted by A+. It is easy to see that A is a closed subspace
of the Banach space B(H) of all bounded linear operators from H into H. If T ∈ B(H)
and σ(T) are the spectrum of T, for a holomorphic function f = f (z) defined on an open
neighborhood of σ(T), by f (T) we mean the operator valued function of operator variable
T, corresponding to f (z), having the same coefficients of the Taylor expansion. If the
expansion of f (z) is around a point z0 ∈ C, the expansion of f (T) will be around z0 I, where
I is the identity operator on H. If A ∈ A, then f (A) makes sense for any f ∈ C(σ(A)).
Moreover, if f ∈ C(σ(A)) takes non-negative (real) values at all points in σ(A), then
f (A) ∈ A+. In Theorems 1 and 2 (see below), we consider only holomorphic functions f
which verify x ∈ R =⇒ f (x) ∈ R. We will take

z0 = α ∈ R,

and, consequently, all the coefficients of the Taylor expansions centered at α will be real
numbers. If the operator T is self-adjoint, it will be denoted by A. In this case, as is well-
known, σ(A) ⊆ R, (Ah; h) ∈ R for all h ∈ H. Moreover, A ∈ A+ (i.e., (Ah; h) ≥ 0 ∀h ∈ H),
if and only if σ(A) ⊆ [0,+∞).

Theorem 2. Let f be the function from Theorem 1. For sufficiently small ε ∈ (0, 1), there exists a
nontrivial decreasing solution f defined on the order interval ((1 − ε)I, (1 + ε)I), with values in
A+, for the equation:

Ae−A = f (A)e− f (A), A ∈ ((1 − ε)I, (1 + ε)I). (19)

This solution f satisfies the following conditions:

(a) f (I) = I.
(b) f is differentiable in a neighborhood D ⊆ ((1 − ε)I, (1 + ε)I) of I, with ε > 0 as above,

and f ′(I) = −I.
(c) f ( f (A)) = A for all A ∈ D.
(d) For small ε > 0 and σ(A) ⊆ ((1 − ε), (1 + ε)), the function f satisfies the following

inequalities:
f (A) ≥ 2I − A ≥ 3A − 2A2,

σ(A) ⊆ [1, (1 + ε)) =⇒ 1
4

A[3I − (9I − 48(I − A))1/2] ≤ f (A)− A ≤ 0.

If σ(A) ⊆ ((1 − ε), 1], 0 < ε ≤ 3/16, then the following inequalities hold:

0 ≤ f (A)− A ≤ 1
4

A[3I − (9I − 48(I − A))1/2] ≤ 4εI, ∥ f (A)− A∥ ≤ 4ε.

If 0 < δ < ε < 1, then f (A) and f (A)− A are invertible and∥∥∥( f (A))−1
∥∥∥ ≤ 1,

∥∥∥( f (A)− A)−1
∥∥∥ ≤ 1/δ.

(e) If T ∈ B(H) is a normal operator with the spectrum σ(T) contained in a disc of small radius
equal to ε > 0, centered at 1, then:

ε −→ 0 =⇒
∥∥∥∥ f (T)− T − 1

4

(
3T −

(
9T2 − 48T2(I − T)

)1/2
)∥∥∥∥ −→ 0.

Proof. The general idea of the proof is to apply continuous functional calculus for self-
adjoint operators [3,5,7] and holomorphic functional calculus for normal operators [3],
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respectively, to the holomorphic function f = f (z) defined implicitly by Equation (1) in an
open disc D(1, ε) of sufficiently small radius ε ∈ (0, 1).

0 < δ < ε, 1 − δ > 1 − ε, σ(A) ⊂ (1 − ε, 1 − δ) =⇒
A ≤ (1 − δ)I, −A ≥ −(1 − δ)I.

(20)

f (x) ≥ f (1 − δ) ≥ f (1) = 1 ∀x ∈ σ(A) =⇒
inf( f (σ(A))) = in f σ( f (A)) ≥ 1 =⇒ f (A) ≥ I.

(21)

Hence, f (A) ≥ I, 0 /∈ σ( f (A)), so that f (A) is invertible and
∥∥∥( f (A))−1

∥∥∥ ≤ ∥I∥ = 1.
Moreover, (20) and (21) lead to

f (A)− A ≥ I − (1 − δ)I = δI.

Thus, σ( f (A)− A) ⊆ [δ,+∞)
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The desired conclusions are proved. □

In what follows, we denote by Sym(n,R) the ordered Banach space of all n × n, n ≥ 2,
symmetric matrices with real entries. The order relation on Sym(n,R) is defined like that
on A(H), when H = Rn is the usual n− dimensional Hilbert space over the real field. The
positive cone of Sym(n,R) is denoted by Sym+(n,R). For results on this ordered Banach
space, see [4].

Corollary 1. Let f : D(δ) ⊂ Sym+(n,R) −→ Sym+(n,R) be the unique monotone decreasing
solution of the matrix Equation (19), where D(δ) :=

{
A ∈ Sym+(n,R); ∥I − A∥ < δ

}
, and δ > 0

is sufficiently small. Then, all of the assertions of Theorem 2 hold for symmetric positive matri-
ces A which satisfy the properties of the points (a)–(e) from Theorem 2.

3.2. On the Moment Problem

In what follows, we apply a polynomial approximation result and properties of
Banach lattices to solve a Markov-type moment problem on the spectrum σ(A) of a self-
adjoint positive A acting on a real or complex Hilbert space H. Through Y(A), we denote
the commutative algebra over the real field of self-adjoint operators, constructed in [5],
pp. 303–305. This algebra is a good example of subspace of the ordered Banach space
A = A(H), endowed with the natural order relation reviewed above. Unlike A, Y(A) is a
(vector) lattice, which is also order complete. We briefly recall the definition of this Banach
lattice and a few of its main properties. Firstly, one denotes:

Z(A) := {B ∈ A(H); BA = AB}.

Then, one defines:

Y(A) := {V ∈ Z(A); BV = VB, ∀B ∈ Z(A)}.

By this definition, clearly any two operators from Y(A) commute. One proves that
for any operator V ∈ Y(A), the self-adjoint (Hermitian) operator |V| :=

√
V2 (the positive

square root of the positive operator V2) has the following properties in the lattice Y(A):

V+ :=
1
2
(|V|+ V) = sup{V, 0}, V− :=

1
2
(|V| − V) = sup{−V, 0},
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|V| = sup{V,−V} = V ∨ (−V) = V+ + V−, V = V+ − V−, V+V− = 0.

Through Ψ = ΨA : C(σ(A)) −→ Y(A), one denotes the isometry defined as Ψ( f ) := f (A),
where f (A) is obtained via functional calculus for continuous functions, attached to the
self-adjoint operator A. As usual, (C(σ(A)))+ is the positive cone of the space C(σ(A)).

Theorem 3. Let A be a positive self-adjoint operator, B ∈ (Y(A))+. We denote:

pj(t) := tj, t ∈ [0,+∞), j ∈ N, n ∈ N, n ≥ 2.

Let
(
Ej
)

j∈N be a sequence in Y(A),
∼
P : C(σ(A)) −→ Y(A),

∼
P(g) := B(Ψ(g))n = B(g(A))n, g ∈ C(σ(A)). (22)

The following statements are equivalent:

(i) There exists a unique positive linear operator T : C(σ(A)) −→ Y(A) satisfying the moment
conditions:

T
(

pj
)
= Ej, j ∈ N, (23)

with
T(φ) ≤

∼
P(φ) for allφ ∈ C(σ(A))+, ∥T∥ ≤ ∥B∥. (24)

(ii) For any finite subset J0 ⊂ N, any set of scalars
{

αj
}

j∈J0
, and g ∈ (C(σ(A)))+, the

following implication holds. If
∑
j∈J0

αjtj ≤ g(t)

for all t ∈ σ(A), then
∑
j∈J0

αjEj ≤ B(g(A))n.

Proof. The idea of the proof is to apply Theorem 2.30 from [21]. For detailed proof,
see the corresponding reference citation. Here, E stands for C(σ(A)), F := Y(A), M :=

Span
{

pj; j ∈ N
}

= R[t], and P is the restriction of
∼
P defined by (22) to (C(σ(A)))+. If

J0 ⊂ N is a finite subset and
{

αj
}

j∈J0
is an arbitrary finite set of real coefficients, one defines

T1 : R[t] −→ Y(A), by:

T1

(
∑
j∈J0

αj pj

)
:= ∑

j∈J0

αjEj. (25)

The conclusion follows if we prove the convexity of P on (C(σ(A)))+. To do this,
we first prove that pn(W) := Wn, W ∈ (Y(A))+ is convex on (Y(A))+. Assuming
this is achieved, the difficult implication (ii) implies that (i) follows, as g ∈ (C(σ(A)))+
leads to Ψ(g) ∈ (Y(A))+. Then, g −→ (Ψ(g)) n is convex on (C(σ(A)))+ as a compo-
sition of the convex monotone increasing function pn with linear mapping Ψ, whose
restriction to (C(σ(A)))+ is affine. Finally, multiplication with the positive operator
B ∈ (Y(A))+ preserves inequalities as the product of two self-adjoint positive commut-
ing operators is self-adjoint and positive. If V ∈ int(Y(A))+, then the order interval
[V − εI, V + εI] is contained in (Y(A))+ for some ε > 0. It results: V ≥ εI, which means:
infσ(V) = inf

∥h∥=1
(Vh; h) ≥ ε· inf

∥h∥=1
(h; h) = ε. Thus, 0 /∈ σ(V), so V is invertible. By the same

reasoning, W is invertible. The inequality that should be proved, namely,

((1 − ω)V + ωW)n = (V + ω(W − V))
n ≤ (1 − ω)Vn + ωWn, ω ∈ [0, 1],
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is equivalent to (
(1 − ω)I + ωWV−1

)n
≤ (1 − ω)I + ω

(
WV−1

)n
. (26)

As WV−1 ∈ (Y(A))+, the inequality is true due to the functional calculus for the oper-
ator WV−1 and the continuous real function pn(t) = tn, on the spectrum of σ

(
WV−1) ⊂

(0,+∞). Namely, one applies the elementary inequality ((1 − ω)1 + ωt)n ≤ (1 − ω)1 +
ωtn, ω ∈ [0, 1], which works for all t ∈ [0,+∞), for t ∈ σ

(
WV−1). If id(t) := t, this leads to:

((1 − ω)1 + ωid)n ≤ (1 − ω)1 + ω(id)n in C
(
σ
(
WV−1)), and the conclusion follows via

functional calculus for continuous functions. Assume now that at least one of the operators
V, W ∈ (Y(A))+, say V, is not in the interior of this cone. As the identity operator I is
clearly in the interior of the same convex cone, consider the line segment of ends I, V. As it
is well-known [7], all of the points on these line segments which differ from the end V, are
in the interior of the cone (Y(A))+. Now, we choose operators Vl on the line segment

[I, V) := {I + t(V − I); t ∈ [0, 1)}, Vl := I + tl(V − I), tl ↗ 1.

Then, (Vl)l converges to V in (Y(A))+ and Vl ∈ int(Y(A))+ for all l. From what has
already been proved above, Vl is invertible and (26) holds where V−1 stands for V−1

l for
each l. Hence, we conclude that:

((1 − ω)Vl + ωW)n ≤ (1 − ω)Vn
l + ωWn, ω ∈ [0, 1], l ∈ N.

Passing to the limit as l −→ ∞, we find that ((1 − ω)V + ωW)n ≤ (1 − ω)Vn +
ωWn, ω ∈ [0, 1]. As Y(A) is a Banach lattice, its positive cone (Y(A))+ is topologically
closed. Hence, passing to the limit in inequalities is allowed. Now all of the conditions from
the hypothesis of Theorem 2.30 point (b) [21] are satisfied. According to the implication
(b) implying (a) of the invoked theorem, the conclusion (a) of that theorem holds. To
prove the assertions claimed at point (i) of the present theorem, the interpolation moment
conditions (23) follow as, according to (25), T

(
pj
)
= T1

(
pj
)

:= Ej, j ∈ N. To prove (24), for
any g ∈ C(σ(A)), with ∥g∥C(σ(A)) ≤ 1, also using the positivity of the linear operator T on
the positive cone, the following conclusion holds: ∥g∥C(σ(A)) ≤ 1 is equivalent to |g| ≤ 1
on σ(A), which implies:

|T(g)| ≤ T(|g|) ≤ T(1) ≤ P(1) = B(Ψ(1))n = BIn = B.

These further yields:
∥T(g)∥ = ∥|T(g)|∥ ≤ ∥B∥.

Thus, ∥T∥ ≤ ∥B∥. The uniqueness of any bounded linear operator satisfying the mo-
ment conditions (23) follows from the Weierstrass polynomial approximation theorem for
continuous real functions on compact subsets of Rm. To prove that the converse implication
(i) implies (ii), assume that (i) holds. Then, from ∑j∈J0

αj pj ≤ g ∈ (C(σ(A)))+ on σ(A), the
positivity of the linear operator T, Equations (23) and (24) yield:

∑
j∈J0

αjEj = T

(
∑
j∈J0

αj pj

)
≤ T(g) ≤ P(g) = B(Ψ(g))n = B(g(A))n.

This ends the proof. □

Corollary 2. If the sequence
(
Ej
)

j∈N satisfies the conditions (ii) of Theorem 3, then:

0 ≤ Ej ≤ BAnj,
∥∥Ej
∥∥ ≤ ∥B∥·∥A∥nj.
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Proof. Under the hypothesis of the present corollary, according to Theorem 3, the assertion
(i) of Theorem 3 holds as well. Consequently, we have:

Ej = T
(

pj
)
≤

∼
P
(

pj
)
= B·

(
Ψ
(

pj
))n

= B·Anj, j ∈ N.

On the other hand, as A is positive, its spectrum σ(A) is contained in {0,+∞), so that:

pj(t) = tj ≥ 0 for all t ∈ σ(A), and all j ∈ N.

From the positivity of the operator T, it results that Ej = T
(

pj
)
≥ 0 in Y(A). Hence,

the desired conclusion follows. □

Corollary 3. With the notations from Theorem 3, for each and g ∈ (C(σ(A)))+, we have:

∑
i,j∈J1

αi(m)αj(m)Ei,m+j,m + ∑
k,l∈J2

βk(m)βl(m)Ek,m+l,m+1 ↘ T(g), m −→ ∞,

for some finite subsets J1, J2 of N and real scalars αi(m), βk(m).

Proof. We apply Lemma 2 of [20] of the uniform approximation of g on σ(A) through
the restrictions to σ(A) of polynomials (pm)m, which are non-negative on [0,+∞). Any
such polynomial is a sum of squares and the polynomial p1(t) = t multiplied by an-
other sum of squares of polynomials from R[t] (see [6]). In other words, pm is a sum
of special polynomials ∑i,j∈J1

αi(m)αj(m)pi,m+jm with a sum of polynomials of the form
∑k,l∈J2

βk(m)βl(m)pk,m+l,m+1, pm ↘ g uniformly on σ(A). Using the linearity, positivity
and continuity of the solution T, and the moment conditions (23) as well, we infer that
T(pm) ↘ T(g), m −→ ∞ in Y(A). This ends the proof. □

The next result can be quite easily deduced from the proof of Theorem 3. In a way,
it is a scalar variant of the Theorem 2.30 from [21].invoked in the proof of Theorem 3
proved above. However, unlike the operator valued or vector valued problems, in the
present scalar valued case, the positive linear solution of the moment problem will be
represented by a means of a non-negative function f ∈ L∞

ν

(
[0,+∞)d

)
. For d ≥ 2, the

following notations are used:

j := (j1, . . . , jd) ∈ Nd, t := (t1, . . . , td) ∈ [0,+∞)d.

Theorem 4. Let d ∈ N, d ≥ 1,
(
mj
)

j∈Nd be a sequence of real numbers, p > 1 a real number,

b > 0 a real number and ν a probability moment determinate measure on [0,+∞)d, with finite
moments of all orders. The following statements are equivalent:

(a) There exists a non-negative real valued function f ∈ L∞
ν

(
[0,+∞)d

)
, such that:

∫
[0,+∞)d

tj f (t)dν = mj, j ∈ Nd,

∫
[0,+∞)d

φ(t) f (t)dν ≤ b·
(∫

[0,+∞)d
φ(t)dν

)p
, ∀φ ∈

(
L1

ν

(
[0,+∞)d

))
+

, ∥ f ∥L∞
ν ([0,+∞)d)

≤ b.

(b) For any finite subset J0 ⊂ Nd, any set of real scalars
{

αj
}

j∈J0
, and g ∈

(
L1

ν

(
[0,+∞)d

))
+

,

the following implication holds. If

∑
j∈J0

αjtj ≤ g(t)
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for all t ∈ [0,+∞)d, then

∑
j∈J0

αjmj ≤ b·
(∫

[0,+∞)d
g(t)dt

)p
.

Proof. The proof that the main implication (b) implies (a) follows from Theorem 2.30
of [21], in the same way as Theorem 3 of the present paper did. We apply the former
theorem to E := C(S), and

P :
(

L1
ν

(
[0,+∞)d

))
+
−→ R+, P(φ) := b·

(∫
[0,+∞)d

φ(t)dt
)p

, φ ∈
(

L1
ν

(
[0,+∞)d

))
+

, M := R[t],

T1 : R[t] −→ R, T1

(
∑
j∈J0

αj pj

)
:= ∑

j∈J0

αjmj, pj(t) = tj, j ∈ Nd.

The functional P is convex, as the composition of strictly convex function t 7−→ tp, p > 1,
on [0,+∞)d, with the linear functional φ 7−→

∫
[0,+∞)d φ(t)dt, then multiplying with b > 0.

The notations are almost the same as those from Theorem 3, proved above. Firstly, we
prove that (b) implies (a). As in the proof of Theorem 3, the conditions for the theorem
invoked in the present Theorem 3 are satisfied. Consequently, there exists a linear positive
extension T of T1 to the entire Banach lattice L1

ν

(
[0,+∞)d

)
, which verifies:

T(φ) ≤ P(φ) = b·
(∫

[0,+∞)d
φ(t)dν

)p
, ∀φ ∈

(
L1

ν

(
[0,+∞)d

))
+

.

∥φ∥L1
ν([0,+∞)d)

≤ 1 implies |T(φ)| ≤ T(|φ|)≤ b·
(∫

[0,+∞)d |φ|dν
)p

= b·
(
∥φ∥L1

ν([0,+∞)d)

)p

≤ b. Hence, ∥T∥ ≤ b. The positive linear functional T is also continuous [7], so that it is
represented [2] by a non-negative element

f ∈ L∞
ν

(
[0,+∞)d

)
: T(g) =

∫
[0,+∞)d

g f dν, g ∈ L1
ν

(
[0,+∞)d

)
.

The conclusion (a) follows, with ∥ f ∥∞ = ∥T∥ ≤ b. The uniqueness of the solution f is

a consequence of the density of R[t] in L1
ν

(
[0,+∞)d

)
. The implication that (a) implies (b) is

almost obvious. Now, we use the hypothesis that ν is a probability measure. Due to this
assumption, the constant function 1, as well as any other φ ∈ L∞

ν

(
[0,+∞)d

)
, is an element

of the Banach lattice L1
ν

(
[0,+∞)d

)
, and we can write ∥φ∥L1

ν([0,+∞)d)
≤ ∥φ∥L∞

ν ([0,+∞)d)
,

1 = ∥1∥L1
ν([0,+∞)d)

= ∥1∥L∞
ν ([0,+∞)d)

. This ends the proof. □

Corollary 4. If the sequence of moments
(
mj
)

j∈Nd satisfies the requirements stated at point (b) of
Theorem 4, then it also satisfies the following properties:

0 ≤ mj ≤ b·
(∫

[0,+∞)d
tjdν

)p
, j ∈ Nd, 0 ≤ m0 ≤ b.

Example 1. According to [12], each of the following measures ν is a Borel regular moment
determinate probability measure on [0,+∞) :

e−tdt; te−t; αe−αt, α > 0; te−t2/2;
2√
π

e−t2
.

The application of the polynomial approximation results recently recalled in [21]
leads to the density of non-negative polynomials in

(
L1

ν([0,+∞ )
)
+. Consequently, R[t]
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is dense in L1
ν([0,+∞ ). For d ≥ 2, if νl is a probability moment determinate measure on

[0,+∞), l = 1, .., d, then
ν := ν1 × · · · × νd

is a probability measure on [0,+∞)d, and the non-negative polynomials on [0,+∞)d

are dense in the convex cone
(

L1
ν

(
[0,+∞)d

))
+

. Consequently, R[t1, . . . , td] is dense in

L1
ν

(
[0,+∞)d

)
.

4. Discussion

We have proved two theorems studying the properties of the unique non-trivial
solution of a functional equation and of the corresponding operatorial equation. The
solution cannot be expressed in terms of elementary functions, although the equation is
stated using elementary analytic functions. In the second part, two aspects of a moment-
type problem are solved. The existence and uniqueness of the solution is characterized in
terms of the given moments. However, the explicit form of the solution is not known. This
proves the relationship between the two parts of this work. In Corollary 3, an approximation
of the solution T in terms of the given moments Ej is sketched. Known results are only
invoked and applied, not repeated. A possible subject for future work could be that of
studying moment problems where the codomain of the solution is a L∞

ν (S) space, S being a
special closed subset of Rd, d ∈ N, d ≥ 1. Here, ν might be a moment determinate positive
Borel regular measure on S.
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