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Abstract: It is already known that a simple nonlocal de Sitter gravity model, which we denote as√
dS gravity, contains an exact vacuum cosmological solution that mimics dark energy and dark

matter and is in very good agreement with the standard model of cosmology. This success of
√

dS
gravity motivated us to investigate how it works at a lower-than-cosmic scale—galactic and the solar
system. This paper contains our investigation of the corresponding Schwarzschild–de Sitter metric
of the

√
dS gravity model. To obtain an exact solution, it is necessary to solve the corresponding

nonlinear differential equation, which is a very complicated and difficult problem. What we obtained
is a solution to a linearized equation, which is related to space metrics far from the massive body,
where the gravitational field is weak. The obtained approximate solution is of particular interest
for examining the possible role of nonlocal de Sitter gravity

√
dS in describing the effects in galactic

dynamics that are usually attributed to dark matter. This solution was tested on the Milky Way and
the spiral galaxy M33 and is in good agreement with observational measurements.

Keywords: nonlocal de Sitter gravity; Schwarzschild–de Sitter metric; rotation curves of spiral
galaxies; dark matter and dark energy

1. Introduction

The general theory of relativity (GR) [1] is considered as one of the most successful
and beautiful physical theories. It is worth mentioning the following main predictions and
successful confirmations: deflection of light near the Sun, black holes, gravitational light
redshift, lensing, and gravitational waves; see, e.g., [2].

In the standard model of cosmology (SMC) [3], also known as the ΛCDM model, GR
is adopted as the theory of gravitation at all space–time scales, from the solar system to the
galactic and cosmic ones. To describe galactic rotational curves and accelerated expansion of
the universe by GR, the existence of dark matter (DM) and dark energy (DE) was supposed,
respectively. According to the current SMC, the universe matter/energy budget consists
approximately of 68% of dark energy, 27% of dark matter, and only 5% of standard visible
matter. However, despite many experimental and theoretical investigations (as a review,
see, e.g., [4]), the existence of DM and DE has not been proven, and thus they are still
hypothetical constituents of the dark side of the universe.

It should be also mentioned that GR suffers from singularities—the black hole and
Big Bang singularity [5]. As we know, if a theory contains a singularity, it means it
is inapplicable when approaching the singularity and that a more general appropriate
theory should be invented. Also, it should be mentioned that GR can not be consistently
quantized [6]. As we know, other physical theories have their own domain of validity,
usually limited by the space–time scale and some parameters, or by the complexity of the
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system. In this sense, GR should not be an exception and serve as a theory of gravity from
the Planck scale to the universe as a whole [7].

Based on all the aforementioned shortcomings, it can be concluded that general
relativity is not a final theory of gravitation and that there is a sense to look for a more
general theory than GR [8]. In principle, there is a huge number of possibilities to extend
the Einstein–Hilbert (EH) action, and for now, there is no rule on how to choose the right
path [9]. Hence, in practice, there are many phenomenological approaches, and the most
elaborated is f (R) theory [10], where in the EH action, the scalar curvature R is replaced by
some function f (R). Among other interesting approaches is the nonlocal one [11]. In the
nonlocal gravity models, besides R in the EH action, there is a nonlocal term with some
invariants usually composed of R and 2, where 2 is the d’Alembert–Beltrami operator.

Depending on how the 2 is built into the nonlocal term, there are mainly two typical
examples of nonlocal gravity models: (i) the nonpolynomial analytic expansion of 2, see,
e.g., [12–18], i.e., F (2) = ∑∞

n=1 fn 2n (see various examples [19–23]), and (ii) a polynomial
of 2−1, see, e.g., [11,24–27]. The motivation for using a local operator of the form (i) is
found in string theory—ordinary and p-adic. It is obvious that in case (i), the dynamics
depend not only on the first and second space–time derivatives but also on all the higher
ones. The nonlocal operator 2−1 in (ii) has its origin in (one-loop) quantum corrections
in some classical field Lagrangians and is used in investigations of the late-time cosmic
acceleration without dark energy [11].

In several papers, see [17,27] and references therein, we investigated the following
nonlocal de Sitter gravity model (

√
dS gravity):

S =
1

16πG

∫
d4x

√
−g

(
R − 2Λ +

√
R − 2Λ F (2)

√
R − 2Λ

)
, (1)

where Λ is the cosmological constant, and the nonlocal operator F (2) has the following
general form:

F (2) =
+∞

∑
n=1

(
fn2

n + f−n2
−n). (2)

This nonlocal model is unique compared to other nonlocal models, and its properties
will be described in the next section.

It is worth mentioning that (1) applied to the homogeneous and isotropic universe
gives several exact cosmological solutions [17,27]. One of them is a(t) = At

2
3 e

Λ
14 t2

, which
mimics an interplay of dark matter (t

2
3 ) and dark energy (e

Λ
14 t2

) in very good agreement
with the standard model of cosmology. There are also nonsingular bounce solutions in the
flat, closed, and open universe as well as singular and cyclic solutions.

The fact that the model works well on a cosmological scale was a motivation to test it
on galactic and planetary systems. To this end, it is necessary to obtain the corresponding
Schwarzschild–de Sitter metric. In the paper [28], we presented initial research with
an approximate solution. In this paper, we provide a much wider and more detailed
investigation with some new solutions. It also contains preliminary tests on our galaxy
the Milky Way and the spiral galaxy M33 with very satisfactory agreement of the obtained
theoretical results and observational measurements.

One important aspect of the validity of any model of nonlocal gravity theory is the
absence of ghosts. The existence of ghosts in models of type (7) is discussed in [21]. In the
concluding remarks of paper [17], it was stated that there are no ghosts in the excitations
over the de Sitter background in model (1). However, for other backgrounds, special
research should be conducted.

This paper is organized as follows. In Section 2, nonlocal de Sitter gravity
√

dS is
introduced and the equations of motion for the gravitational field are derived. Various
aspects of the Schwarzschild–de Sitter metric are presented in Section 3, which in particular
contains the solutions and their comparison with observations of the rotation curves of
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spiral galaxies. Some discussion and presentation of the main results are contained in the
last section.

2.
√

dS Nonlocal Gravity

Our nonlocal gravity model is given by its action (1). It can be rewritten in the
compact form

S =
1

16πG

∫
d4x

√
−g

√
R − 2Λ F(2)

√
R − 2Λ, (3)

where F(2) is

F(2) = 1 +F (2) = 1 +
+∞

∑
n=1

(
fn2

n + f−n2
−n) (4)

with the general form of the d’Alembert–Beltrami operator

2 = ∇µ∇µ =
1√−g

∂µ(
√
−ggµν∂ν). (5)

If F(2) = 1, i.e., F (2) = 0, then (3) becomes local de Sitter gravity with action

S0 =
1

16πG

∫
d4x

√
−g

√
R − 2Λ

√
R − 2Λ =

1
16πG

∫
d4x

√
−g (R − 2Λ). (6)

Note that action (3) can be easily obtained from (6) by embedding operator (4) inside
the product

√
R − 2Λ

√
R − 2Λ. It should be noted that the degree of R − 2Λ remains

unchanged when we go from local (6) to nonlocal action (3), as well as that the F(2)
operator is dimensionless. It is also worth noting that the above local and nonlocal action
has the same discrete symmetry, i.e., remains unchanged under transformation

√
R − 2Λ →

−
√

R − 2Λ.
In this paper, we will not consider the extension of action (1) with the matter sec-

tor, since we are looking for the Schwarzschild–de Sitter metric outside the spherically
symmetric massive body.

Equations of Motion

To obtain equations of motion for
√

dS gravity given by action (1), it is useful to start
from the more general nonlocal de Sitter model

S =
1

16πG

∫
d4x

√
−g

(
R − 2Λ + P(R) F (2) Q(R)

)
, (7)

where P(R) and Q(R) are some differentiable functions of the Ricci scalar R. The variation
in (7) with respect to gµν yields the corresponding equations of motion (EoM) derived
in [29], see also [27].

According to [29], the EoM for the nonlocal de Sitter gravity model (7) are as follows:

Gµν + Λgµν −
1
2

gµνP(R)F (2)Q(R) + RµνW − KµνW +
1
2

Ωµν = 0, (8)

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor, Rµν is the Ricci tensor, and

W = P′(R) F (2) Q(R) + Q′(R) F (2)P(R), Kµν = ∇µ∇ν − gµν2, (9)

Ωµν =
+∞

∑
n=1

fn

n−1

∑
ℓ=0

Sµν(2
ℓP,2n−1−ℓQ)−

+∞

∑
n=1

f−n

n−1

∑
ℓ=0

Sµν(2
−(ℓ+1)P,2−(n−ℓ)Q), (10)
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where

Sµν(A, B) = gµν

(
∇α A ∇αB + A2B

)
− 2∇µ A ∇νB. (11)

P′(R) and Q′(R) denote the derivative of P(R) and Q(R) with respect to R, respectively.
Comparing the above equations of motion with respect to their local Einstein counter-

part Gµν + Λgµν = 0, they look very complex, and finding some exact solutions may be a
hard problem.

Since we are interested in the EoM of
√

dS, we have to take Q(R) = P(R) =
√

R − 2Λ.
To this end, let us first consider the case Q(R) = P(R). Consequently, Equations (8)–(11)
reduce to

Gµν + Λgµν −
gµν

2
P(R)F (2)P(R) + RµνW − KµνW +

1
2

Ωµν = 0, (12)

W = 2P′(R) F (2) P(R), Kµν = ∇µ∇ν − gµν2, (13)

Ωµν =
+∞

∑
n=1

fn

n−1

∑
ℓ=0

Sµν(2
ℓP,2n−1−ℓP)−

+∞

∑
n=1

f−n

n−1

∑
ℓ=0

Sµν(2
−(ℓ+1)P,2−(n−ℓ)P). (14)

According to our experience, the above equations of motion (12)–(14) can be sig-
nificantly simplified and easily solved if there exists a metric tensor gµν such that for
the corresponding d’Alembert–Beltrami operator 2, the following equations (eigenvalue
problem) are satisfied:

2P(R) = q P(R), 2−1P(R) = q−1P(R), F (2)P(R) = F (q) P(R), q ̸= 0, (15)

where q is a parameter of the same dimensionality as 2. Applying (15) to Equations (12)–(14),
we have

W = 2F (q)P′(R)P(R), F (q) =
+∞

∑
n=1

(
fn qn + f−n q−n), (16)

Ωµν = F ′(q)Sµν

(
P, P

)
, F ′(q) =

+∞

∑
n=1

n fn qn−1 −
+∞

∑
n=1

n f−n q−n−1, (17)

Gµν + Λgµν +F (q)
(

2(Rµν − Kµν)PP′ −
gµν

2
P2(R)

)
+

1
2
F ′(q)Sµν(P, P) = 0. (18)

Now, let us take P(R) =
√

R − 2Λ. Then, P′(R)P(R) = 1
2 and P2(R) = R − 2Λ.

Finally, the EoM (18) become

(
Gµν + Λgµν

)
(1 +F (q)) +

1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ) = 0. (19)

If the nonlocal operator satisfies

F (q) = −1, F ′(q) = 0, (20)

then the equations of motion (19) are also satisfied.
According to the above consideration, the main problem is to solve equation2

√
R − 2Λ =

q
√

R − 2Λ for an appropriate metric tensor gµν. This may be a hard problem, and it is the case
with the corresponding Schwarzschild–de Sitter metric in the nonlocal

√
dS gravity. In the

sequel, we will investigate the corresponding Schwarzschild–de Sitter metric around a static
spherically symmetric massive body.

3. The Schwarzschild–de Sitter Metric

We are going to explore the Schwarzschild–de Sitter space–time metric in the case of√
dS gravity given by its action (1).
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3.1. General Consideration

First, we want to consider some general aspects of the corresponding Schwarzschild–
de Sitter space–time metric. To this end, we start from the usual expression for the
Schwarzschild metric in the pseudo-Rimannian manifold:

ds2 = −A(r)dt2 + B(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (c = 1). (21)

Nonzero elements of metric tensor gµν(r) are

g00(r) = −A(r), g11(r) = B(r), g22(r) = r2, g33(r) = r2 sin2 θ. (22)

Nonzero components of the corresponding Christoffel symbol Γα
µν = 1

2 gαβ
(
∂µgνβ +

∂νgνβ − ∂βgµν

)
are

Γ0
10 = Γ0

01 =
1
2

A′

A
, Γ1

00 =
1
2

A′

B
, Γ1

11 =
1
2

B′

B
, Γ1

22 = − r
B

, (23)

Γ1
33 = − r

B
sin2 θ, Γ2

12 = Γ2
21 =

1
r

, Γ2
33 = − sin θ cos θ, (24)

Γ3
13 = Γ3

31 =
1
r

, Γ3
23 = Γ3

32 =
cos θ

sin θ
, (25)

where ′ denotes derivative with respect to radius r. Nonzero components of the Ricci tensor
Rµν = Rα

µαν = ∂αΓα
µν − ∂νΓα

µα + Γα
αρΓρ

µν − Γα
νρΓρ

µα are

R00 =
A′′

2B
− A′B′

4B2 − A′2

4AB
+

A′

rB
, R11 = − A′′

2A
+

A′B′

4AB
+

A′2

4A2 +
B′

rB
, (26)

R22 = − rA′

2AB
+

rB′

2B2 − 1
B
+ 1, R33 =

(
− rA′

2AB
+

rB′

2B2 − 1
B
+ 1
)

sin2 θ, (27)

where, as a result of spherical symmetry, R33 = R22 sin2 θ.
The corresponding Ricci curvature R = gµνRµν is

R =
2
r2 − 1

B(r)

( 2
r2 +

2A′(r)
rA(r)

− A′(r)2

2A(r)2 − 2B′(r)
rB(r)

− A′(r)B′(r)
2A(r)B(r)

+
A′′(r)
A(r)

)
. (28)

The equation that should be solved is

2u(r) =
1

B(r)

(
△u(r) +

1
2

(
A′(r)
A(r)

− B′(r)
B(r)

)
u′(r)

)
= qu(r), u(r) =

√
R − 2Λ , (29)

where

△ =
1
r2

∂

∂r
[
r2 ∂

∂r
]
=

∂2

∂r2 +
2
r

∂

∂r
(30)

is the Laplace operator in spherical coordinate r.
Note that in the eigenvalue problem (29), the parameter q has the same dimension as

operator 2, i.e., the dimension is L−2. Since the cosmological constant Λ also has dimension
L−2, it is useful to write q = ζΛ, where ζ is a dimensionless parameter. Note also that
the nonlocal operator F(2), defined in (2), satisfies conditions F(q) = −1 and F ′(q) = 0,
introduced in (20), if we take it as

F (2) = e
[

a
2

ζΛ
e
(
− 2

ζΛ

)
+ b

ζΛ
2

e
(
− ζΛ

2

)]
, where a + b = −1. (31)
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3.2. Solutions

Recall that in the local de Sitter case (6), with a static spherically symmetric body of
mass M, the Schwarzschild–de Sitter metric (21) is

A(r) = A0(r) = 1 − µ

r
− Λr2

3
, B(r) = B0(r) =

1
A0(r)

=
1

1 − µ
r − Λr2

3

, µ =
2GM

c2 . (32)

It makes sense to suppose that solution the of Equation (29) is of the form

A(r) = A0(r)− α(r), B(r) =
1

A0(r)− β(r)
, (33)

where α(r) and β(r) are some dimensionless functions. When ζ → 0, then the nonlocal
operator (31) tends to zero, and consequently, the nonlocal de Sitter

√
dS gravity model (1)

becomes local. Hence, it must be that A(r) → A0(r) and B(r) → B0(r) when ζ → 0,; that
is, α(r) → 0 and β(r) → 0 as ζ → 0 .

Replacing A = A0 − α(r) and B = 1
A0−β(r) in the scalar curvature R (28) and in the

operator 2 of Equation (29), we obtain

R =
2
r2 (1 − A0 + β) + 2

A0 − β

A0 − α
(A′

0 − α′)
(1

4
A′

0 − α′

A0 − α
− 1

r

)
− 2(A′

0 − β′)
(1

4
A′

0 − α′

A0 − α
+

1
r

)
− A0 − β

A0 − α
(A′′

0 − α′′), (34)

2u = (A0 − β)△u +
1
2

[A0 − β

A0 − α
(A′

0 − α′) + A′
0 − β′

]
u′ = qu, u =

√
R − 2Λ (35)

If we substitute Expressions (34) and (35) in Equation (29), then we will obtain a
differential equation with two unknown functions: α(r

√
ζΛ) and β(r

√
ζΛ). It is obvious

that we must have another equation which is a relation between functions α and β. Recall
that in the local case, B0(r) = 1

A0(r)
holds. Hence, there is a sense to also take B(r) = 1

A(r)
in the nonlocal case, and it yields

R(r) =
1
r2

[
2 − 2A(r)− 4rA′(r)− r2 A′′(r)

]
=

1
r2

∂2

∂r2

[
r2(1 − A(r)

)]
, (36)

2u(r) = A(r) u′′(r) + (A′(r) +
2
r

A(r)) u′(r) =
1
r2

∂

∂r
[
r2 A(r)

∂u
∂r
]
. (37)

In fact, it means that we take

β(r) = α(r). (38)

Employing (38) in (34) and (35), we obtain

R = 4Λ +
2α

r2 +
4α′

r
+ α′′, (39)

2u = (A0 − α)△u + (A′
0 − α′)u′ = qu, u =

√
R − 2Λ. (40)

We are interested in finding function α(r), and the next step should be the substitution of

u =
√

R − 2Λ =

√
2Λ +

2α

r2 +
4α′

r
+ α′′ (41)

into Equation (40). In that case, one obtains an ordinary nonlinear differential equation of
the fourth order. Because of nonlinearity, it is a very difficult task to find the corresponding
exact solution. After many attempts, we did not succeed at finding a reasonable exact
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solution and concluded that a much more sophisticated approach is required. In the sequel
of this paper, we will turn our attention to the corresponding linear differential equation.

It means we will limit ourselves to studying the Schwarzschild–de Sitter metric in
weak gravity field approximation. Practically, it is like considering a gravity field far from
a massive body (see Figure 1) so that the d’Alembertian 2 can be replaced by the Laplacian
△ in Equation (40). In such case, we will take A(r) ≈ 1 in (40); that is,

A(r) = A0(r)− α(r) = 1 − µ

r
− Λr2

3
− α(r) ≈ 1, (42)

which makes sense if the following is satisfied:

µ

r
≪ 1,

Λr2

3
≪ 1, |α(r)| ≪ 1. (43)

Figure 1. We consider the Schwarzschild–de Sitter metric of nonlocal
√

dS gravity at the distances far
from a spherically symmetric massive body.

Applying approximation (42) in (40), we obtain the following simple linear equation
in u(r):

△u = qu, that is
∂2u
∂r2 +

2
r

∂u
∂r

= qu, u =
√

R − 2Λ. (44)

Note that the requested function α(r) is contained in u(r) =
√

R − 2Λ, through (39):
R = 4Λ+ 2α

r2 + 4α′
r + α′′. Hence, the next step is the linearization of

√
R − 2Λ, and we obtain

√
R − 2Λ = i

√
2Λ − R ≈ i

√
2Λ
(

1 − R
4Λ

)
= − i

2
√

2Λ
(R − 4Λ) , if

∣∣∣ R
2Λ

∣∣∣≪ 1. (45)

Since R − 4Λ is an analytic linear function according to the analytic continuation, it is
also valid in the domain |R| > 2Λ and can be applied to the galactic system. It is worth
noting that approximation (45) was successfully applied in [22,23].

Now, replacing
√

R − 2Λ in (44) by − i
2
√

2Λ
(R − 4Λ), we obtain

(R − 4Λ)′′ +
2
r
(R − 4Λ)′ = q(R − 4Λ). (46)

The next step is to replace the scalar curvature R by R = 4Λ + 2α
r2 + 4α′

r + α′′ (see (39))
in (46), and we obtain

α′′′′ +
6
r

α′′′ +
2
r2 α′′ − 4

r3 α′ +
4
r4 α = q(α′′ +

4
r

α′ +
2
r2 α), (47)

which is a linear differential equation of the fourth order.
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Equation (47) has a general solution of the form

α(r) =
C1

r
+

C2

r2 + C3e−
√

qr

(
1
qr

+
2

q
3
2 r2

)
+ C4e

√
qr

(
1
qr

− 2

q
3
2 r2

)
, q = ζΛ. (48)

There are four constants (C1, C2, C3, C4), and we chose them so that the appropriate
particular solution α(r) → 0 when ζ → 0 occurs and that it has some physical meaning.

To exclude the term with e
√

qr in (48), we took C4 = 0, since this exponential function
increases indefinitely for very large values of r.

Case C1 = − δ√
q , C2 = 2δ

q , C3 = −δ
√

q; C4 = 0.

In this case, the solution for α(r) is

α(r) = − δ
√

qr

(
1 + e−

√
qr
)
+

2δ

qr2

(
1 − e−

√
qr
)

, q = ζΛ, (49)

where δ is a dimensionless parameter. Since the integration constants C1, C2, C3 are propor-
tional to δ and C4 = 0, by this way, we reduced the number of parameters from four to
one. Altogether, we have two free parameters (δ and ζ), which should be determined from
measurements.

To see how α(r) behaves when ζ → 0, it is useful to expand the exponential function
e−

√
qr into the Taylor series. We have

α(r) = − δ
√

qr

(
1 + e−

√
qr
)
+

2δ

qr2

(
1 − e−

√
qr
)

(50)

= δ
(
− 2

√
qr

+ 1 −
√

qr
2

+
qr2

6
−

√
qqr3

24
+ · · ·

)
+ δ
( 2
√

qr
− 1 +

√
qr

3
− qr2

12
+ · · ·

)
(51)

= −
δ
√

qr
6

+
δqr2

12
− · · · = − δ

√
ζΛr
6

+
δζΛr2

12
− · · · (52)

As it follows from (52), we conclude that α(r) → 0 when ζ → 0.
According to (49), we obtain

A(r) = 1 − µ

r
− Λr2

3
+

δ
√

qr

(
1 + e−

√
q r
)
− 2δ

qr2

(
1 − e−

√
q r
)

, q = ζΛ, (53)

where µ = 2GM
c2 . When ζ → 0, the obtained Expression (53) for A(r) tends to A0(r)

as necessary.

3.3. The Rotation Curves of Spiral Galaxies

The rotation curves of spiral galaxies have been the subject of intensive research
motivated by the need to determine the amount and distribution of dark matter compared
to visible matter, see, e.g., [30–35] and the references therein.

It is interesting to examine whether this
√

dS gravitational model gives the possibility
of describing the rotation curves of spiral galaxies. To this end, we should start with A(r)
given by (53) and present the corresponding gravitational potential Φ(r), which is

Φ(r) =
c2

2
(
1 − A(r)

)
=

GM
r

+
Λc2r2

6
+

c2

2
α(r)

=
GM

r
+

Λc2r2

6
− δc2

2
√

qr

(
1 + e−

√
q r
)
+

δc2

qr2

(
1 − e−

√
q r
)

. (54)
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Note that here, Φ(r) is the intensity of the gravitational potential.
The corresponding gravitational acceleration for potential (54) is

ag(r) = −∂Φ
∂r

=
GM
r2 − Λc2r

3
+

δc2
√

qr2

( 2
√

qr
− 1

2

)
− δc2

r

(1
2
+

3
2
√

qr
+

2
qr2

)
e−

√
q r. (55)

The velocity of the rotation curve v̄(r) follows from equality v̄2(r)
r = ag(r), and it is

v̄(r) =
√

ag(r) r = c

√
GM
c2r

− Λr2

3
+

δ
√

qr

( 2
√

qr
− 1

2

)
− δ
(1

2
+

3
2
√

qr
+

2
qr2

)
e−

√
q r. (56)

We checked the validity of the obtained formula for the circular velocity (56) in two
cases: the Milky Way galaxy and the spiral galaxy M33. The values of parameters δ and
ζ in (56) are estimated by best fitting the measured data using the least-squares method.
Since, at large distances r, the velocity v̄ weakly depends on mass variation, we employed
only the mass of the black hole in the center of the galaxy. Namely, the central mass can be
taken up to M ∼ 108M⊙, and there will be no significant changes in the calculated circular
velocity v̄(r) at a very large r.

3.3.1. Milky Way Case

The Milky Way rotation curve data were taken from a recent paper [36], where the
Keplerian decline in the rotation curve is detected. Measured data for the distance r,
velocity v, and velocity error ∆v are obtained by the Gaia telescope, and they are presented
in Table 1, see [36]. In this table, the computed velocity v̄ using (56) and relative error
δv = |v−v̄|

v are also presented. A pictorial comparison of the measured and calculated
velocities is presented in Figure 2.

Figure 2. Rotation curve for the Milky Way galaxy. Red points are measured observational values [36]
and blue line is computed v̄(r) by Formula (56), where δ = 1.9× 10−5, ζ = 4.4× 1010, Λ = 10−52 m−2,
and M = 4.28 × 106 M⊙.

Table 1. Milky Way rotation curve data from [36] and this work.

r [kpc] v [km/s] ∆v [km/s] v̄ [km/s] Relative Error
δv [%]

9.5 221.75 3.17 217.36 1.98
10.5 223.32 3.02 220.19 1.40
11.5 220.72 3.47 221.93 0.55
12.5 222.92 3.19 222.72 0.09
13.5 224.16 3.48 222.66 0.67
14.5 221.60 4.20 221.85 0.11
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Table 1. Cont.

r [kpc] v [km/s] ∆v [km/s] v̄ [km/s] Relative Error
δv [%]

15.5 218.79 4.75 220.37 0.72
16.5 216.38 4.96 218.28 0.88
17.5 213.48 6.13 215.63 1.01
18.5 209.17 4.42 212.47 1.58
19.5 206.25 4.63 208.83 1.25
20.5 202.54 4.40 204.77 1.10
21.5 197.56 4.62 200.29 1.38
22.5 197.00 3.81 195.42 0.80
23.5 191.62 12.95 190.17 0.75
24.5 187.12 8.06 184.57 1.36
25.5 181.44 19.58 178.62 1.55
26.5 175.68 24.68 172.32 1.91

3.3.2. Spiral Galaxy M33 Case

We used data for the galaxy Messier 33 based on observations obtained at the Domin-
ion Radio Astrophysical Observatory and presented in [37]. We compared the measured
rotation velocity v(r) [37] with the computed v̄(r) using Formula (56). The measured and
computed data are presented in Table 2 and illustrated in Figure 3.

Figure 3. Rotation curve for spiral galaxy M33. Red points are measured observational values and
blue line is computed v̄(r) by Formula (56), where δ = 5.7 × 10−6, ζ = 3.62 × 1010, Λ = 10−52 m−2,
and M = 1.5 × 103 M⊙ .

Table 2. M33 galaxy data from [37] and this work.

r
[kpc]

v
[km/s]

∆v
[km/s]

v̄
[km/s]

Relative
Error δv

[%]

r
[kpc]

v
[km/s]

∆v
[km/s]

v̄
[km/s]

Relative
Error δv

[%]

0.5 42.0 2.4 35.62 15.18 12.2 115.7 9.6 120.69 4.31
1.0 58.8 1.5 49.61 15.63 12.7 115.1 7.7 121.05 5.17
1.5 69.4 0.4 59.83 13.79 13.2 117.1 5.1 121.30 3.58
2.0 79.3 4.0 68.02 14.22 13.7 118.2 3.2 121.45 2.75
2.4 86.7 1.8 73.59 15.12 14.2 118.4 1.4 121.50 2.62
2.9 91.4 3.1 79.64 12.86 14.7 118.2 1.8 121.47 2.76
3.4 94.2 4.8 84.90 9.88 15.1 117.5 2.4 121.38 3.30
3.9 96.5 5.5 89.51 7.25 15.6 119.6 0.8 121.19 1.33
4.4 99.8 3.9 93.58 6.23 16.1 118.6 1.5 120.93 1.96
4.9 102.1 1.7 97.21 4.80 16.6 122.6 0.5 120.59 1.64
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Table 2. Cont.

r
[kpc]

v
[km/s]

∆v
[km/s]

v̄
[km/s]

Relative
Error δv

[%]

r
[kpc]

v
[km/s]

∆v
[km/s]

v̄
[km/s]

Relative
Error δv

[%]

5.4 103.6 0.4 100.44 3.05 17.1 124.1 2.9 120.17 3.16
5.9 105.9 0.7 103.32 2.44 17.6 125.0 2.2 119.69 4.24
6.4 105.7 1.7 105.90 0.19 18.1 125.5 2.5 119.15 5.06
6.8 106.8 2.2 107.76 0.90 18.6 125.2 8.1 118.54 5.32
7.3 107.3 3.0 109.86 2.39 19.1 122.0 9.8 117.87 3.38
7.8 108.3 4.0 111.73 3.17 19.5 120.4 8.5 117.29 2.58
8.3 109.7 4.0 113.34 3.37 20.0 114.0 26.6 116.52 2.21
8.8 112.0 4.8 114.86 2.55 20.5 110.0 34.6 115.70 5.18
9.3 116.1 2.2 116.15 0.04 21.0 98.7 27.4 114.82 16.33
9.8 117.2 2.5 117.27 0.06 21.5 100.1 33.4 113.89 13.77
10.3 116.5 6.5 118.24 1.49 22.0 104.3 35.2 112.91 8.25
10.8 115.7 8.1 119.07 2.91 22.5 101.2 27.4 111.88 10.56
11.2 117.4 8.2 119.63 1.90 23.0 123.5 39.1 110.81 10.27
11.7 116.8 8.9 120.22 2.93 23.5 115.3 26.7 109.69 4.86

4. Discussion and Concluding Remarks

This paper presents the results of our research regarding the Schwarzschild–de Sitter
metric of the nonlocal

√
dS gravity model (1). We found the Schwarzschild–de Sitter metric

in the form of A(r) (53), which corresponds to the weak gravity approximation and the
linearization of the nonlinear differential Equation (40). The obtained results were tested
on the rotation curves of the Milky Way and the spiral galaxy M33. The calculated and
measured values of circular velocities are in good agreement.

Some additional explanations should be given to some parts of these investigations.
First, we need to clarify why the weak gravitational field approximation works well here.
On the one hand, we derived the Schwarzschild–de Sitter metric away from the massive
spherically symmetric body. And on the other hand, we applied the obtained formula for
the circular motion of the test body to the circular velocities in spiral galaxies far from their
centers where the black hole is located. Recall that the rotation curves were observed in the
domain 9.5–26.5 kpc for the Milky Way galaxy [36] and 0.5–23.5 kpc for the M33 galaxy [37].
In the Lambda Cold Dark Matter model, it is assumed that dark matter plays an important
role in the mentioned domains. However, there is no dark matter in our nonlocal model.
The good agreement between observational measurements and theoretical predictions tells
us that the role of dark matter can be played by the nonlocality in the presence of the
cosmological constant Λ in the

√
dS gravity model.

In the process of obtaining solution (48), we used ansatz (15), constraints (20), and
equality B = 1

A . To consider the consistency of these conditions, we can start from scalar
curvature R (39) corresponding to the solution (49), i.e.,

R(r) = 4Λ − φ(r), where φ(r) =
δ
√

ζΛ e−r
√

ζΛ

r
. (57)

Ansatz (15) is currently the only known tool for solving equations of motion (12).
According to the equations of motion (19) and conditions (20) for the nonlocal operator
F (2), there exists some scalar function η(r) such that we can write

Gµν + Λgµν = η(r)gµν. (58)

Taking the trace of (58), we obtain the scalar curvature

R = 4Λ − 4η(r). (59)
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By choosing η(r) = 1
4 φ(r), we obtain (57), which justifies choice (58), although there

may be other possibilities instead of η(r). Combining (58) with (26), we have

BR00 + AR11 =
A′

r
+

AB′

rB
= (Λ − 1

2
φ + η)(−BA + AB) = 0, (60)

which gives A′B + AB′ = 0; that is, AB = C, where C is a constant that can be given the
value C = 1. According to the above consideration, the applied procedure for finding our
solution is consistent. We also expect that there is a unique exact solution to equations of
motion (19).

It is worth noting that Equation (47) can be obtained from Equation (44) in the fol-
lowing way. We express R in terms of α as R = 4Λ + 2α

r2 + 4α′
r + α′′ (39) and put it in

Equation (44). After differentiation, we have

16Λqr4α′′(r) + 4qr4α′′(r)2 + 16Λ2qr4 + 64Λqr3α′(r) + 32qr3α′(r)α′′(r)

+ 16qr2α(r)α′′(r) + 64qr2α′(r)2 + 32Λqr2α(r) + 64qrα(r)α′(r) + 16qα(r)2

− 4Λr4α′′′′(r) + r4α′′′(r)2 − 2r4α′′′′(r)α′′(r)− 24Λr3α′′′(r)− 8r3α′′′′(r)α′(r)

− 4r3α′′′(r)α′′(r)− 4r2α(r)α′′′′(r)− 8Λr2α′′(r) + 12r2α′′(r)2

− 52r2α′′′(r)α′(r)− 32rα(r)α′′′(r)− 48α(r)α′′(r) + 16Λrα′(r)

+ 36α′(r)2 − 24rα′(r)α′′(r)− 16Λα(r) = 0. (61)

In the next step, we perform linearization by removing all quadratic terms in α and its
derivatives. We also ignore Λ with respect to α

r2 . Finally, we obtain Equation (47), with the
only difference that factor q is multiplied by four.

Regarding the applicability of the obtained formula for the circular velocity (56) at
smaller distances, such as the solar system, the following should be noted. The circular

velocity v̄(r) depends on three terms: (i) GM
c2r , (ii) −Λr2

3 , and (iii) δ√
qr

(
2√
qr −

1
2

)
− δ
(

1
2 +

3
2
√

qr +
2

qr2

)
e−

√
q r. The third term depends linearly on δ, and with a fixed q(= ζΛ), its

value can be controlled by choosing the appropriate value of δ. One can always take a
small enough value of δ, e.g., δ < |8.2 × 10−14|, so that the first term has a dominant role
since the second term has an important meaning only at distances of the size of the visible
universe. Therefore, the velocity Formula (56) is also valid for the solar system.

The main new results presented in this article can be summarized as follows:

• In the approximation of the weak gravitational field, a fourth-order linear differential
equation for the Schwarzschild–de Sitter metric was obtained (47).

• A general solution (48) of Equation (47) was found.
• A particular solution of α(r) was found (49) such that it satisfies the necessary condi-

tion that it tends to zero when the nonlocality vanishes.
• The obtained theoretical formula for circular velocity (56) was tested on the rotation

curves of two spiral galaxies: the Milky Way and M33. The agreement between the
calculated and measured circular velocities is good, especially for the Milky Way,
see Figures 2 and 3 and the corresponding tables. To our knowledge, this is the first
good description of “the Keplerian decline in the Milky Way rotation curve” by some
modified gravity model.

In summary, it can be said that the presented results in this paper are encouraging
and deserve further research, especially taking into account the mass distribution in spiral
galaxies using [38]. Bearing in mind also previously obtained results on the evolution of
the universe [17,27], where the effects that are usually attributed to dark energy and dark
matter can be described by the nonlocality of the gravity model

√
dS, we will continue with

the further study of this model of nonlocal de Sitter gravity.
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