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Abstract: The formation of chondrite materials represents one of the earliest mineralogical processes
in the solar system. Phyllosilicates are encountered at various stages of the chondrule formation,
from the initial stages (IDP agglomerates) to the final steps (chondrule internal alteration). While
typically linked to aqueous alteration, recent studies reveal that phyllosilicates could precipitate
directly from residual fluids in post-magmatic or deuteric conditions and under a wide range of
temperatures, pressures, water/rock ratios, and H2/H2O ratio conditions. This study re-examined
the formation of hydrated phyllosilicates in chondrules and associated fine-grained rims (FGRs)
using published petrographical, mineralogical, and chemical data on carbonaceous chondrites. Given
that chondrules originate from the melting of interplanetary dust particles, the water liberated by
the devolatilization of primary phyllosilicates, including clay minerals or ice melting, reduces the
melting temperature and leads to water dissolution into the silicate melt. Anhydrous minerals (e.g.,
olivine and diopside) form first, while volatile and incompatible components are concentrated in the
residual liquid, diffusing into the matrix and forming less porous FGRs. Serpentine and cronstedtite
are the products of thermal metamorphic-like mineral reactions. The mesostasis in some lobated
chondrules is composed of anhydrous and hydrous minerals, i.e., diopside and serpentine. The
latter is probably not the alteration product of a glassy precursor but rather a symplectite component
(concomitant crystallization of diopside and serpentine). If so, the symplectite has been formed at the
end of the cooling process (eutectic-like petrographical features). Water trapped inside chondrule
porosity can lead to the local replacement of olivine by serpentine without external water input
(auto-alteration). In the absence of water, hydrated phyllosilicates do not crystallize, forming a
different mineral assemblage.

Keywords: cosmic bodies; clay minerals; meteorites; chondrite; phyllosilicates; aqueous alteration

1. Introduction

Chondrites are mechanical mixtures of a variety of components, each of which orig-
inated from distinct periods and regions within the protosolar nebula. They encompass
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grains predating the solar nebula’s formation, known as presolar grains, varying in preva-
lence across specimens [1]. The proportions and sizes of the main chondritic constituents
serve as crucial classifiers for meteorites. These constituents include chondrules, FeNi met-
als, refractory inclusions like Ca–Al-rich inclusions (CAIs) and amoeboid olivine aggregates
(AOAs), fine-grained matrix, and presolar grains [2].

The term “carbonaceous chondrites” refers to a class of meteorites that was initially
composed of three groups, connected by relatively high carbon and water abundances [3].
Currently, nevertheless, the class consists of eight distinct compositional groups of CI,
CM, CR, CO, CV, CK, CH, and CB chondrites [4], the majority of which are not notably
richer in water or carbon [5]. They are now collectively grouped based on their largely
unfractionated bulk chemical composition relative to that of the sun [4]. It is currently
assumed that these individual groups are not genetically related and likely do not originate
from the same parent object [1]. Among these groups, CI chondrites are the most primitive,
displaying a composition nearly identical to that of the solar photosphere for all but the
most volatile elements [6,7].

The mineralogy of carbonaceous chondrites remains relatively consistent across
groups, comprising varying proportions of olivine, pyroxene, plagioclase, phyllosilicates,
organic matter, and presolar grains [1,2]. These minerals are distributed among the differ-
ent components within the chondrites, such as chondrules, Cals, and matrix [1,2]. High-
temperature processes during the collapse of the presolar nebula, exceeding 1500 ◦C,
formed calcium-aluminum-rich inclusions (CAIs) and chondrules [1]. Conversely, in other
phases, such as the matrix formed through lower-temperature processes occurring after
material aggregation into parent bodies [1], hydrated phyllosilicates are common in differ-
ent carbonaceous chondrites, especially in the matrix of CI and CM types. Their presence,
specifically clay minerals, in meteorites has been known for decades [8,9]. They are consid-
ered to be the alteration products of pre-existing glass, amorphous silicates, olivine, and
pyroxene [9–12], or metal grains [9]. Liquid water was supplied by the melting of water ice
by the heat flux generated either by decaying short-living radionuclides, such as 26Al and
60Fe [13–15], or locally by shocks between asteroidal bodies [16,17]. The duration of heat
dissipation in asteroidal bodies may be sufficient to maintain water in the liquid state for a
long period of time, enough to trigger alteration processes [18].

The most commonly encountered phyllosilicates in carbonaceous chondrites include
Fe, Mg-rich species of smectites (saponite, nontronite), serpentine, and cronstedtite [19,20].
They have been identified in the matrix as well as in the chondrules and associated fine-
grained rims (FGRs). Similar clay minerals are observed in terrestrial basalts, resulting
from alteration processes involving water, either externally (e.g., seawater) or internally
(e.g., olivine iddingsitization), interacting with glassy basaltic rock [21]. Additionally, clay
minerals can precipitate directly from residual magmatic fluid at the end of the cooling stage
of basaltic lavas [21,22]. The exploration of diverse formation processes for Fe- and Mg-rich
phyllosilicates on earth, as highlighted in the preceding paragraph, underlines the necessity
to re-evaluate established assumptions regarding their origins in chondrites. This is crucial
for advancing our understanding of the early solar system, elucidating the distribution and
history of water, and the processes that have shaped planetary bodies throughout their
history. In line with this, the present paper seeks to elucidate the characteristic features of
aqueous alteration and reassess the mechanisms underlying the formation of clay minerals
in specific meteorites. By reinterpreting published data through the lens of terrestrial
processes, this study aims to contribute to a deeper understanding of the complexities
surrounding alteration processes in meteoritic materials.

2. Results and Discussion
2.1. Terrestrial Alteration Processes

Alteration processes are ubiquitous across Earth’s diverse landscapes, manifesting
from surface environments to deep zones within volcanic areas such as hydrothermal fields,
as well as in sedimentary basins (diagenetic processes) and in fractured rocks. This alter-
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ation results from water-rock interactions, driven by potential chemical gradients between
solutions and primary minerals [23]. The nature and extent of secondary products, mostly
clay minerals, depend on two main factors: the magnitude of these gradients and the dura-
tion for which they are sustained. In all water–mineral reactions, whether occurring on the
Earth’s surface or deep within the crust, they take place within interconnected micro-sites,
facilitating chemical exchanges and transformations between water molecules and mineral
surfaces [24]. When these micro-sites are well-connected, they behave as thermodynami-
cally open micro-systems, with a constant renewal of fluid. Conversely, poorly connected
micro-sites resemble nearly closed micro-systems with resident fluid. The water–mineral
reactions trigger the migration of the most soluble chemical components, while the less
soluble ones are progressively concentrated in the remaining secondary products.

In open systems, secondary minerals form in place within parent crystals before
eventually being destabilized if the solutions are continuously renewed. In such cases, an
alteration front is sometimes visible within the rock. In contrast, nearly closed systems
feature resident fluids that approach chemical equilibrium with the primary minerals,
leading to the formation of polyphase secondary mineral assemblages with bulk chemical
compositions closely resembling those of their parent minerals [24].

The chemical transfers and their subsequent mineral reactions not only modify the
mineralogical composition of the rock but also change its texture. Indeed, whatever the
temperature conditions, any aqueous alteration induces the dissolution of the primary
minerals, marked by retreating surfaces and the formation of a secondary porosity [25]. The
dissolution–precipitation mechanism results in spectacular saw-tooth surfaces in amphibole
or pyroxene [26,27] or corrosion embayments in feldspars.

During the first alteration stage of mafic and ultramafic rocks, amphibole or py-
roxene are partly replaced by secondary phyllosilicates, the crystal growth of which is
topotactically controlled [25,28]. The chemical transfers operate at a nanoscale, inducing
depolymerization of the silicate chain while simultaneously contributing to the formation of
the phyllosilicate structure [25,28]. In this case of alteration, both the texture and chemical
composition of secondary products are inherited from the parent crystals. However, the
replacement is never perfectly isovolumetric; instead, secondary porosity forms concomi-
tantly with the growth of the alteration products [29]. This is systematically the case even
when parent and daughter crystals have similar crystal structures, like the albitization of
orthoclase [30]. As dissolution intensity increases, micrometer-sized pores form within the
parent crystals, within which randomly oriented particles precipitate [26,31].

Glassy rocks exhibit particular alteration features; an hydrated front separates palag-
onite from unaltered glass, while nanometer-sized clay particles are randomly dissem-
inated inside the palagonite [32]. Dissolution features may be strikingly evident, as in
the above-mentioned case of amphibole or pyroxene, or more challenging to detect, as in
the progressive invasion of hydration in glassy basaltic rocks, where the accumulation of
titanium oxides outlines the alteration front [22].

To summarize, the most critical characteristic of aqueous alteration is the formation
of retreating surfaces inside the unstable mineral or glass. However, embayments are
not all due to corrosion. Skeletal crystals exhibit engulfed outer surfaces. They typically
form during the rapid cooling of magmatic rocks, and the embayments are filled with a
microcrystalline matrix. In this case, the crystals have not been dissolved but instead have
not achieved full growth (Figure 1).

High-temperature iddingsite (HTI) is a cryptocrystalline aggregate consisting of or-
thopyroxene, cristoballite, amorphous silica, maghemite, and hematite [33]. It forms
through the deuteric alteration of olivine upon contact with residual liquids generated
during the cooling phase of lavas. Typically, plagioclase and pyroxene are unaffected. The
magmatic environment becomes oxidative because the H2O molecules are dissociated at
high temperatures and change the partial pressure of oxygen [34]. The oxygen and water
partial pressures are too high for Mg-rich olivine crystals to remain stable, leading to their
alteration into iddingsite. This alteration forms a rim at their outer surfaces, known as
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the retreating surface of Mg-rich olivine (Figure 2). Often, this rim is enclosed by Fe-rich
olivine overgrowths, providing evidence that iddingsite is undoubtedly a high-temperature
alteration feature of Mg-rich olivine [35]. X-ray diffraction (XRD) has not identified any
phyllosilicates forming the rim. However, Clément et al. [36], in their study of HTI covered
by fayalite overgrowth, demonstrated that microprobe analyses consistently reveal a deficit
in oxide summation, which may be attributed to non-analyzed water by correlating it with
a loss on ignition. The authors suggest that HTI is composed of hydroxylated, poorly crys-
talline phases with a coherent scattering domain size too low to diffract X-rays. The nature
of these cryptocrystalline hydroxylated mineral phases can be indirectly determined by
recalculating their composition on an 11-oxygen basis with iron in the Fe3+ state (Figure 2).
The HTI composition is similar to that of Fe-rich smectites (nontronite-like) rather than
celadonite, which cannot form because of potassium deficiency in the system.
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The sample was collected by the photographer, Bernardo Cesare, on the shore of the Sea of Galilee,
Israel. Polarized light photomicrograph. Crossed polarizers and a red tint plate. Width: c. 2.7 mm.
EGU creative common license.

In summary, HTI is formed during the last cooling stages [36], and the aqueous
source is undoubtedly the residual magmatic liquid. Thus, the physical state of water is
probably that of a supercritical fluid. The HTI components, including clay minerals, are
auto-alteration products of pyroxene and olivine, which crystallized first.
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on an 11-oxygen basis with Fe = Fe3+ to be compared with those of iron-rich clay minerals. M+: Na + 
K + 2Ca; 4Si: the number of Si cations divided by 4; 3R2+: the number of Mg and Mn ions divided by 
3. 
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Figure 2. High-temperature iddingsite (HTI). HTI forms a rim around Mg-rich olivine (O.) and is
covered by Fe-rich olivine overgrowth (fayalite). V: vesicle. Crossed nicols: 0.63 mm (modified from
Figure 1b in [35]). Plotted in the M+-4Si-R2+ diagram [37], the chemical compositions indicate that
HTI contains a Fe-rich smectite component (data from [36]). Compositions have been recalculated
on an 11-oxygen basis with Fe = Fe3+ to be compared with those of iron-rich clay minerals. M+:
Na + K + 2Ca; 4Si: the number of Si cations divided by 4; 3R2+: the number of Mg and Mn ions
divided by 3.

2.2. Non-Altered Clay Mineral Textures

Clay minerals in basalts, and specifically Fe- and Mg-rich species, are classically
thought to form during the diagenesis to low metamorphism stages of volcanic forma-
tions [38,39]. Mineral reactions in these environments are initiated by external water inputs.
However, since mafic magmas can serve as a source of water [40], similar Fe and Mg clay
minerals may also form through non-alteration processes [21]. Upon rapidly reaching
the surface, magma often retains a portion of its volatile components due to incomplete
degassing. Consequently, lava flows or dikes, sufficiently thick to maintain a molten
core between their solidified interfaces with the atmosphere or encasing rocks, tend to
concentrate water and other volatile or incompatible components in the residual fluids.
These fluids become trapped within the free spaces between magmatic crystals, i.e., the
diktytaxitic voids. As temperatures decrease, these fluids become oversaturated with
several mineral phases, leading to the co-precipitation of Fe- and Mg-rich clays along with
pyroxene, apatite, and K-feldspar (Figure 3a,b). Clay minerals grow on any solid surface
according to a geometric selection process [41], forming a palisade-like texture (Figure 3b,c).
The crystallization process unfolds in two major steps (Figure 3c): First, clay particles grow
in a randomly oriented pattern, enveloping the solid surfaces of minerals regardless of their
chemical composition (biotite, K-feldspar, plagioclase, etc.), and reducing the diktytaxitic
voids. Subsequently, only the particles oriented toward the center of the void persist in
growing, demonstrating a geometric selection process.
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Figure 3. Non-alteration feature in basaltic lava. (a) A reconstruction of a SE image illustrates
the direct precipitation of Fe- and Mg-rich clays forming a palissade texture from residual fluid
concentrated in free spaces between phenocrysts (dyktytaxitic voids) at the end of the cooling stage.
(b) A reconstruction of a SE image showing the pallissadic texture of clay particles forming a regular
rim on K-feldspar and pyroxene crystals. (c) The crystal growth of Fe- and Mg-rich clays is controlled
by a geometric selection process. Clay particles grow randomly, initially reducing the diktytaxitic
voids (small particles, step 1), and then the particles oriented toward the center of the void continue
growing to form larger particles (step 2). (a,b) are modified from Figure 3 in [21], and (c) is modified
from [42].

The petrographical texture and the enrichment in incompatible elements, such as
REE+Y, suggest that the clay minerals do not form by alteration of pre-existing volcanic
glass but rather precipitate directly from the residual fluids [21]. Additionally, numerous
synthesis experiments of silicates in the presence of water have demonstrated the co-
precipitation of anhydrous and hydrated minerals, including clay minerals [43,44]. In
summary, Fe and Mg phyllosilicates, which crystallize in nearly closed systems, may be
formed by three different processes: (1) alteration in the presence of resident fluids; (2) auto-
alteration at the end of the magmatic stage; and (3) direct precipitation from residual fluids.
The crystal-chemical properties of these phyllosilicates are not differentiated enough to
indicate any one of these processes. Thus, the signatures of alteration, auto-alteration, or
direct precipitation from over-saturated fluids need to be looked for at another scale, i.e.,



Minerals 2024, 14, 486 7 of 19

in the textures of the crystallite assemblages and their petrographical relation with the
anhydrous crystals or glass (presence or absence of retreating surfaces).

2.3. Aqueous Alteration in Meteorites

Aqueous alteration refers to the chemical reactions and mineralogical transformations
that occur when water interacts with the mineral constituents of carbonaceous chondrites
under specific conditions. This alteration process is believed to have occurred in the early
stages of the solar system’s formation (the first 5 myr) [45], possibly within the parent
bodies of these meteorites, such as asteroids or planetesimals [46,47]. These aqueously
altered meteorites harbor approximately ≈13 wt.% water [48] bound within the structure of
phyllosilicates in the form of hydroxyl (HO), such as in serpentine, which are the prevailing
mineral phases within these meteorites.

It is assumed that the water flow regime controls aqueous alteration in asteroids. As
icy deposits make the outer surface of asteroids impermeable, three different flow regimes
are possible [49]: static water, water exhalation (single pass flow), and convection (multiple
pass flow) (Figure 4). To explain the fact that the CI chondrites, which have a composition
close to that of the Sun’s photosphere, are paradoxically the most altered meteorites, Young
et al. [49] propose that they originated from asteroids with diameters smaller than 80 km.
In such environments, alteration proceeds in an isochemical manner, leading to static water
flow as the controlling mechanism for this process (Figure 4).
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Figure 4. A schematic illustration of the three modes of water rock interaction in asteroid (modified
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water, and the tick arrows represent the direction of pore water flow.

The multistage alteration model seems to be the most frequently applied to CI and CM
chondrites [50]. However, even with a multistage alteration, its duration is not long enough
for water/rock interaction to significantly modify the chondrite’s chemical composition. In
other words, one may consider that most mineral reactions induced by aqueous alteration
occur in closed or nearly closed systems. This was confirmed by Bland et al. [51], who
studied the chemical exchanges between chondrules and matrices in different carbonaceous
meteorites. These authors suggested that aqueous alteration cannot explain the fractiona-
tion of volatile and moderately volatile elements between chondrules and matrix, as well as
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the non-monotonic trace element patterns observed in both components. They demonstrate
that when evidence of alteration exists, it is predominantly isochemical at the scale of the
chondrules and matrix, likely confined to zones within 100–200 µm around anhydrous
chondrules. Moreover, Hirakawa et al. [52] proved that organic matter–mineral interaction
could also lead to in-situ aqueous alteration through water generation by decomposition
of organic compounds with hydroxy groups after heating. In this case, it forms locally
hydrated phyllosilicates on the surface of olivine in carbonaceous chondrites.

Most of the chondrites have an ultramafic composition, and their dominant aque-
ous alteration is the serpentinization of olivine and pyroxene. On Earth, this process is
controlled at an early stage by the chemical potentials of water, silica, and oxygen, which
determine the presence or absence of the associated phases, brucite and magnetite [53].
Since serpentinization in chondrites is nearly isochemical, it is considered to operate in
closed systems [13,51,54]. Consequently, polyphased assemblages should be formed, i.e.,
serpentine must be associated with a Fe-rich mineral phase. The most open systems are
found in the veins, which crosscut the chondrite body. In this case, the phyllosilicates are
Fe- and Mg-rich; for example, chlorite or chlorite/saponite mixed layer minerals have been
identified in vein deposits in the Orgueil meteorite [55].

Serpentine is classically thought to be the alteration product of olivine reacting with
water [12]. Thus, serpentinization occurring at temperatures below the stability field of
forsterite + H2O is strictly retrogressive. Consequently, serpentine and olivine are consid-
ered to form alternatively and never simultaneously. However, the reverse reaction exists
in thermal metamorphism environments where serpentine participates in dehydration
reactions, forming olivine. Antigorite and olivine crystals have been observed to crystallize
concomitantly in chrysotile veins [56]. Antigorite is the high-temperature polymorph of
serpentine phases, and is stable up to extreme pressure–temperature conditions in the
Earth’s mantle [57]. Its composition varies between Mg and Fe end-members, but the Fe2+

for Mg substitution is favored by low temperatures in systems in which hydrogen and
water fugacities are low and high, respectively [58,59].

On Earth, the isochemical alteration of olivine at high temperatures (T > 300 ◦C)
produces two secondary phases sharing the Fe and Mg components: antigorite and brucite,
which are richer in Mg and Fe, respectively, than the parent olivine [60]. Brucite has not
been detected in chondrites; however, the Fe-rich phase present is cronstedtite. This implies
that silica activity is high enough to inhibit the formation of Mg and Fe hydroxide and
to favor that of a phyllosilicate. For instance, some serpentine minerals in chondrites are
intergrown with saponite [10,19], and saponite is known to crystallize in ultramafic rocks
at a temperature higher than 400 ◦C [53], provided the silica activity is higher than that
required for cronstedtite formation.

The most commonly encountered species of the smectite family in carbonaceous
chondrite (CC) are saponite and nontronite. They are also found in Martian Nakhlite
meteorites [61]. These smectites are frequently observed in weathered or hydrothermally
altered mafic-ultramafic rocks on Earth, where they are considered to be markers of low-
temperature aqueous alteration processes (<300 ◦C). However, saponite has been syn-
thesized up to 800 ◦C (1kbar) in association with talc and anthophyllite [62,63]. These
high-temperature syntheses were carried out over short periods (20 days maximum) in
potassium-depleted systems because potassium favors the formation of micas. Whitney [64]
has shown that the temperatures at which saponite forms are low (400 ◦C) if the reaction
time is multiplied by 10 (200 days).

Kloprogge et al. [65] summarized data from different experimental syntheses of triocta-
hedral smectites through composition–temperature phase diagrams (1 kbar fixed pressure;
200–800 ◦C). They showed that nontronite might also form in high-temperature conditions,
even though most available data are relative to low-temperature synthesis. Decarreau
et al. [44] synthesized nontronite up to 200 ◦C simultaneously with pyroxene. Accordingly,
saponite and nontronite formation is kinetically controlled and may be concomitant with
that of anhydrous silicates (pyroxene).
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2.4. Alternative Interpretations of Chondrule Rim Petrographical Features

The aqueous alteration in chondrites is well-established, and its intensity has been
used to classify the CM chondrites [66]. However, the source of water remains questionable:
is it external or internal to the chemical system? Some petrographical features considered to
result from alterations triggered by external water sources are questionable. These concerns
are addressed in the following sections.

Several sources of water within meteorite parent bodies can explain the presence of
phyllosilicates and other phases formed from aqueous fluids, such as carbonates, phos-
phates, and magnetite. One possibility is that molten ice accreted within the parent body, as
suggested by Grimm and McSween [67]. Alternatively, water-bearing phyllosilicates may
have formed directly in the solar nebula [17,68,69]. Once incorporated, the water begins
to react with the surrounding material, silicates, metals, and sulfides, at relatively low
temperatures. Various heat sources, such as the decay of 26Al [70], short-lived local heating
events caused by impacts, or solar radiation [71], can result in low aqueous alteration
temperatures ranging from 0 to 150 ◦C for CI and CM chondrites [72,73]. Thus, the origin
of the water is probably multi-origin in the composition of phyllosilicate, forming CI and
CM chondrites.

While olivine is commonly found in meteorites, the ferrous iron-rich end-member,
fayalite (Fe2SiO4), has been identified only as a minor secondary mineral in certain unequi-
librated ordinary and carbonaceous chondrites [74]. Fayalite (Fe2SiO4) holds significant
importance among secondary minerals since it serves as a proxy for the composition of the
fluid in which it originated. This is attributed to its low fractionation factor, αFa-water [75],
particularly within the temperature range typically associated with fayalite formation,
which is estimated to be between 100 and 300 ◦C [74,76]. Within various unequilibrated
ordinary chondrites, fayalite exhibits a close association with silica-rich chondrules/clasts,
often forming veins, rims, layers, and lacy networks surrounding them (Figure 5a,b). Typi-
cally, fayalite coexists with magnetite (except at low W/R ratios), phyllosilicates, troilite,
phosphates (such as whitlockite), chromite, Ca-Fe-rich pyroxene, and condensed organic
compounds. In chondrites, two distinct origins of fayalite have been proposed: gas-melt
interactions or aqueous alteration. According to Krot et al. [77], the high-temperature
interactions between nebular gas and chondrites fail to explain the formation of fayalite-
hedenbergite veinlets observed in CO and CM chondrites. They propose aqueous alteration
as the likely origin of fayalite formation. The point discussed here is derived from an
example in the Vigarano CV3 carbonaceous chondrite [78].

Fayalite-troilite-magnetite veinlets intrude into olivine-rich fine-grained rims (FGRs)
(Figure 5a,b). Magnetite crystals are thought to have been largely replaced by fayalite due
to their irregular form (Figure 5c,d). Consequently, the Vigarano chondrite is thought to
feature two generations of veins, i.e., magnetite-troilite veins that have been later changed
by fayalite-bearing veins. If this is true, the two vein types exhibiting identical morphologies
should have genetic relationships in a decreasing temperature sequence of water/rock
interactions. This two-step scenario is based on the interpretation of irregularly shaped
magnetite crystals as fingerprints of an incomplete alteration state (retreating surfaces).
However, the magnetite crystals are embedded inside the fayalite ones without any visible
porosity at the observation scale (Figure 5d), giving the vein a compact texture similar
to those in magmatic rocks. Such irregular shapes are commonly observed on Earth in
magmatic rocks exhibiting skeletal crystals, which result from incomplete crystal growth
(Figure 1). Skeletal crystals are typical of quenched magmatic bodies. Because there are
no deformation features or crystal fracturing present, the veining is attributed to local
fluid overpressure rather than mechanical stress (such as impact shock). In other words,
the fayalite-troilite-magnetite veinlets have formed by opening pathways inside the rims.
Another question emerges at this point: are these veinlets hydrothermal or magmatic
in origin? Thermodynamical calculation shows that fayalite can form in anhydrous as
well as hydrated systems. The origin of fayalite (Fa) in ordinary and CV3 carbonaceous
chondrites is compatible with an aqueous alteration process below 350 ◦C only for a narrow
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range of water/rock ratios [74]. In a hydrothermal context, the higher the Fa content, the
higher the water/rock and H2/H2O ratios. Since most of the fayalite crystals are Fa > 80
in the veinlets, their temperature of crystallization varies from 150 to 200 ◦C for a given
water/rock ratio [74]. The parent material (matrix) in the Vigarano chondrite is fine-grained
(approximately 100 µm thick) and predominantly composed of olivine (Fa40–60) or saponite,
both of which are Mg-rich minerals [78]. This eliminates hydrothermal dissolution, which
unavoidably would have produced Mg-rich solutions. Metamorphic reactions are not
possible because Fe-rich serpentine is not present in the matrix, and the texture of veinlets
is not compatible with a metamorphic origin.
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Figure 5. Schematic representation of backscattered electron (BSE) images of representative CV3
Vigarano chondrite. (a) Schematic reconstruction illustrating the occurrence of Fayalite (Fa) as veins
and a lacy network surrounding the chondrules in the CV3 Vigarano chondrites (white arrows)
(reconstruction of Figure 1 in [78]). (b) Fayalite bearing veins crosscut rims in the space between two
chondrules. (c) A vein composed of fayalite (Fa), troilite (Tr), and magnetite (Mt) emerges from a
magnetite–sulfide–kamacite (mt-slf-km) nodule. (d) A part of (c) between large troilite and magnetite
grains, small fayalite grains coexist with irregularly shaped magnetites ((b–d) are modified from
Figure 2 in [78]).

On Earth, the fayalite-magnetite assemblage is found in two distinct settings: hy-
drothermal veins crosscutting massive sulfide deposits [79] and within the carbonatite
magmatic series [80]. The formation temperature conditions are 300 ◦C and > 500 ◦C, respec-
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tively. The composition of the carbonatite magma progressively evolves into hypersaline
fluids, creating a continuum between magmatic and hydrothermal fluids.

All of the fayalite-troilite-magnetite veinlets in the Vigarano chondrite extend from
magnetite-sulfide or magnetite-sulfide-kamacite nodules. These nodules do not exhibit any
dissolution features, indicating that they were the nucleating sites of the veinlets but not
their parent material. Thus, the source of the fayalite-troilite-magnetite assemblage would
have been necessarily related to the formation of the chondrules. The droplets of ultramafic-
type melt reached a temperature near the liquidus, from 1350 to 1800 ◦C, depending on
the duration of heating [13], and then cooled very quickly at 10 to 1000 K/hour [17]. The
veinlets could represent the last crystallization step of a residual ferro-magnesian magmatic
liquid at the end of the cooling stage.

Another example of aqueous alteration features can be observed in carbonaceous
chondrites GUE 97,990 and Y 791,198 CM. This alteration is characterized by a mesostasis
comprising quenched crystallites within chondrules. These chondrules mainly consist of
phenocrysts of olivine and enstatite, with minor amounts of diopside [81]. The mesostasis
is composed of dense arrays of parallel lath-shaped crystallites of diopside regularly
alternating with serpentine (Figure 6a). The serpentine is thought to result from the
aqueous alteration of pre-existing material. Since olivine and enstatite phenocrysts are
not altered inside their bodies or at contact with mesostasis, the pre-existing material is
assumed to be silicate glass. The phenocrysts remain unaltered because of their higher
resistance to aqueous alteration compared to glassy mesostasis [66].
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Figure 6. Schematic representations of petrographical features observed in the QUE97990 chon-
drite [81]. (a) Chondrule mesostasis is formed of dense arrays of parallel lath-shaped crystallites of
diopside regularly alternating with serpentine (modified from Figure 1 in [81]). Such a petrographical
feature could be a symplectite. (b) Embayment in chondrules exhibiting zoned mineral deposits
(modified from Figure 2c in [81]). The embayment could be inherited from the initial shape of the
chondrule. The zoned deposit could be formed by thermal metamorphism.

Similar alteration features are observed on Earth in oceanic basalts, where the inter-
stitial glass is replaced by saponite while the outer surfaces of the phenocrysts remain
intact [82]. This alteration process is non-isochemical and has been observed to involve
the uptake of Mg and Fe, as well as the loss of Si and Al, with little or no leaching of
alkalis. The chemical reactions are controlled by the high concentrations of Na and Mg in
the solution, i.e., seawater (an infinite reservoir). It is evident that such control by the fluid
composition is not feasible in the GUE 97,990 and Y 791,198 chondrites due to the limited
availability of water. Consequently, the alteration of the chondrule mesostasis is controlled
by the composition of the pre-existing material (a nearly closed system). Considering that
chemical reactions in closed systems typically yield polyphase assemblages, the formation
of a monophase assemblage is only feasible when the initial material closely resembles
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its resulting secondary product, such as serpentine. Such a glass composition does not
occur naturally on Earth, not even in komatiitic magmas [83]. For instance, in spinifex-
textured komatiites, some olivine crystals undergo substantial replacement by serpentine
and magnetite upon serpentinization [84]. This excludes aqueous alteration as the origin of
serpentine. A possible explanation for the particular serpentine-diopside texture may be
the co-precipitation of the two components forming a symplectite (Figure 6a). In this case,
the symplectite represents a metastable eutectic assemblage, as suggested by Rietmeijer
et al. [85].

The fine-grained rims (FGRs) identified in CI and CM chondrites comprise an un-
equilibrated fine grained assemblage with variable amounts of Mg-Fe amorphous silicates
and phyllosilicates, along with anhydrous silicates, sulfides, metals, and organic com-
pounds [86,87]. FGRs share similar phase compositions with the matrix; however, they
display distinct textures, including variations in grain size, compaction, porosity, and
presolar grain abundances [88]. This disparity suggests that they may have originated from
similar materials but experienced differing conditions during their formation [86,89]. FGRs
are thought to be formed by dust accretion onto the surface of chondrules prior to their
incorporation into the matrix [87]. On the other hand, other researchers have proposed
mechanisms such as alteration at the chondrule/matrix interface within the parent body
or the compaction of dust surrounding chondrules within regoliths [90–92]. Hydrated
and anhydrous regions are contiguous, suggesting that rims have accreted material from
multiple reservoirs [17,93,94]. Differences in chemical composition between the matrix and
rim are often attributed to the transfer of elements from the chondrule to its associated
rim [95]. However, these chemical transfers alone may not be sufficient to result in a
substantial difference in the mineralogical composition of FGRs compared to their host
matrix. The preservation of the mineralogical composition suggests that the changes in
physical–chemical-time conditions during the transfer of elements were not high enough
to induce the formation of new mineral phases. FGRs are often characterized by the re-
crystallization of pre-existing phases, which may change in composition (Fe oxidation in
saponite) and crystal size (ripening). Unfortunately, while changes in composition can be
readily measured, quantifying the effects of ripening is far more challenging. Qualitative
observations of most CM chondrites show grain coarsening (with some exceptions). Even
if grain coarsening needs less energy than mineral reactions, it indicates that alteration
occurred at rather high temperatures, in high water/rock ratios, or for long periods of
time [86]. Are the recrystallizations observed in the FGRs consistently attributed to aqueous
alteration? In other words, do retreating surfaces exist? For example, this question leads to
research on the origin of the pyroxene and olivine crystal embayments of the CV3 Vigarano
chondrite (Figure 6b) [96]. Embayments (topographic depressions in the chondrules) are
considered to be dissolved zones filled by alteration products, i.e., phyllosilicate-rich mate-
rials. The aqueous alteration origin is coherent with the presence of Fe hydroxide veinlets
forming in Fe-Ni metals, magnetite, and Fe sulfide grains. However, the embayments
in some chondrules of the GUE 97,990 and Y 791,198 chondrites are filled by tochilinite-
and cronstedtite-rich materials, which also contain fine grains (5 µm) of forsterite-rich
olivine, pyroxene, Ca-carbonate, troilite, pentlandite, and Fe-Ni metal [81]. In many of the
embayments, the rims exhibit a distinct enrichment in iron compared to other parts of the
rims [81]. Fe-Ni metallic grains are concentrated at the interface between the chondrule
olivine crystals and their associated rim (Figure 5b). These embayments were interpreted
as formations resulting from the replacement of opaque nodules within their host chon-
drules through aqueous alteration. However, some problems remain. Indeed, since the
Fe-Ni metal grains are highly unstable in the presence of water [97], their presence is not
consistent with an aqueous alteration origin. During the formation of the chondrules, the
metal grains migrate toward the melt–FGRs interface [98]. Their concentration along the
embayment–FGRs interface in the GUE 97,990 and Y 791,198 chondrites could indicate
that the embayment is not a dissolution feature but is inherited from the initial shape of
the chondrule. If this is the case, the tochilinite-cronstedite deposit sequence would result
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from thermal metamorphism rather than aqueous alteration. Zoning is frequently observed
in thermal metamorphic rocks, where chemical diffusion is activated. Mineral reactions
are controlled by the gradients of chemical potentials between the heat source and the
host material. In the present case, the observed zoning (tochilinite-rich to cronstedtite-rich,
Figure 6b) could be due to the decrease of sulfur chemical potential with distance to in-
terface, supported by the decrease of S from tochilinite-rich, which is in contact with the
chondrule, to cronstedtite-rich, which is at the interface between the embayment and the
FGRs (Table 1). Moreover, the presence of pyroxene, carbonate, and troilite small grains in
the FGR suggests thermal metamorphism rather than an aqueous alteration environment
in which they are unstable.

Table 1. EDS analyses of materials in the chondrule embayments and rims in the QUE
97,990 chondrite.

Embayments Rims

Tochilinite-Rich Cronstedtite-Rich Mg-Fe Serpentine-Rich

Number of Analysis 20 21 35

SiO2 3.47 (±0.99) 20.3 (±3.3) 24.3 (±1.9)
TiO2 0.14 (±0.05) 0.11 (±0.09) 0.11 (±0.09)

Al2O3 0.55 (±0.14) 3.98 (±0.87) 2.87 (±0.48)
Cr2O3 1.78 (±1.09) 0.61 (±0.92) 0.44 (±0.17)
FeO 46.1 (±2.9) 40.6 (±11.4) 25.2 (±1.7)
NiO 11.1 (±1.7) 2.09 (±1.62) 2.59 (±0.54)
MnO 1.15 (±0.33) 1.00 (±0.39) 0.18 (±0.21)
MgO 3.83 (±0.47) 8.91 (±2.93) 14.4 (±1.8)
CaO 0.73 (±0.17) 0.50 (±0.50) 1.03 (±0.28)

Na2O 0.13 (±0.07) 0.36 (±0.23) 0.16 (±0.12)
S 15.6 (±1.1) 2.92 (±1.48) 4.08 (±0.70)

Total 84.6 84.4 75.4

To conclude, the FGRs are distinguished from their host matrices by a less porous
texture. Densification is classically considered to be the effect of the accretion of dust onto
chondrules. However, in some cases, it could be due to thermal metamorphism. During
cooling, a chondrule loses heat, which triggers the formation or recrystallization of some
minerals in the host matrix. Even if most of the mineral species present in the matrix
are conserved, some of them change in crystal size and composition. The process is not
perfectly isochemical. Volatile siderophile and chalcophile elements are transferred from
the chondrule [51,99].

3. Conclusions

The presence of phyllosilicates and, specifically, clay minerals in terrestrial rocks, as
well as in chondrites, does not systematically imply aqueous alteration. Moreover, aqueous
alteration does not necessarily imply exterior water inputs to the reacting system. Con-
sidering these two statements, the challenge lies in determining a plausible mechanism
for carbonaceous chondrule formation. Phyllosilicates constitute about 50% of the cosmic
dust [100,101]. They are considered to have been formed in the outer icy region of the neb-
ula, during a previous alteration process, or as a result of asteroidal impacts [102]. They are
deuterium-rich, as demonstrated by studies on Semarkona and Renazzo meteorites [103].
Phyllosilicates are the principal source of water in the hotter regions of the protoplanetary
disk, with a water fraction possibly exceeding 10% [68]. Recent studies show that other
crystalline or amorphous silicate components in IDPs can also serve as potential carriers
of water through physi-sorbed molecules on their surfaces [104]. This suggests that the
presence of water is highly probable in the dust agglomerates in which the chondrules and
their associated FGRs form. The matrix exhibits a highly variable composition because of
the amount of volatile components, which depends on the intensity of evaporation during
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the chondrule-forming process [105]. Depending on the degree of melting and the intensity
of back reactions between the chondrule and evaporating gas [106], the mineral reactions
in the chondrule-forming process may occur either in water-poor or water-rich systems.
This determines the presence or absence of hydrated minerals in the chondrule and its
associated FGRs.

Summarizing the main steps in the formation of chondrules can be proposed in
order to address the following questions (Figure 7): (1) Is aqueous alteration of chondrites
analogous to terrestrial alteration processes? (2) Could non-aqueous alteration processes
lead to the formation of Fe- and Mg-rich phyllosilicate in chondrites? (3) What are the
specific physical-chemical conditions conductive to the formation of Fe and Mg clays?
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the melting, crystallization, and alteration processes of hydrated materials.

3.1. Nucleation and Propagation of Melting

Chondrules exhibit spherical or multilobate shapes. According to Rubin and Was-
son [107], the collapse into spheres is very rapid (10−3s). Since this timeframe does not
align with the crystallization time required for olivine phenocrysts to reach their size, the
authors conclude that the presence of multilobate chondrules in CO chondrites is attributed
to the partial re-melting of chondrule fragments. Such a multi-melting process inevitably
results in an increasing loss of volatile components. Is this the only way to form multilobate
chondrules? Melting experiments on fine-grained materials conducted by Ivanov and
Zhigilei [108,109] show that melt nucleation occurs at several points and forms a melting
front, resulting in a highly irregular surface over time. In this case, the melting process
is more conservative with respect to volatile components compared to the multi-melting
approach (closed system).

Macroscopically, the propagation of the melting fronts from the initial melting points
within a fine-grained material leads to the coalescence of the melted zones. The resulting
irregularly shaped proto-chondrule may exhibit deep embayments that entrap remnants
of the unmelted matrix [110]. Consequently, it is plausible that the IDP agglomerates
may initiate melting at several points under the influence of shock waves. The melting
temperature ranges from 1400 to 1900 K, but the presence of water in the system may
lower it.
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3.2. Diffusion of Heat and Volatile Components from the Chondrule to the Matrix

During melting, the Fe-Ni metal grains migrate to the surface of the proto-chon-
drule [98]. Subsequently, heat and chemical components diffuse into the surrounding
matrix, which is enriched in siderophile and chalcophile volatile components [51] and
undergoes transformation through mineral reactions. The sulfur chemical potential gradi-
ent results in the formation of “thermally metamorphosed” rim zoning at the chondrule
interface consisting of (1) tochilinite and (2) cronstedtite. The presence of fayalite-magnetite-
troilite veinlets observed in the Vigarano carbonaceous chondrite suggests that the rim they
intersect predates their formation. Therefore, rims are intimately associated with the early
stages of proto-chondrule development.

The rim interfaces exhibit either sharp or progressive transitions between the chon-
drule and matrix, respectively. The “metamorphic” mineral reactions within the hosting
matrix are thermally activated by heat diffusion from the chondrule, resulting in mineral
zoning and increased density. This process is continuous until the latent heat of crystalliza-
tion is dissipated. As the newly formed minerals in the melt (such as olivine and diopside)
are anhydrous, volatile, and incompatible components, they gradually accumulate in the
residual fluids. The “metamorphosed” rim, being less porous than the matrix, forms an
impermeable coating that prevents rapid volatile loss. Due to the brutal quenching of
the melt, a significant portion of the water expelled during crystallization remains within
the system.

3.3. Final Crystallization Stage and Hydrothermal Auto-Alteration

According to Ciesla et al. [17], the cooling rates range from 10 to 1000 K/hour as
the chondrule approaches the solidus (1400 K). The higher the cooling rate, the more
dendritic the textures of olivine and diopside become, and the greater the amount of
mesostasis. Intermediate cooling rates allow the crystallizing melt to reach the eutectic
or metastable eutectic temperature [85]. Symplectites are typical eutectic micro-textures,
and the nature of their mineral components depends on the quantity of water dissolved
in the residual magmatic liquid. If water is lacking, the eutectic composition is entirely
composed of anhydrous silicates, oxides, and sulfides. This is the case for the Vigarano
carbonaceous chondrite, in which the final magmatic stage produces fayalite-magnetite-
troilite veinlets that invade the metamorphosed rim [78]. If the water activity is high, it does
not allow the formation of olivine-fayalite but favors that of serpentine. In this case, the
eutectic symplectite is formed of serpentine and diopside. This is the case of the QUE97990
carbonaceous chondrite [81].

In some cases, water is not consumed in the eutectic minerals due to rapid quenching
but rather becomes concentrated in the residual fluid, impregnating microcracks and
intergranular joints in the chondrule. Equilibrium is maintained between the resident fluids
and the hosting minerals until the temperature drops to a critical value (350 K). At this point,
as olivine loses its stability in the presence of water, it undergoes a reaction, resulting in the
formation of serpentine. Serpentinization progresses from fractures towards the interior
of the crystal body as long as water remains available in the system. This phenomenon is
referred to as “auto-alteration”, and it occurs without requiring any external water input,
making it a closed system process.
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