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Abstract: Based on a multi-source error model, this paper discusses the principle of error element
identification and uses the mirror bias method to compensate the geometric errors of a process
system. Firstly, a nine-line measurement method to determine the geometric error of the linear
feed axes of machine tools is introduced, and the geometric error identification model based on
the “nine-line method” is established. Then, using a ballbar mounted in the axial, tangential, and
radial directions of the machine, the geometric error elements of the rotation axis are identified by
three simple measurements in each direction. Subsequently, for the more common flat vise clamping
workpiece in actual production, the workpiece position error is identified by using the traditional
process of dimensional chain, and the workpiece attitude error is identified by fitting the angle
between the positioning plane and the horizontal plane by the least squares method. Finally, based
on the tool position points and tool axis vectors obtained from the multi-source error model, the error
compensation value is solved using inverse machine tool kinematics to offset the machining error by
mirroring the error value of the same size, and based on the “S-shaped specimen” to compensate the
processing experiments, after compensation, the processing error is reduced by 30~45%, verifying the
effectiveness of the compensation method.

Keywords: machining errors; multiple error sources; five-axis side milling; error element identification;
error compensation

1. Introduction

The accurate measurement and identification of errors in process systems is a prerequi-
site for error compensation, and a multi-source spatial error model of a process system can
predict the error value of a part at any position in a workpiece coordinate system. However,
this requires the accurate measurement and identification of error elements to provide data
input to the error model in order to ensure good error prediction and compensation output.
The multi-body process system contains a total of 42 geometric error elements, of which
33 are occupied by machine tool geometry errors, which are the main cause of machining
deformation errors [1–5].

To identify the error elements of a linear feed axis, the common method is based on the
laser interferometer detection of the machine space straight line, and then using an error
identification model to indirectly identify the error elements [6–8]. At present, the error
element identification model for linear feed axes is more mature, and is mainly based on
laser interferometer measurements, such as the “22-line method”, “9-line method”, “14-line
method” [9], “15-line method”, “12-line method”, and so on [10–13]. Although all these
measurement methods are for measuring the spatial straight line of machine tools, the “nine-
line method” is for single-axis single-motion measurements, while other measurement
methods will involve multi-axis linkage, thus introducing new errors. Therefore, this paper
adopts the “nine-line method” to identify the geometric errors of the linear feed axis of
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CNC machine tools based on laser interferometer measurements. The identification of
rotational axis error elements is divided into detection methods based on “ballbars”, “laser
trackers”, “R-test testers”, and other instruments [14–16]. The ballbar is simple to operate
and easy to process. Therefore, this paper is based on the ballbar method to measure and
identify the geometric errors of the rotary axis. The geometric errors of the positioning
surface of the fixture are introduced for clamping the workpiece in a flat vise, and the
spatial posture errors of the workpiece in the machine are identified. After identifying the
error elements, the error compensation value is solved by using the inverse machine tool
kinematic operation based on the tool position points and tool axis vectors obtained from
the multi-source error model, and the machining errors are offset by mirroring the error
values of the same size [17].

This paper also designs an error element measurement and identification experiment
for the process system and a five-axis side-milling machining compensation experiment.
The geometric errors were measured using a Renishaw XL80 laser interferometer and a
Renishaw QC20-W ballbar (Renishaw, Gloucestershire, UK), and the results were input
into the identification model to obtain accurate geometric error identification outputs.

2. Principle of Multi-Source Error Identification
2.1. Machine Tool Linear Feed Axis Geometric Error Identification Principle

Based on the “nine-line method” of the machine tool linear feed axis error identification
model, the principle is to use the laser interferometer to measure nine lines parallel to the
three linear feed axes in the machine space through the identification algorithm to obtain
all 21 linear feed axis geometric errors, as shown in Figure 1.
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Figure 1. Detection of straight lines by the 9-line method.

(1) Identification principle of movement error and rotation error.

The identification of the three movement errors and three rotation errors of the linear
feed axis is explained by taking the X-axis as an example.

As shown in Figure 2, a line parallel to the X-axis in the machine space Li(i = 1, 2, 3)
is selected and the point Ai(xi, yi, zi), i = 1, 2, 3 is taken on it.
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When the point A1(x1, y1, z1) moves along the X-axis at a distance of x, its positioning
error along line 1 can be determined 1δx (x), at which point the chi-square transformation
matrix of the error is

E(x) =


1 −εz(x) εy(x) x + δx(x)

εz(x) 1 −εx(x) δy(x)
−εy(x) εx(x) 1 δz(x)

0 0 0 1

 (1)

Then, the motion error of the machine is
1δ x(x)

0
0
0

 = E(x)


x1
y1
z1
1

−


x + x1

y1
z1
1

 (2)

collated from
1δ x(x) = δx(x)− εz(x)y1 + εy(x)z1 (3)

When the point A2(x2, y2, z2) moves along the X-axis at a distance of x, its positioning
error along line 2 can be measured 2δ x(x) while its straightness error along the Y-axis is
measured 2δy(x), at which time the machine motion error is

2δ x(x)
2δ y(x)

0
0

 = E(x)


x2
y2
z2
1

−


x + x2

y2
z2
1

 (4)

collated from { 2δx(x) = δx(x)− εz(x)y2 + εy(x)z2
2δy(x) = δy(x)− εx(x)z2 + εz(x)x2

(5)

When the point A3(x3, y3, z3) moves along the X-axis at a distance of x, its positioning
error along line 3 can be measured 3δx(x) while its straightness error along the Y-axis
3δy(x) and straightness error along the Z-axis 3δz(x) are measured, at which time the
machine motion error is 

3δx(x)
3δy(x)
3δz(x)

0

 = E(x)


x3
y3
z3
1

−


x + x3

y3
z3
1

 (6)

collated from 
3δx(x) = δx(x)− εz(x)y3 + εy(x)z3
3δy(x) = δy(x)− εx(x)z3 + εz(x)x3
3δz(x) = δz(x)− εy(x)x3 + εx(x)y3

(7)

Combining Equations (3), (5), and (7), and expressing them in a matrix, we obtain

1δx(x)
2δx(x)
2δy(x)
3δx(x)
3δy(x)
3δz(x)

 =



1 0 0 0 z1 −y1
1 0 0 0 z2 −y2
0 1 0 −z2 0 x2
1 0 0 0 z3 −y3
0 1 0 −z3 0 x3
0 0 1 y3 −x3 0





δx(x)
δy(x)
δz(x)
εx(x)
εy(x)
εz(x)

 (8)

The order is as follows:
∆(x) =

[ 1δx(x) 2δy(x) 2δy(x) 3δx(x) 3δy(x) 3δz(x)
]T
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e(x) =
[

δx(x) δy(x) δz(x) εx(x) εy(x) εz(x)
]T

Then, there is
∆(x) = A(x)e(x) (9)

Selecting the appropriate number of points on the line Li(i = 1, 2, 3) such that the
matrix A(x) is full rank, there exists a unique solution to Equation (9).

e(x) = A(x)−1∆(x) (10)

The above Equation (10) is the geometric error identification model of the X-axis.
Similarly, according to Figures 3 and 4, twelve other geometric errors generated by the

Y-axis and Z-axis motions can be obtained: δx(y), δy(y), δz(y), εx(y), εy(y), εz(y) and δx(z),
δy(z), δz(z), εx(z), εy(z), εz(z).
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(2) Principle of verticality error identification.

The calculation of the perpendicularity error between axes can be indirectly obtained
by the above straightness error, and the perpendicularity error Sxy of the X-axis and Y-axis
is used as an example.

After the straightness errors δy(x) and δx(y) are obtained by the moving error iden-
tification principle, the values of δy(x) and δx(y) at each measurement point, δy(xi) and
δx(yi), are fitted by the least squares method to obtain the fitted straightness error line lxy
along the X-axis in the Y-direction and the fitted straightness error line lyx along the Y-axis
in the X-direction, as shown in Figure 5. Where the angle between lxy and the X-axis is θ1,
and the angle between lyx and the Y-axis is θ2. Then, the perpendicularity error between
the X-axis and Y-axis is

Sxy = θ2 − θ1 (11)
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Similarly, we can find the perpendicularity error between the X-axis and Z-axis, and
the Y-axis and Z-axis with Sxz and Syz.

2.2. Principle of Identifying Geometric Errors of Machine Rotating Axes

The HMC-C100P machine in this paper (HMC-C100P, Shanghai, China) contains two
rotary axes: A-axis and B-axis. The A-axis is the tool pendulum, and the B-axis is the rotary
table. The geometric error identification of the B-axis motion is illustrated as an example.

The B-axis movement will produce three movement errors along the X, Y, and Z axes,
δx(B), δy(B), and δz(B), and three rotation errors around the X, Y, and Z axes, εx(B), εy(B),
and εz(B). Establish the coordinate system as shown in Figure 6, and refer to the machine
tool coordinate system for each axis direction. Fix the cup on the machine table and connect
one end of the ballbar to the cup and the other end to the spindle. Assume that the distance
between the center P of the ball at the end of the cup and the origin is L, and the distance
from the table surface is H. The flush coordinates of the center P at the initial time can be
expressed as P =

[
L H 0 1

]T .
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When the B-axis rotary table is turned through the angle β, the coordinates of the
sphere center P in the error-free motion state and the error-containing motion state, respec-
tively, are

Pi =


cos β 0 sin β 0

0 1 0 0
− sin β 0 cos β 0

0 0 0 1




L
H
0
1

 =


L· cos β

H
−L· sin β

1

 (12)
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Pe =


1 −εz(B) εy(B) δx(B)
εz(B) 1 −εx(B) δy(B)
−εy(B) εx(B) 1 δz(B)
0 0 0 1




cos β 0 sin β 0
0 1 0 0
− sin β 0 cos β 0
0 0 0 1




L
H
0
1


=


L· cos β − L· sin β·εy(B)− H·εz(B) + δx(B)
L· cos β·εz(B) + L· sin β·εx(B) + H + δy(B)
−L· sin β − L· cos β·εy(B) + H·εx(B) + δz(B)
1


(13)

Then, in the actual working condition, the coordinate change in the center P of the
small ball at the end of the seat cup is

∆P = Pe − Pi =


−L· sin β·εy(B)− H·εz(B) + δx(B)

L· cos β·εz(B) + L· sin β·εx(B) + δy(B)
H·εx(B)− L· cos β·εy(B) + δz(B)

0

 =


∆Px
∆Py
∆Pz

0

 (14)

From Equation (13), the ballbar is installed at the same position (L, H) along the X, Y,
and Z axes for three measurements to obtain the change in the spherical center P coordinate
associated with the six basic geometric errors. However, at least six equations are needed
to solve the six basic geometric errors, so the values of L and H need to be changed several
times to identify the six basic geometric errors in the B-axis. Table 1 lists three different
combinations of (L, H) for each position for each of the three axes, and the corresponding
measurement patterns are shown in Figure 7.

Table 1. Combination of positions for double ballbar installation.

Position Combination Mode Measurement Orientation

1 (L1, H1) X, Y, Z
2 (L2, H1) X, Y, Z
3 (L1, H2) X, Y, Z
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δ

∆ −∆
= ∆ − ⋅

−
 (17) 

Figure 7. Three measurement modes for double ballbar: (a) measurement in Z-axis; (b) measurement
in Y-axis; (c) measurement in X-axis.
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According to Equation (13) and the measurement pattern shown in Figure 7, it is
known that 

∆Px1,i = −L1· sin βi·εy,i(B)− H1·εz,i(B) + δx,i(B)
∆Py1,i = L1· cos βi·εz,i(B) + L1· sin βi·εx,i(B) + δy,i(B)
∆Pz1,i = H1·εx,i(B)− L1· cos βi·εy,i(B) + δz,i(B)
∆Px2,i = −L2· sin βi·εy,i(B)− H1·εz,i(B) + δx,i(B)
∆Py2,i = L2· cos βi·εz,i(B) + L2· sin βi·εx,i(B) + δy,i(B)
∆Pz2,i = H1·εx,i(B)− L2· cos βi·εy,i(B) + δz,i(B)
∆Px3,i = −L1· sin βi·εy,i(B)− H2·εz,i(B) + δx,i(B)
∆Py3,i = L1· cos βi·εz,i(B) + L1· sin βi·εx,i(B) + δy,i(B)
∆Pz3,i = H2·εx,i(B)− L1· cos βi·εy,i(B) + δz,i(B)

(15)

The six errors of the B-axis can be identified by solving the above system of equations.

δx,i(B) = ∆Px1,i + L1·
∆Px1,i − ∆Px2,i

L2 − L1
+ H1·

∆Px1,i − ∆Px3,i

H2 − H1
(16)

δy,i(B) = ∆Py1,i − L1·
∆Py1,i − ∆Py2,i

L1 − L2
(17)

δz,i(B) = ∆Pz1,i + L1·
∆Pz1,i − ∆Pz2,i

L2 − L1
− H1·

∆Pz1,i − ∆Pz3,i

H1 − H2
(18)

εx,i(B) =
∆Pz1,i − ∆Pz3,i

H1 − H2
(19)

εy,i(B) =
∆Px1,i − ∆Px2,i

(L2 − L1)· sin βi
(20)

εz,i(B) =
∆Px1,i − ∆Px3,i

H2 − H1
(21)

In Equations (16)–(21), the right subscript i indicates the number of equal parts of
the B-axis slew stroke. It should be noted that since the measurements are taken at equal
intervals within the slew stroke, the results obtained by the above identification model are
the error dataset corresponding to the rotation angle βi.

Similarly, the six geometric error elements generated by the A-axis tool pendulum
head movement can be identified, and the rest are not repeated.

2.3. Principle of Workpiece Posture Error Identification

From the aforementioned analysis, it can be seen that there are six basic geometric
errors in the machine space after clamping the workpiece—δx(W), δy(W), δz(W), εx(W),
εy(W), and εz(W)—due to the geometric errors of the positioning elements of the fixture
and the reference non-coincidence errors of the workpiece positioning surface. For the
identification of these six basic geometric errors, this paper takes vise clamping as an
illustrative example.

Figure 8 shows a schematic diagram of vise clamping, where the positioning surface
limits one degree of freedom of movement of the workpiece y and two degrees of freedom
of rotation

⌢
x and

⌢
z ; the thrust surface limits one degree of freedom of movement of

the workpiece x and one degree of freedom of rotation
⌢
y ; the vise can produce a large

clamping force after locking and friction between the thrust surface, clamping surface, and
the workpiece, which together limit the freedom of movement of the workpiece along the
Z-axis z.
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(1) Identification of workpiece position error.

Take the height direction as an example. The workpiece dimension H1 has been
machined before clamping, the workpiece is positioned on the bottom surface A during
clamping, and the dimension H2 of the step surface B is machined directly. Then, the
dimension H0 to be machined is determined indirectly. The positioning date and the
process date do not coincide, resulting in the movement error along the Y-axis δy(W),
which can be solved by the process dimension chain shown in Figure 9.
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From the relevant definition of the dimensional chain, it can be seen that the final
dimension H0 formed during the machining of the part is the closed ring, and the remaining
dimensions H1 and H2 are the constituent rings, while the tolerance of the closed ring of the
linear dimensional chain is equal to the sum of the tolerances of the constituent rings, namely

∆H0 = ∆H1 + ∆H2 (22)

where ∆H0 is the tolerance of the closed ring H0, and ∆H1 and ∆H2 are the tolerances of
the constituent rings H1 and H2, respectively. Where ∆H1 has been determined cannot be
changed, so we must improve the accuracy of the component ring H2 to ensure the accuracy
of the closed ring size H0, and the reduced tolerance part is the reference non-coincidence
error. Therefore, the Y-directional movement error of the workpiece in the machine space is
identified as

δy(W) = ∆H2 (23)

Similarly, the X- and Z-directional movement errors of the workpiece in the machine
space can be identified as follows:

δx(W) = ∆L2 (24)

δz(W) = ∆W2 (25)

where ∆H2, ∆L2, and ∆W2 are the tolerances of the workpiece in the height, length, and
width directions, respectively.
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(2) Identification of workpiece attitude error.

The idea of identifying the workpiece attitude error is to measure the set of points on
the positioning surface (xi, yi, zi), i = 1, 2, . . ., n, n ≥ 3, and use the least squares method to fit
these scattered points to a plane. By calculating the angle between the fitted plane and the
coordinate plane, the angular error of the workpiece in the machine space can be identified.

For the vise positioning surface, we have the manufacturing error of the thrust surface
so that the workpiece in the machine space is around the X, Y, and Z axes of the rotation
errors εx(W), εy(W), and εz(W). Let the general equation of the plane be

Ax + By + Cz + D = 0 (26)

When C ̸= 0, let ξ0 = − A
C , ξ1 = − B

C , and ξ2 = −D
C . Then, Equation (25) can be

expressed as
z = ξ0x + ξ1y + ξ2 (27)

According to the principle of least squares, the distance of each measurement point

from the least squares fitting plane should be minimized. S =
n
∑

i=1
(ξ0xi + ξ1yi + ξ2 − zi)

2 is

minimal. Then, ∂S
∂ξk

= 0, k = 0, 1, 2, should be satisfied. Thus, we have

n
∑

i=1
xi

2
n
∑

i=1
xiyi

n
∑

i=1
xi

n
∑

i=1
xiyi

n
∑

i=1
yi

2
n
∑

i=1
yi

n
∑

i=1
xi

n
∑

i=1
yi 1


ξ0

ξ1
ξ2

 =



n
∑

i=1
xizi

n
∑

i=1
yizi

n
∑

i=1
zi

 (28)

From the above Equation (28), the parameters ξ0, ξ1, and ξ2 are obtained to obtain
the equation of the positioning plane of the vise. The normal vector of the fitted plane is
further obtained from Equation (27) as n = (ξ0, ξ1,−1).

To facilitate the calculation of the plane angle, directional restrictions are made on the
equations of the fitted plane. As shown in Figure 10, let the fitted plane cross a certain
coordinate axis (D = 0); the fitted positioning plane P1 is perpendicular to the YOZ plane
(A = 0), the fitted positioning plane P2 is perpendicular to the XOY plane (C = 0), and the
fitted stop plane P3 is perpendicular to the XOZ plane (B = 0). Then, the equations of the
fitted planes P1, P2, and P3 are as follows

B1y + C1z = 0
A2x + B2y = 0
A3x + C3z = 0

(29)
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Let a1 = − B1
C1

, b0 = − A2
B2

, and c0 = − A3
C3

, and obtain the normal vectors of the fitted
planes P1, P2, and P3 as n1 = (0, a1,−1), n2 = (b0,−1, 0), and n3 = (c0, 0,−1), respectively.
By calculating the angle between the normal vector of the fitted plane and the unit vector,
the rotation error of the workpiece around the X, Y, and Z axes can be identified as
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
εx(W) = arc cos⟨n1, j⟩
εy(W) = arc cos⟨n3, i⟩
εz(W) = arc cos⟨n2, j⟩

(30)

where i and j are the unit vectors along the X and Y axes.

3. Geometric Error Compensation Strategy

For the compensation of geometric errors, this paper adopts the error prediction and
off-line compensation strategy. The idea is to indirectly derive the magnitude of each error
value based on the instrument measurement data and the above identification principle
on the basis of multi-source spatial error model prediction, and then make the actual
tool position/tool axis vector relative to the theoretical tool position/tool axis vector to
mirror the bias size error value to obtain the compensation tool position/tool axis vector to
compensate the machining error by artificially creating a new error, as shown in Figure 11.
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In the vertical and horizontal five-axis machining center, there is a motion coupling
between the linear feed axis and the rotary axis. Even if the linear feed axis is stationary,
only the rotary axis motion will bring about the displacement of the tool position point.
Therefore, in the error compensation, the attitude compensation of the rotary axis is per-
formed first, and then the position compensation of the linear feed axis is performed, and
the specific algorithm is as follows [18].

(1) Rotational axis attitude error compensation.

When the process system is moving without error in the ideal state, the ideal tool axis
vector in the workpiece coordinate system at this time is obtained from Equation (3) to (17)
as VW

i =
[B

ZTi·AY Ti
]
·VT

i , i.e.,
vW

xi
vW

yi
vW

zi
0

 =


cos βi 0 sin βi 0

0 1 0 0
− sin βi 0 cos βi 0

0 0 0 1




1 0 0 0
0 cos αi − sin αi 0
0 sin αi cos αi 0
0 0 0 1




0
0
1
0

 =


sin βi cos αi
− sin αi

cos βi cos αi
0

 (31)

where vW
xi , vW

yi , and vW
zi denote the ideal attitude of the tool axis in the work coordinate

system, and αi and βi denote the machine turning angle in the ideal condition. Solve
Equation (31) to obtain the machine turning angle under the ideal tool path trajectory as{

αi = arcsin
(
−vyi

)
, 0 ≤ αi ≤ 2π

βi = arctg
(

vxi
vzi

)
,−π

2 ≤ βi ≤ π
2

(32)
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Similarly, the actual machine turning angle when the process system is moving in the
actual state with error is {

αr = arcsin
(
−vyr

)
, 0 ≤ αr ≤ 2π

βr = arctg
(

vxr
vzr

)
,−π

2 ≤ βr ≤ π
2

(33)

where vW
xr , vW

yr , and vW
zr represent the actual attitudes of the tool axis in the work coordinate

system. Then, the error compensation value can be expressed as ∆α = αr − αi, ∆β = βr − βi,
and the compensated machine turning angle by the reverse superposition compensation
value is as follows: {

αc = αi − ∆α = 2αi − αr
βc = βi − ∆β = 2βi − βr

(34)

(2) Linear feed axis position error compensation.

When the process system moves without error in the ideal state, the position change
in the tool position point is synchronized with the motion of the linear feed axis of the
machine tool, and the ideal tool position point in the workpiece coordinate system is

PW
i =


pW

xi
pW

yi
pW

zi
1

 =


xi cos βi + zi sin βi + L cos αi sin βi

yi − L sin αi
zi cos βi − xi sin βi + L cos αi cos βi

1

 (35)

where pW
xi , pW

yi , and pW
zi denote the ideal positions of the tool position in the work coordinate

system; xi, yi, and zi denote the motions of the machine tool linear feed axis in the ideal
state; αi, βi denotes the machine tool turning angle in the ideal state; and L is the tool length.
From Equation (35), obtaining the ideal tool path trajectory under the machine tool motion
position is completed as follows:

xi = pW
xi cos βi − pW

zi sin βi
yi = pW

yi + L sin αi

zi = pW
xi sin βi + pW

zi cos βi − L cos αi

(36)

Similarly, the actual motion position of the machine when the process system is in the
actual state with error motion is

xr = pW
xr cos βc − pW

zr sin βc
yr = pW

yr + L sin αc

zr = pW
xr sin βc + pW

zr cos βc − L cos αc

(37)

where pW
xr , pW

yr , and pW
zr represent the actual positions of the tool position in the workpiece

coordinate system; it should be noted that in calculating the actual motion position of the
machine, the machine tool angle αc, βc after the compensation of Equation (34) should
be brought into the solution. Then, the machine tool linear feed axis error compensation
values for ∆x = xr − xi, ∆y = yr − yi, and ∆z = zr − zi, through the reverse superposition
of compensation values to the compensated machine tool position, are found.

xc = xi − ∆x = 2xi − xr
yc = yi − ∆y = 2yi − yr
zc = zi − ∆z = 2zi − zr

(38)

Finally, replace the X, Y, Z, A, and B values in the original NC code with the com-
pensated machine positions xc, yc, and zc, and machine angles αc and βc, to obtain the
compensated NC code.
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4. Example of Process System Error Measurement and Identification
4.1. Laser Interferometer-Based Measurement and Identification of Linear Axis Errors in
Machine Tools

The equipment and instruments used in this experiment mainly include those de-
scribed below.

1. Five-axis machine tool: The vertical and horizontal conversion five-axis machining
center is shown in Figure 12 (model HMC-C100P). The main technical parameters are
detailed in Table 2.
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Table 2. Specification of vertical and horizontal 5-axis machining center.

Projects Aluminum Machine Tools

Table turning radius 500 mm

Itinerary
X: 1190 mm
Y: 1020 mm
Z: 1250 mm

Spindle swing angle A-axis −120◦~+60◦

B-axis n × 360◦

Maximum speed 24,000 r/min

2. Laser interferometer system: The XL-80 laser head has a laser frequency stabilization
accuracy of ±0.05 ppm, a resolution of 1 nm, and a built-in USB communication interface.
The maximum permissible acquisition movement speed of the whole laser interferometer
system is 4 m/s, and the dynamic acquisition frequency is between 10 Hz and 50 kHz.

In order to ensure that the number of measurement points on each axis is the same,
this experiment selects 800 mm of travel on each linear feed axis and sets the measurement
points and automatic data acquisition according to Figure 13: 50 mm distance between
measurement points, 4 s stop at each measurement point for data acquisition, and 4 mm
head and tail overtravel.
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As can be seen from Figure 13, the nine-line method requires nine measurements
in the machine space parallel to the X, Y, and Z axes, respectively, and the coordinates
of the starting and ending points of each line are shown in Table 3. Figure 14 shows the
experimental site for geometric error detection. In order to reduce the measurement of
accidental errors, each measurement line is measured six times reciprocally, and then the
average value of the measurements is taken for geometric error element identification.

Table 3. Coordinates of the starting and ending points of the measured lines.

Line Starting Point End Point Line Starting Point End Point Line Starting Point End Point

1 (0,0,0) (800,0,0) 4 (0,0,0) (0,800,0) 7 (0,0,0) (0,0,800)
2 (0,800,0) (800,800,0) 5 (0,0,800) (0,800,800) 8 (800,0,0) (800,0,800)
3 (0,0,800) (800,0,800) 6 (800,0,0) (800,800,0) 9 (0,800,0) (0,800,800)
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Figure 14. Linear feed axis geometric error measurement: (a) for X-axis; (b) for Y-axis; (c) for Z-axis.

Since the geometric error measurements of the linear feed axes are linear in length, the
positioning errors in the moving errors δx(x), δy(y), and δz(z) can be identified by taking
the experimental data for lines 1, 4, and 7. The Renishaw Laser XL data analysis software is
based on a least squares fit to a straightness baseline, so here the straightness error for each
axis is expressed as the residual from each measurement point to the least squares fitted
line. The simple processed measurement data are substituted into Equation (10), and the
error identification results of the three linear feed axes are calculated by MATLAB R2018a,
as shown in Figures 15–17. According to the identification principle of Equation (11), the
three perpendicularity errors can be obtained from the difference of the angle between the
fitted line and the horizontal axis, and the results are shown in Table 4.
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Table 4. Verticality error identification results.

Error Symbol Sxy/10−5 rad Sxz/10−5 rad Syz/10−5 rad

Identification Results 0.472 0.292 0.133

4.2. Ballbar-Based Measurement and Identification of Machine Tool Rotary Axis Errors

This section is based on the Renishaw QC20-W ballbar and checks the A and B axes of
rotation errors of machine tools. The equipment and instruments used in this experiment
include the following:

1. Five-axis machine tool: Model and performance parameters are described in Section 4.1.
2. Ballbar system: As shown in Figure 18, QC20-W contains a high-precision telescopic

linear sensor inside, and the parameters are shown in Table 5. There is a precision
sphere at each end of the ballbar; one end is connected to the table and one end is
connected to the spindle.

Table 5. Double ballbar system specifications.

Projects Parameters Projects Parameters

Sensor resolution 0.1 µm Sensor resolution 1000 Hz
Ballbar measurement accuracy ±(0.7 + 0.3% L) µm Ballbar measurement accuracy Bluetooth II

Ballbar measurement range ±1.0 mm Ballbar measurement range 10 m Typical
Sensor stroke −1.25 mm~+1.75 mm Sensor stroke 0 ◦C~40 ◦C
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Figure 18. QC20-W double ballbar system.

Figure 19 shows the experimental site of the B-axis rotary table geometry error detec-
tion. The standard rod length of the ballbar used in this experiment is 100 mm, and the
measurement range of the B-axis rotary table is 0◦~360◦, with a measurement spacing of
10◦, a 10◦ head-to-tail crossing, and a 5 s pause at each measurement position for reading.
The distance combination of the ballbar installation is shown in Table 6: position (LB, HB).
Three measurements are taken in the X, Y, and Z directions at the same position and the
amount of rod length change is recorded.
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ment; (c) radial measurement.

Table 6. Combination of distances for double ballbar mounting on rotary axis.

Measurement Orientation/mm X, Y, Z X, Y, Z X, Y, Z

Position (LA, HA) (45.966,152.050) (45.966,185.746) (89.358,185.746)
Position (LB, HB) (40.043,73.720) (60.843,73.720) (60.843,128.720)

The geometric error identification results of the B-axis rotary table are calculated by
MATLAB by substituting the processed measurement data into Equations (16)–(21). Here,
the identification result is the error dataset corresponding to the rotation angle of the B-axis
βi, as shown in Figure 20.
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Figure 20. Error identification results of B-axis rotary table.

Similarly, the A-axis tool pendulum head was tested, and the experimental site of
A-axis geometric error detection is shown in Figure 21. The measurement range of the
A-axis tool pendulum head was 0◦~−90◦, the measurement distance was 5◦, the first and
last transitions were 5◦, and the pause was 5 s at each measurement position for reading.
The distance combination of the ballbar installation is shown in Table 6: position (LA, HA).
Three measurements in the X, Y, and Z directions were taken at the same position and the
amount of rod length change was recorded.
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Figure 21. A-axis tool pendulum head error measurement site: (a) X-direction measurement;
(b) Y-direction measurement; (c) Z-direction measurement.

The geometric error identification results of the A-axis tool pendulum are obtained
by substituting the processed measurement data into Equations (22)–(27) and calculating
them through MATLAB. Here, the identification result is the error dataset corresponding to
the rotation angle of the A-axis αi, as shown in Figure 22.
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4.3. Measurement and Identification of Workpiece Posture Errors Based on Contact Probes

This subsection conducts an experiment on workpiece attitude error identification,
as shown in Figure 23, for the workpiece attitude error measurement site. The main
instruments used in the experiment are the Renishaw OMP60 probe, a vise, and a standard
parallel iron.
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The measured point data are shown in Table 7. The data points are fitted with least
squares to obtain the actual positioning surface and the stopping surface, and the results
are shown in Figure 24. The angle between the normal vector of the fitted plane and the
normal vector of the coordinate plane is further calculated to obtain the workpiece attitude
errors of εx(W) = 0.0084 rad, εy(W) = 0.0017 rad, and εz(W) = 0.0084 rad.

As mentioned in the identification principle in Section 2.3 above, the position error of
the workpiece can be expressed by the dimensional tolerances in three directions. According
to the international standard ISO 10797:2020, the dimensional tolerance of the S-shaped
specimen other than the flatness of the bottom surface is ±0.1 mm [19], so the position
error of the workpiece is δx(W) = δy(W) = δz(W) = 0.1 mm.
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Table 7. Data points for measurement of workpiece positioning surface and thrust surface.

Positioning Surface/mm Thrust Surface/mm

X Y Z X Y Z

25.051 −25.008 −20.093 −23.010 −20.002 −31.140
25.010 −25.003 21.215 −23.056 −30.011 −34.140
50.092 −24.892 20.786 −10.060 −20.046 −31.112
50.038 −24.899 −21.045 −10.093 −30.082 −31.113
75.032 −24.689 −21.438 −0.007 −20.092 −31.089
75.018 −24.660 21.300 −0.001 −29.908 −31.089

100.079 −24.347 20.909 9.911 −19.929 −31.079
100.090 −24.343 −20.903 9.990 −29.923 −31.081
125.077 −24.235 −20.588 22.999 −19.931 −31.060
125.101 −24.239 20.351 22.975 −29.928 −31.061
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4.4. Machining Verification of S-Shaped Specimen-Based Compensation Strategy

In order to verify the feasibility of the compensation method in this paper, this sub-
section carries out the verification of the compensation strategy based on the S-shaped
specimen. The main equipment used in the experiment included the following:

1. One set of HMC-C100P five-axis machines.
2. Hexagon bridge-type CMM, one set.

The processing and measurement site of the S-shaped specimen is shown in Figure 25.
Due to the limited experimental materials, the size of the “S-shaped specimen” used in
this experiment was proportionally reduced by two on the basis of the standard part. The
thickness of the stretched edge strip was 8 mm, the height was 25 mm, and the material
of the specimen was 7050-T7451 aluminum alloy. The tool used for the experiment was
a carbide end mill with a diameter of 20 mm and a tip filet of 1 mm. The experimental
machining parameters are shown in Table 8.

Table 8. Processing parameters of S-shaped specimens.

Spindle Speed Roughing Feed
per Tooth

Finishing Feed per
Tooth Depth of Cut Roughing Cut

Width
Finishing Cut

Width

8000 r/min 0.25 mm 0.15 mm 3 mm 1 mm 0.1 mm
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4.4.1. Assessment of Measurement Uncertainty

1. Calculation of uncertainty components.

(1) Uncertainty components due to CMM oscillometric errors uE.
For thickness measurement of nominal thickness L = 8 mm, the maximum permissible

display value error of the CMM is

MPEE = 3 + 4L/1000 = 3.032 µm (39)

According to the normal distribution, take the inclusion factor k1 = 2. The uncertainty
component caused by the display value error is

uE = MPEE/2 = 0.00102 mm (40)

(2) Uncertainty components due to measurement repeatability urp.
The arithmetic mean of the results of 10 repetitions of measurements made by Mea-

surement Person A is used as an estimate of the measurement results. Calculate the
measurement uncertainty due to measurement repeatability as

urp = s(x)/
√

10 = 0.0003 mm (41)

(3) Uncertainty components due to measurement reproducibility urd.
The uncertainty component due to measurement reproducibility was calculated from

the arithmetic mean of the results of each of the 10 testers’ measurements as

urd =

√√√√ 1
10 − 1

10

∑
i=1

(xi − x)2 = 0.0021 mm (42)

(4) Uncertainty components due to temperature compensation uTemp.
According to the on-site inspection information, the average temperature at the time of

measurement by surveyor A was T = 22 ◦C, the limit of temperature change was ∆T = ±1 ◦C
the coefficient of thermal expansion of the workpiece was αW = 14.5 × 10−6/◦C, the change
in the coefficient of thermal expansion of the workpiece was ∆αW = ±4 × 10−6/◦C, the
coefficient of thermal expansion of the CMM scale was αM = 10.5 × 10−6/◦C, and the
change in the coefficient of thermal expansion of the CMM scale was uαM = ±2 × 10−6/◦C.
The calculation is given by

uT = L ∗ ∆T ∗ α/
√

3 = 0.000019 mm (43)

uCTE1 = L ∗ (T − 20 ◦C) ∗ ∆α/2 = 0.000032 mm (44)

uCTE2 = L ∗ (T − 20 ◦C) ∗ uαM = 0.000016 mm (45)
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Therefore, the uncertainty component due to temperature compensation is

uTemp =
√

uT 2 + uCTE1
2 + uCTE2

2 = 0.00004 mm (46)

2. Uncertainty synthesis and reporting of measurement results.

Based on the above calculations, the results of the evaluation of each uncertainty
component are summarized. Assuming that the uncertainty components are independent
of each other, the synthetic standard uncertainty of the aperture measurement is

uc =
√

uE 2 + urd
2 + urp 2 + uTemp 2 = 0.00235 mm (47)

Taking the inclusion factor k = 2 with confidence probability P = 95%, the extended
uncertainty of the aperture measurement is obtained as

U = k × uc = 0.0047 mm (48)

Then, the final measurement should be expressed as

L = x1 ± U = (7.99727 ± 0.0047)mm, P = 0.95 (49)

4.4.2. Example Processing Verification

This experiment is a comparison experiment, and two machining operations were
performed with the same experimental conditions. The first S-piece was machined without
compensation using the machining code automatically generated by UG, and the second
S-piece was machined with compensation using the machining code modified by the
compensation strategy in Section 2 of this paper. The distribution of measurement points is
shown in Figure 26: three intercept lines, l1, l2, and l3, are taken from top to bottom along
the height direction of the S-shaped specimen, and their heights are 7 mm, 13 mm, and
19 mm, respectively, from the top of the S-shaped specimen, and 25 measurement points are
selected equidistantly on each intercept line, totaling 75 measurement points. The 75 points
of the two S-shaped specimens were measured using the CMM.
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Figure 27 shows the comparison of the machining errors of the S-shaped specimen
before and after compensation at the three cut-off lines. At truncation l1, the mean absolute
errors before and after compensation are 0.0530 mm and 0.0309 mm, respectively, and
the machining accuracy is improved by 41.75%. At truncation l2, the mean absolute
errors before and after compensation are 0.0609 mm and 0.0346 mm, respectively, and
the machining accuracy is improved by 43.21%. At truncation l3, the mean absolute
errors before and after compensation are 0.0508 mm and 0.0343 mm, respectively, and
the machining accuracy is improved by 32.53%. Figure 28 shows the overall results of
the error compensation. It can be seen that except for the corners where there is still
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over-compensation, the machining errors in the rest of the parts have been significantly
improved, which verifies the effectiveness of the compensation strategy.
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Similar to the present study, Holub, M. et al. described a new, complex approach
for verifying the dependence between the geometric, volumetric, and working accuracy
of CNC machine tools in 2020 [20]. In their research, an improvement in the volumetric
accuracy of a small three-axis machine tool by 70% resulted in an up to 58% improvement in
circularity in an unloaded state, measured according to ISO 230-4, and a 40% improvement
in the RONt of the workpiece under the finishing conditions of machining. However,
unlike this study, the object equipment they studied was a small three-axis machine tool,
and they considered less types of errors than this study. In comparison with their study, the
multi-source spatial error model and the compensation method established in this study
reduce machining errors more significantly.

5. Conclusions

The experimental work reached the following conclusions:

1. The nine-line measurement method for determining the geometric error of linear feed
axes of machine tools is introduced, and the geometric error identification model
based on the “nine-line method” is established.

2. For the more common flat vise clamping workpieces in production, the traditional
process dimensional chain is used to identify the workpiece position error, and the
posture error of the workpiece is identified by fitting the angle between the positioning
plane and the horizontal plane through the least squares method.

3. Based on the multi-source error model, the inverse kinematic operation of the machine
tool is used to solve the error compensation value and offset the machining error by
mirroring the error value of the same size.

4. Based on the “S-shaped specimen”, compensation processing experiments were car-
ried out, and the processing error was reduced by 30~45% after compensation, which
verifies the effectiveness of the compensation method in this paper.
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