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Neuroendocrine Differentiation of Prostate Cancer Is Not
Systematically Associated with Increased 18F-FDG Uptake
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Abstract: Neuroendocrine differentiation (NED) of prostate cancer represents an acknowledged
predictor of resistant and more aggressive disease. NED can be functionally exploited in vivo using
PET/CT imaging with somatostatin analogs radiolabeled with 68Ga. Many previous reports have
shown that 18F-FDG PET/CT should also be used in cases such as guiding management, as NED
is systematically associated with increased glycolysis. We hereby discuss the case of a metastatic
prostate cancer patient in which 68Ga-Dotatoc PET/CT revealed the occurrence of NED with low
FDG-avidity.
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Figure 1. A 69-year-old man was referred to our Institute in June 2012 to diagnose metastatic prostate
cancer with a Gleason score of 9 (4 + 5) and lymph nodal and bone involvement since diagnosis.
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The patient was initially treated with androgen deprivation therapy (LH-releasing hormone analogs
and bicalutamide). Since the conversion to castrate-resistant disease (June 2015), the patient had been
treated with Abiraterone, Docetaxel, Radium-223, and Cabazitaxel. After three cycles of Cabazitaxel
administration, the patient underwent 18F-FDG PET/CT for prognostic purposes. Indeed, while
FDG-avidity is low in naive prostate cancer, it is increased in advanced and heavily pretreated
metastatic castration-resistant prostate cancer (mCRPC), providing relevant prognostic insights [1-3].
18F-FDG-PET/CT images of the patient showed low tracer avidity in both lymph nodes and bone
lesions, suggesting low glycolytic activity and disease aggressiveness. The PSA level at the time
of imaging was 1631 ng/mL. After three further months of chemotherapy, he showed clinical and
biochemical progression (subjective increase in pain, PSA level of 2736 ng/mL). However, the sub-
sequent 18F-FDG PET/CT scan showed the disease’s stable metabolic activity (Panel (A)). The
apparent mismatch between the rising PSA level and the low 18F-FDG-avidity of metastatic le-
sions raised neuroendocrine differentiation suspicion (NED). While NED represents a relatively
rare finding in the initial phases of PC’s natural history (ranging 0.5-2% of total cases), recent data
showed that it could reach an incidence of 17-20% in the later stages of the disease (the so-called
treatment-emergent neuroendocrine PC, [4-6]). This kind of NED represents a later transformation of
ordinary adenocarcinoma’s cellular clones to the neuroendocrine phenotype, favored by the selective
pressure of androgen-targeted therapy and allowing advanced PC to escape the androgen depriva-
tion [7]. Its main clinical manifestations include androgen deprivation resistance, low PSA levels,
the disproportion between PSA kinetics and tumor burden progression, and the eventual increase
in serum neuroendocrine tumor markers [8,9]. On this basis, 9 days after, the patient underwent
68Ga-DOTATOC PET/CT (Panel (B)), which detected mild tracer uptake in almost all bone lesions
seen at 18F-FDG imaging and two 18F-FDG negative pleural lesions. The occurrence of NED was fur-
ther confirmed by the evidence of moderately increased Chromogranin-A serum levels (122.7 pug/L).
These findings guided the subsequent clinical management, as Cabazitaxel was suspended, and the
fifth line of systemic therapy with Enzalutamide was then administered to the patient. After three
months of Enzalutamide serum, PSA decreased to 833.5 ng/mL. However, a clinical progression was
observed. In particular, the Eastern Cooperative Oncology Group performance status (ECOG PS)
moved from 0 to 1, as an increase in bone pain and a weight loss of 10 kg were documented. To further
explore the apparent mismatch between biochemical and clinical response to Enzalutamide, the
patient underwent 18F-FDG and 68Ga-Dotatoc PET/CT within three days for restaging purposes.
While the former PET/CT showed very mild to moderate tracer uptake in a few pelvic and vertebral
bone lesions (maximum Standardized Uptake Value (SUVmax): 2.5 vs. 4 at baseline), the latter
showed a widespread, intensely Dotatoc-avid skeletal, pleural, and lymph nodal disease burden
(SUVmax: 64 vs. 5 at baseline) (Panels (C,D)). This result was interpreted as a progression of the
NED part of the disease, not tracked by PSA kinetics in agreement with the acknowledged low-PSA
secretion tendency of this kind of tumor [8-10]. On the one hand, the present case challenges FDG
PET/CT’s acknowledged prognostic value in mCRPC patients. Indeed, in this patient, the evidence
of low FDG uptake was associated with NED, which is a known predictor of resistant and more
aggressive disease [11]. On the other hand, it challenges the common assumption that mCRPC is
systematically associated with increased glycolysis in the presence of NED [12-15]. This is relevant
given the emerging use of 177Lu-PSMA therapy in mCRPC. Indeed, it has been shown that PC cells
with NED do not express PSMA and are not affected by the 177Lu-PSMA therapeutic effect [16].
In order to lower the risk of costly and useless 177Lu-PSMA treatments, the use of 18F-FDG PET/CT
imaging has been proposed to select patients for PSMA targeted therapy [17], even in the context of
clinical trials [18]. However, the present observation suggests the eventual occurrence of low-FDG
avid NED in mCRPC, in which this approach may be inadequate. This finding is coherent with
the previous observations by Chen et al. [19] and Acar et al. [20]. Altogether, these data suggest
that further studies are needed to explore the interplay between the 18F-FDG and somatostatin
analogs signals in NED mCRPC patients. As a final consideration, functional imaging of somatostatin
receptor expression may pave the way toward implementing novel targets for treating this aggressive
subtype of PC through receptor-targeted chemo/irradiation interventions.
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