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Abstract: In order to improve the clinical application of hyperspectral technology in the pathological
diagnosis of tumor tissue, a joint diagnostic method based on spectral-spatial transfer features was
established by simulating the actual clinical diagnosis process and combining micro-hyperspectral
imaging with large-scale pathological data. In view of the limited sample volume of medical hyper-
spectral data, a multi-data transfer model pre-trained on conventional pathology datasets was applied
to the classification task of micro-hyperspectral images, to explore the differences in spectral-spatial
transfer features in the wavelength of 410–900 nm between tumor tissues and normal tissues. The
experimental results show that the spectral-spatial transfer convolutional neural network (SST-CNN)
achieved a classification accuracy of 95.46% for the gastric cancer dataset and 95.89% for the thy-
roid cancer dataset, thus outperforming models trained on single conventional digital pathology
and single hyperspectral data. The joint diagnostic method established based on SST-CNN can
complete the interpretation of a section of data in 3 min, thus providing a new technical solution
for the rapid diagnosis of pathology. This study also explored problems involving the correlation
between tumor tissues and typical spectral-spatial features, as well as the efficient transformation
of conventional pathological and transfer spectral-spatial features, which solidified the theoretical
research on hyperspectral pathological diagnosis.

Keywords: hyperspectral imaging; spectral-spatial transfer feature; deep learning; tumor tissue;
joint diagnosis

1. Introduction

Compared with traditional pathological diagnosis [1], automated pathological diag-
nosis is more objective, and thus it can provide effective aided diagnostic information
and reduce the complicated workload of pathologists. At present, the field of automated
diagnosis mostly focuses on digital pathology research [2]. Digital pathology is based on
a large number of labeled pathology datasets for analysis and modeling, which has the
advantages of low difficulty in quantitative analysis and high utilization and repeatability
of information, and it has also achieved results in staging and classification of several
primary tumors [3–5]. However, the current development of digital pathology technology
has also encountered some bottlenecks [6]. For example, it is challenging to improve model
performance on existing bases [7]. Moreover, the cumulative effect of more datasets is be-
coming weaker [8]. The relevant models are effective in primary tumor staging but difficult
to apply to more complex subtyping, thus hindering large-scale clinical applications [9].

Hyperspectral imaging technology is expected to be an effective way to solve the
above-mentioned problems. Spectral imaging originated in the field of traditional aerial
remote sensing, and it is now crossing the broad-band and high-resolution hyperspectral
imaging technology [10–12]. In recent years, breakthroughs in imaging methods and key
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parameters such as spectral resolution have made it possible for medical spectral detection
at a close range [13,14]. Similar to the human fingerprint, between tumor and normal
tissues (such as different tissue structures or different subtypes of the same tissue), due to
their different basic components, the degrees of absorption, reflection, and scattering of
light waves vary. Then different light patterns (feature peak or feature valley) are produced.
This specific spectral “fingerprint” is the theoretical basis for achieving hyperspectral
pathological diagnosis [15,16].

Hyperspectral technology can automatically analyze and detect regions of interest,
and quantitatively evaluate the degree of variation in lesions. For example, Li used micro-
hyperspectral imaging to analyze skin tissue and segmented epithelial cells based on
spectral angle and spectral distance, achieving a better performance than the simple pixel-
by-pixel segmentation method [17]. However, due to the lack of spatial information, it
is challenging to further improve the accuracy of localization and segmentation. Akbari
obtained micro-hyperspectral images of lung metastatic tumors in the range of 450–950 nm,
and used support vector machines for classification, which achieved a detection sensitivity
of 92.6% for lung cancer tissue [18]. However, this algorithm is only sensitive to transmis-
sion intensity and cannot recognize subtle spectral differences. Jong used hyperspectral
imaging and CNNs to discriminate healthy tissue from tumor tissue in lumpectomy speci-
mens and achieved a Matthews correlation coefficient (MCC) of 0.92 on the tissue slices,
thus indicating the potential of hyperspectral imaging to classify the resection margins
of lumpectomy specimens [19]. Hu established a micro-hyperspectral dataset based on
30 gastric cancer patients and extracted deep spectral-spatial features by 3D-CNN, which
achieved a classification accuracy of 97.57% in the dataset of type IV undifferentiated gastric
cancer [20]. However, this method was only tested on a small sample dataset of a single
subtype, and its applicability and scalability in pathological slide diagnosis still need to
be validated.

The above studies indicate that more and finer spectral-spatial features of tumors can
be extracted through appropriate preprocessing methods and deep learning models. Hyper-
spectral pathological diagnosis technology is expected to become a reliable means to solve
the problem of automatic rapid diagnosis. However, due to the constraint of factors, such
as the method of clinical sample acquisition [18,21], performance of micro-hyperspectral
equipment [22] and progressiveness of analysis algorithms [17,23], a systematic and com-
plete theoretical research on spectral diagnosis has not been performed. moreover, problems
involving the correlation between tumor tissues and typical spectral-spatial features, as well
as the efficient transformation of conventional pathological and transfer spectral-spatial
features, have not been effectively resolved. Clarifying the above problems is the key to hy-
perspectral pathological diagnostic research and the foundation for the ultimate realization
of a joint diagnostic method.

At present, medical hyperspectral research is still in the early development stage.
With the influx of more sample data and the establishment of multi-dimensional efficient
models, medical hyperspectral technology is expected to become a powerful supplement to
existing histopathological tools. This paper applies a multi-data transfer learning model to
the classification task of micro-hyperspectral images to explore the differences in transfer
features between tumor tissues and normal tissues. It focuses on how to use deep transfer
learning models to build strong bridges between multi-source data and integrate more
morphological information into the hyperspectral data model. Finally, a joint diagnosis
scheme is established based on the entire process of data acquisition and analysis to achieve
an efficient pathological diagnosis.

2. Materials and Methods
2.1. Experimental Framework

The experimental framework and chapter arrangement of this paper are shown in
Figure 1. We used self-developed equipment (see Section 2.2 for details) to collect hyper-
spectral data (HS Data) and pathological color data (Color Data), including three datasets:
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D1, D2, and D3 (Section 2.3). All samples need to be labeled with detailed categories by
doctors. D1 is divided into spectral samples (D1-S), spectral-spatial samples (D1-SS, SS for
short), and image samples (D1-Color) by different preprocessing methods (Section 2.4).
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In this study, we established an optimal classification model BufferNet (Section 2.5) for
D1-S to extract the typical spectral features of tumor tissues. Then, a more comprehensive
structure feature of tumor tissue (Section 2.6) was learned by a multi-data transfer learning
model to solve the problem of insufficient hyperspectral data samples. Based on the
Trans-CNN model trained on D2, D1-Color data were incorporated for further training
to obtain CT-CNN-2. At the same time, we added D1-SS data to train SST-CNN-2 to
extract spectral-spatial transfer features, and then we compared the models and selected
the optimal transfer model.

Finally, in order to apply the proposed CNN models to actual automated pathological
diagnosis, a joint diagnosis method of spectral-spatial feature was proposed by combining
the preprocessing with the above optimal models. This method was applied to gastric
cancer and thyroid cancer data (D3) to verify the overall system performance, and was also
integrated into software for clinical practice (Section 4).

2.2. Micro-Hyperspectral Imaging System

The data-acquisition equipment used in this study is a self-developed micro-
hyperspectral imaging system MICROspecim, as shown in Figure 2a. The system adopts
the principle of built-in scanning and dispersion, and it mainly consists of a scanning
spectral imaging system, microscopic imaging system, and data acquisition system. Dur-
ing data acquisition, the projection beam enters the scanning spectral imager through
the sliced sample and passes through the built-in slit, collimator, dispersion element and
focusing lens, in sequence, finally obtaining one-dimensional spatial information and
spectral information of the target on the area array detector. The data-acquisition system
stores real-time images and sends instructions to control the movement of the precision
displacement table to obtain other dimensional spatial information of the target. At the
end of the scan, a data cube (Figure 2b) can be obtained. The format of the obtained data is
256(λ) × 1000(x) × 1000(y), where 1000 × 1000 is the image size, and 256 is the number of
spectral channels. In subsequent applications, the first 30 and last 26 bands are removed,
and the visible and near-infrared spectral data of 410–900 nm are retained. The data-storage
format adopts the BIP (Band Interleaved by Pixel), which is stored in pixel-band order, and
the storage process takes about 5 s. The spectral resolution and spatial resolution reached
3 nm and 0.5 µm respectively. Compared with the previous acquisition equipment [20],
the equipment used in this study has a larger image size and faster scanning speed. The
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larger image size means a larger field of covered view and more information in a single
scan. The shorter scanning time means faster and easier access to valuable information,
which is more conducive for clinical applications.
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(a) Micro-hyperspectral imaging system MICROspecim. (b) Hyperspectral datacube. (c) Spectral
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2.3. Experimental Dataset

The experimental dataset of this study consists of hyperspectral data and pathological
color data, as shown in Table 1. The hyperspectral data samples of D1 and D3 were all
from the Department of Pathology, the First Affiliated Hospital of Xi’an Jiaotong University.
They were collected by MICROspecim and included 50 cases of gastric cancer and 37 cases
of thyroid cancer pathology. While preserving the original hyperspectral data, pseudo-color
images were also saved. Then, the doctors labeled them, mainly marking the boundaries
of tumor tissue and normal tissue, as well as the specific location of partial cancer and
normal cells, and finally forming labeling documents. The pathology color data of D2 were
collected by a high-definition camera, including various mixed adenocarcinoma samples
(gastric cancer, thyroid cancer, etc.), which also contained detailed labeling documents.
Afterward, hyperspectral data needed to be preprocessed. The sample extraction process is
shown in Image (Figure 2d)/Spectral-spatial (Figure 2e) samples are extracted according to
the label information at a size of 250 × 250. For normal samples, the entire area is traversed
for extraction, while samples with too much of a blank area are removed. Spectral samples
(Figure 2c) are extracted based on the manually labeled pixel information of cancer cells
and normal cells. After standardization, D1-S has a total of 26,293 spectral samples (size
of 200 × 9 × 9). After principal component processing, D1-SS of spectral-spatial samples
(size of 3 × 250 × 250) and D1-Color image samples (size of 3 × 250 × 250) each have
4109 samples. The overall experimental dataset includes 40,957 image/SS samples and
42,618 spectral samples, as shown in Table 1 (see for more details).

Table 1. Experimental dataset.

Dataset Type
Image/SS Sample Spectral Sample

Cancer Normal Cancer Normal

D1 Hyper Gastric 1270 2839 11,365 14,928
D2 Mixed Pathology 9024 22,754 - -
D3 Hyper Thyroid 1884 3186 8562 7763
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2.4. Hyperspectral Data Preprocessing
2.4.1. Data Standardization

To ensure the spectral consistency of different tissue samples, a standardized data
calibration process is required. Based on the conventional calibration method of remote-
sensing images, the spectral calibration operation under transmission spectrum condition
is added. The main steps are as follows (as shown in Figure 3):

1. Whiteboard correction: Firstly, the hardware system of the micro-hyperspectral imag-
ing equipment is corrected by using a white board as the reference target to obtain
the MDraw. Correction parameters are built into the acquisition software system and
used to eliminate hardware differences, including the focal plane.

2. Flat-field calibration: For the uneven brightness of the same sample caused by uneven
smear or different coloring degrees of colorant, real-time calibration is performed
during the acquisition process to obtain the MDeven. For each column during column
scanning, real-time averaging is performed, and then the average is divided by
each pixel value in this scanning column. As shown in Equation (1), MDraw

r,c and
MDeven

r,c are the spectral curves of MD before and after flat-field calibration at position
(r, c), respectively. To avoid the influence of outliers, the maximum and minimum
150 spectral values in each column are excluded. Moreover, p is the remaining number
of pixels.

MDeven
r,c =

MDraw
r,c

1
p ×∑

p
k MDraw

k,c
(1)

3. Transmission spectrum standardization: Due to the slight differences in slice thickness
and light source intensity among different samples, the overall image brightness may
vary. As shown in Equation (2), the standardized transmission spectrum MDtran is
obtained by dividing MDeven by SC, and the average spectrum SC of the part without
medium coating or background region is selected as the reference.

MDtran
r,c =

MDevev
r,c

SC
(2)
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2.4.2. Principal Components Analysis

The principal component analysis (PCA) is a multispectral orthogonal linear trans-
formation based on statistical features [24]. Its basic idea is to recombine the data of
n correlated spectral bands into relatively fewer spectral principal components, that is,
reducing multiple spectral dimensions to a linear combination of spectral principal compo-
nents and using the extracted principal components to approximately represent original
multidimensional spectral data [25]. The specific calculation process is as follows:

1. Subtract the mean value of each feature (data need to be standardized).
2. Calculate the covariance matrix of samples x and y.

Cov(x, y) = ∑n
i=1 (xi − x)(yi − y)

(n− 1)
(3)

3. Calculate the eigenvalues and eigenvectors of the covariance matrix. If the covariance
is positive, x and y are positively correlated. If it is negative, x and y are negatively
correlated, and if it is 0, x and y are independent. If Ax = λx, then λ is the eigenvalue
of A, and x is the corresponding eigenvector.
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4. Sort the eigenvalues in descending order, select the top m eigenvectors, and transform
the original data into a new space constructed by m eigenvectors.

Through PCA transformation, multiple high-dimensional spectral features are con-
centrated into a minimal number of principal components, reducing data redundancy and
computational complexity. The resulting principal components are also uncorrelated with
each other.

2.4.3. Data Promotion

To make the most of limited training data, we adopted data promotion to increase the
number of training samples. Since the microscopic structural features of tumor tissue have
important morphological significance, simple operations such as stretching, compression,
magnification, and reduction cannot be performed. For the extracted image samples, we
used translation, flipping, and rotation to augment training samples, as these can effectively
suppress overfitting and improve the generalization performance of the model.

2.5. BufferNet Model

Micro-hyperspectral data contain three dimensions: spectrum, width, and height. The
spatial information contained in the width and height dimensions is closely related to the
spatial information in the spectral dimension. Extracting features from a hyperspectral
medical image (HMI) without losing its correlation is extremely important. Therefore, a
CNN-based modeling approach was chosen to achieve fine spectral feature extraction for
microscopic tumor tissue [26]. CNN is a feedforward neural network of deep learning
which is widely used in image processing and computer vision. Compared with traditional
machine-learning algorithms, CNN has better feature-extraction and image-classification
capabilities due to operations such as convolution, weight sharing, and pooling.

Since 1D-CNN filters can only extract features of one-dimensional spectral curves and
2D-CNN extract spatial features of two-dimensional images, they cannot extract spectral-
spatial features of HMIs [27,28]. In contrast, 3D-CNN is more suitable for extracting
features from data cubes by sliding convolution kernels in three dimensions, including
two spatial and one spectral direction [29]. For a data cube, D ∈ RS×H×W , a 3D-CNN
performs convolutional operation with a 3D filter, F ∈ RK×I×J , to obtain a 3D feature map,
M ∈ RU×V×Z. Assuming the stride is t, the value of M[s, h, w] at (s, h, w) can be calculated
according to Equation (4), in which ∗ represents convolutional operation. Image F is
traversed and finally outputted M. Since D is not decomposed or averaged, the correlation
between the spectral and spatial information is preserved.

M[s, h, w] = (D ∗ F)[s× t, h× t, w× t] =
K

∑
k=1

I

∑
i=1

J

∑
j=1

D[s× t− k, h× t− i, w× t− j]× F[k, i, j] (4)

where s, h, and w represent the coordinates in the three output directions, namely the
position of length, width, and spectral dimensions; and I, J, and K represent the offset of
the convolution kernel in these three directions, which collectively determine the receptive
field size of the layer. For cell objects in the data cube, after multiple down-samplings, the
resolution of feature map will be smaller than 1 pixel in the feature map. Therefore, we
designed two types of convolutional layers, i.e., a down-sampling layer and buffer layer,
and this network model is named BufferNet. To expand the receptive field of neurons, the
stride of down-sampling was set to 2. The stride of buffer layer was fixed at 1 to enhance
the representation without reducing the resolution of the feature map. The convolution
kernel is 3 × 3 × 3, which is used to extract detailed information of the data cube. The
network structure of BufferNet is shown in Figure 4; it consists of three buffer blocks, and
each block consists of 1 down-sampling layer and 3 buffering layers. To speed up the
training process, each 3D convolutional layer is followed by a 3D batch normalization layer.
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Figure 4. Network structure of BufferNet. BufferNet contains 13 3D convolutional layers (1 + 3 down-
sampling layers; 3 × 3 buffering layers), one fully connected layer, and one SoftMax layer. The model
takes spectral data (200 × 9 × 9) centered on the sample point as input. Firstly, the first filter is set to
a stride of (2, 1, 1) and a kernel of (5, 1, 2) to down-sample the spectral dimension and compress it to
64 feature maps of 98 × 9 × 9. Then, the feature maps are input into the three buffer blocks, with
output sizes of 49 × 5 × 5, 25 × 3 × 3, and 13 × 2 × 2, and the numbers of the output feature map
are 64, 128, and 256, respectively. The output feature map of the third block is 6 × 1 × 1 after 3D
average pooling and is then fed into the fully connected layer, which finally outputs two probabilities
of cancer and non-cancer.

2.6. VGG-16 Model

Transfer learning [30,31] allows us to apply a pre-trained neural network model to a
specific dataset. This means that when we solve the current tumor classification problem,
we can start from a model trained on similar medical diagnostic problems, instead of
training a new model from scratch. For the practical task where hyperspectral data were
difficult to obtain in this study, transfer learning can be used to apply the relationships
learned from previous models on other pathological data to this field [32,33]. VGGNet [34]
is a relatively mature pre-trained model, which is usually slightly improved based on actual
needs and then transferred to specific tasks in order to fully utilize existing data resources
and save time costs. The deep features extracted from these pre-trained networks usually
have a good generalization performance. For example, Sermanet [35] and Kermany [36]
applied pre-trained models to classification tasks of mouse brain images and eye images,
respectively, and achieved high accuracy.

VGG-16 was used as the pre-trained model to extract the spectral-spatial transfer
features in this paper. The network structure of VGG-16 is shown in Figure 5. The fea-
tures of the model itself are sufficiently generalized, and there is no need to modify too
many weights. Therefore, the structure and pre-trained weights of the pre-trained model
were retained as initialization parameters, and the part above the fully connected layer
was discarded for learning new weights. The entire network uses the same size for the
convolution kernel and pooling kernel, and this is conducive to extracting features of
image detail and provides good scalability. During the training process, fine-tuning and
freezing operations are adopted, and all network layers are initialized with pre-trained
weights. Because the entire network has a huge entropy capacity, we freeze the lower-level
convolution (learning general features) and only fine-tune the later convolutional layers
(learning more specific features).
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3. Results
3.1. Classification Results of Typical Spectral Features

In training, the batch size of BufferNet is set to 128, the learning rate is set to 0.0001, the
momentum is set to 0.9, and the number of iterations is 30. Stochastic gradient descent is
used as the optimizer. The training samples are shuffled at each iteration. In the comparison
experiments, we chose the previously designed model, SS-CNN-3 [20], and the classical
method, 3D-ResNet, to compare with BufferNet. SS-CNN-3 was the previous optimal
model; it achieved a better performance than conventional machine learning and 2D CNN
methods. ResNet was originally a network structure based on 2D convolution [37], which
achieved an excellent performance in the ImageNet classification task, effectively solving
the problem of gradient vanishing in deep neural networks. To facilitate the comparison of
network architecture performance, we replaced 2D convolution kernels with 3D ones to
build a 3D-ResNet, and the input sizes of these models were uniformly set to 200 × 9 × 9.

Table 2 shows the classification performance of three different algorithms on the test
dataset. The results show that BufferNet is the best algorithm, with an overall accuracy of
96.17%, which is higher than the 95.83% for 3D-ResNet and 95.20% for SS-CNN-3. Since
these three models mentioned above all use 3D convolution as the filter, differences in
performance can only be caused by differences in model structure. This indicates that
the buffering layer plays an important role in improving the extraction ability of spectral
features. Compared with 3D-ResNet, BufferNet achieves better results, and its model is
lighter and has fewer parameters. The training and testing time is relatively less, making it
more conducive to practical application.

Table 2. Classification results of each model.

Model Total Parameters
/Million Training Time/s Testing

Time/s Accuracy

SS-CNN-3 0.198 1197.16 s 1.94 s 95.20%
3D-ResNet 33.15 170,973.52 s 232.80 s 95.83%
BufferNet 8.19 48,594.21 s 57.59 s 96.17%

3.2. Results of Spectral-Spatial Transfer Features

In order to fully utilize more samples from cancer datasets, it is necessary to extract
more generalized features of the tumor tissue structure and then train our specific hyper-
spectral cancer data on this basis. The construction process of the spectral-spatial transfer
model is shown in Figure 6. VGG-16 is used as the pre-trained model, and Trans-CNN
is trained based on the pathology color dataset D2. Then Trans-CNN is used as the pre-
trained model for subsequent processing, extracting transfer features corresponding to
conventional pathology and hyper-spectrum from the hyperspectral gastric cancer image
dataset D1-C and spectral-spatial dataset D1-SS, respectively.
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3.2.1. Transfer of Conventional Pathology

The training process and results of conventional pathological transfer model are as
follows:

1. Build the VGG-16 model and load its weights. Use the training and testing data of D2
as input to run the VGG-16 model. Then build a fully connected network to train the
classification model Trans-CNN.

2. Based on the Trans-CNN model, use the weights of each layer as initialized parameters,
and use the hyperspectral gastric cancer dataset D1-C as the model input to extract
spatial transfer features. Train a completely new classification model, CT-CNN-1,
with a low learning rate. Figure 7a shows the training curve of CT-CNN-1, and the
accuracy reaches 91.53% after 50 iterations.

3. Fine-tuning is performed on the basis of CT-CNN-1 to further improve the model’s
performance. Freeze all convolutional layers (Blocks 1–4, shown in Figure 5) before
the last convolutional block, and only train the remaining layers (Block 5 and FC) to
obtain the classification model CT-CNN-2. The SGD optimization method is used for
training, with a learning rate of 0.0008, batch size of 50, and epoch of 17. The training
curve is shown in Figure 7b.

CT-CNN-2 achieved a classification accuracy of 92.20% after 17 iterations. The results
show that the pre-training on the pathological big dataset D2 played a positive role in
improving the classification performance of the model, and moderate fine-tuning was also
conducive to improving the model performance.
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3.2.2. Transfer of Spectral-Spatial Data

D1-SS is replaced as the model input to extract spectral-spatial transfer features and
train SST-CNN-2. This part of the training process is the same as Section 3.2.1, except for the
different input dataset. First, a PCA is performed on all data in the training and testing sets.
Figure 8 shows the results of the hyperspectral gastric cancer sample after the principal
component analysis, including grayscale images of different principal components and
pseudo-color images.
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Figure 8. PC images and pseudo-color images of hyperspectral gastric (a) normal tissue and (b) cancer
tissue. The upper row from left to right is PC1–PC5 and the bottom row is color image, PC134, PC145,
PC514, PC135, in sequence. PC1 represents the first principal component. PCA134 uses PC1, PC3,
and PC4 as the three channels to form pseudo-color data, and PCA135, PCA514, etc., can be obtained
in the same way.

Figure 9 summarizes the amount of information contained in each principal compo-
nent. It can be seen that the first 10 principal components contain over 98.2% of spectral
information. Among them, the first principal component, PC1, contains 76.2% of the infor-
mation, while the information content is relatively low after the fifth principal component.
Therefore, the first five principal components are mainly used. We synthesized pseudo-
color images with different principal components to form the D1-SS dataset, including
PCA123, PCA134, PCA145, etc., to replace the hyperspectral gastric cancer dataset D1-C
as input. At the same time, in order to better compare the effect of PCA processing, each
principal component (PC1–PC5) is used as input to train its respective models.
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The final results are shown in Table 3. It can be seen that when we use three principal
components, the accuracy from high to low is: PCA134 (95.46%) > PCA514 (94.39%) >
PCA145 (94.25%) > PCA123 (80.78%). PCA134 provides the best performance, while
PCA123 provides a poorer performance.

Table 3. Classification results of each model input.

Input PCA123 PCA134 PCA145 PCA514 PC1 PC2 PC3 PC4 PC5

Accuracy/% 80.78 95.46 94.23 94.39 93.13 73.97 83.17 81.46 81.10

3.3. Results of Joint Classification Diagnosis

In the above, classification models of gastric cancer tissue were established from
the perspectives of spectral features and spectral-spatial transfer features. Different clas-
sification models have different characteristics. In this section, we combine the above
optimal models, make use of their respective advantages, and refer to practical applica-
tion experience to establish a joint diagnostic method, which includes the steps shown in
Figure 10.

1. Hyperspectral data acquisition of pathological sections: Following the method de-
scribed in Section 2.2, hyperspectral images of 20× sections are acquired. According
to the imaging size of equipment and sample radius, in order to cover all sample
tissues on the section, an average of 6–8 images per section need to be collected.

2. Classification of spectral-spatial samples: The size of each original hyperspectral
image is 256 × 1000 × 1000. The SS samples are extracted and preprocessed following
the method in Sections 2.3 and 2.4. Each hyperspectral image can generate 16 small
SS samples, which are then classified based on the spectral-spatial information sepa-
rately. The trained model SST-CNN-2 is applied. The numbers for the small samples
diagnosed as normal tissue are recorded. For the samples diagnosed as cancerous
tissue, further processing is carried out.

3. Spectral information extraction of cancerous tissue: For samples diagnosed as can-
cerous tissue by SST-CNN-2, spectral angle matching and unsupervised clustering
methods are used to remove red blood cells, lymphocytes, cytoplasm, and intersti-
tium from the sample data, leaving only gastric cells and cancer cells as classification
samples for the next step.

4. Spectral classification of cancerous tissue: The trained model BufferNet is applied to
classify cancerous tissue and normal tissue.
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5. According to the spectral classification results from Step 4 and the spectral-spatial
classification results from Step 2, the joint classification probabilities of each small
sample belonging to the cancerous sample are assigned to determine the final category
of the original hyperspectral data.
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Taking the gastric cancer sample in Figure 11 as an example, the collected hyperspectral
data are divided into 16 small SS samples (Nos. 1–16, Figure 11b) with a consistent size.
Figure 11a shows the result of the SST-CNN-2 classification model in which 11 small
samples are diagnosed as gastric cancer (>0.9) and 2 as normal tissues (<0.1). These
13 small samples were determined and do not require further processing. In addition,
the probabilities of gastric cancer tissue in No. 4, No. 8, and No. 15 are 0.826, 0.142, and
0.730, respectively, and further processing is still required to determine their categories.
Figure 11b shows the result of spectral classification after passing through BufferNet. Each
suspected cancerous pixel is classified, and the red marking indicates that the sample point
is diagnosed as gastric cancer. It can be seen that, except for No. 12 and No. 16, other
regions are more or less distributed with cancerous sample points, and this is similar to
the classification results obtained in Figure 11a. The results of Figure 11a,b are combined
to obtain the final joint classification result (Figure 11c), in which the categories of No. 4
and No. 15 are further confirmed after spectral classification. In practical applications, if
there is a cancerous probability of 0.377, like in No. 8, in order to obtain a higher sensitivity
indicator, we usually diagnose this sample as a cancerous area. By extending the above
process to the entire section, we can obtain the category of each hyperspectral image on the
section and determine the cancerous probability of this section.

In order to have a clearer understanding of this diagnostic process, we calculated the
probability of each pixel being classified as gastric cancer based on the spectral-spatial joint
diagnosis results, as shown in Figure 11d. The closer the color is to red, the higher the
probability that the area belongs to a cancerous area, and the closer the color is to blue,
the higher the probability that it belongs to a normal area. Comparing with the true area
marked by the doctor in Figure 11e, it can be seen that our classification results are quite
accurate. Figure 12 shows the classification results of a gastric cancer tissue and a normal
tissue. The entire region in Figure 12a is undifferentiated adenocarcinoma, and Figure 12c
is normal mucosal tissue. Moreover, the distribution of each tissue is clearly shown in the
corresponding classification results (Figure 12b,d).
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4. Discussion

Previous studies have shown the effectiveness of spectral-spatial features in spec-
tral diagnose. For example, Sun collected 880 scenes of multidimensional hyperspectral
cholangiocarcinoma images and realized further diagnose based on the features from patch
prediction [38]. Liu found that the spectral data of nuclear compartments contribute more
to the accurate staging of squamous cell carcinoma compared with peripheral regions [39].
Martinez-Vega evaluated different combinations of hyperspectral preprocessing steps in
three HSI databases of colorectal, esophagogastric, and brain cancers [40], and he found
that the choice of preprocessing method affects the performance of tumor identification,
and this partly inspired our later data accumulation. However, problems involving the
correlation between tumor tissues and typical spectral-spatial features [13,41], as well
as the efficient transformation of conventional pathological and transfer spectral-spatial
features [15,42], have not been effectively resolved. In response to the above problems,
the solution proposed in this paper has the following characteristics: (i) High-resolution
micro-hyperspectral imaging combined with deep-learning models was used to extract
microscopic spectral-spatial feature of tumor tissue for a precise diagnosis. Different from
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conventional digital pathology techniques that extract morphological information based on
large data sets, micro-hyperspectral imaging focuses more on spectral differences between
tissues. This approach aims to obtain the 3D data cube information of different tissues on a
relatively small data set. Considering the diverse pathological malignancy and staging in
gastric cancer, this research focused on extracting spectral features of pathological tissue
under high-resolution conditions. Finally, accurate classification and identification of can-
cerous and normal tissue can be realized based on the differences of spectral characteristics.
(ii) A spectral-spatial transfer model between digital pathology and hyperspectral imaging
was constructed to extract comprehensive detailed features of tumor tissue, to maximize
the use of existing pathology datasets. Different from previous hyperspectral pathology
studies, this study was not limited to differences of spectral dimension; instead, it focused
more on the learning of spectral-spatial transfer features of tumor tissue. Whether it is
from the perspective of medical hyperspectral data acquisition or deep-learning model
training, we are required to not be limited to the existing hyperspectral datasets but to
utilize much more relevant data information and the characteristics of efficient existing
models to achieve the effective fusion of transfer features of the spectral dimension and
image dimension [43].

In this study, compared with the conventional pathological model, CT-CNN-2, which
achieved a classification accuracy of 92.20%, the optimal result of SST-CNN-2 was improved
by 3.26%. This indicates that the generalized tumor structure features obtained from
pre-training have a positive effect on the overall model classification performance. The
spectral-spatial transfer feature extracted based on SST-CNN-2 contains more tumor details,
so the performance of the spectral-spatial model is significantly better than that of the
conventional pathological model. From the results of the spectral-spatial model, we can see
that PCA134 provides the best performance, while PCA123 provides a poorer performance.
The results of PCA145 and PCA514 are similar, indicating that the order of pseudo-color
synthesis for each principal component has little effect on the result. When we only consider
the single principal component, PC1 has the best performance, and PC2 has the worst. The
reason for the poor performance of PC2 is that it mainly contains brightness information
from micro-hyperspectral data, and brightness differences have a negative impact on the
results. There is little difference in accuracy between the principal components after PC4.
This is also consistent with the data results of the amount of information, indicating a
positive correlation between the classification performance and the amount of information
contained in the data.

In order to verify the effectiveness of the proposed spectral-spatial transfer model and
the portability of the joint diagnostic method, we extended the joint method to hyperspectral
data of thyroid cancer. Thyroid cancer is one of the most common malignant tumors of the
head and neck, in which the papillary carcinoma with low malignancy is the most common.
We collected a total of 5070 SS samples and 16,325 spectral samples of thyroid tissue to
form dataset D3. The data preprocessing and model training process are the same as those
of the gastric cancer classification model, and a classification accuracy of 95.89% is achieved
finally. This accuracy is slightly higher than that of gastric cancer, which may be related to
the relatively single type of thyroid cancer, less invasion, and clearer boundaries between
cancer and non-cancer tissues.

This is shown in Figure 13, taking a thyroid cancer sample as an example. Figure 13a
shows the result of the joint classification model, and Figure 13b shows the cancerous area
marked by a doctor. In order to make the display in software faster and more intuitive, the
process of result visualizing in the previous section is further improved. We use the pseudo-
color image of the sample as the background, and mark the high-probability cancerous
areas predicted by the model with different colors. Normal areas diagnosed are marked
in green, cancerous areas are marked in blue, and suspected areas near the threshold
are marked in yellow. The green, blue, and yellow dots in Figure 13c indicate the color
markings for normal, cancerous, and suspected areas, respectively. The visualization effect
is shown in Figure 13c, and it is highly consistent with the areas marked by a doctor in
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Figure 13b, indicating that the joint diagnostic method proposed in this paper is applicable
to several types of cancer. In order to better apply it to clinical practice, we integrated the
joint diagnostic system into the acquisition software. After data acquisition is completed,
the corresponding tumor type can be selected for joint diagnostic analysis, and the final
diagnosis result, probability, and visualization image are immediately presented on the
software interface, as shown in Figure 13d.
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In actual clinical diagnosis, doctors usually pay more attention to the sensitivity
indicator, because a higher sensitivity means a lower probability of missed diagnosis. From
the perspective of aided diagnosis, we hope to distinguish all suspected cancer samples.
Then, we can hand them over to doctors for further processing, so as not to miss any
suspected cases. Therefore, we adopt a more conservative strategy in setting the thresholds
of partial models in practical application in order to obtain a higher sensitivity indicator.
At present, the joint diagnostic method can complete the interpretation of a section of data
in 3 min. The next step is to improve the joint diagnostic method on a larger sample base
from different sources, so that 80%–90% of normal samples can be eliminated in the first
stage of initial screening in the automated diagnosis application of multiple diseases. Then,
only the remaining problem specimens and key areas need to be observed by doctors, and
this is expected to further enhance the overall diagnostic efficiency. On the other hand,
histopathological diagnosis remains a crucial step currently. We aim to establish clearer
spectrum pathology correlations through further research of hyperspectral diagnosis, which
can better provide medical interpretation of model results.

5. Conclusions

The main contribution of this study is to propose a new idea of hyperspectral patholog-
ical diagnosis, which makes full use of the fine hyperspectral features and the characteristics
of large-scale conventional pathological data by combining micro-hyperspectral technology
with pathological images. Based on the effective integration of the spectral and spatial trans-
fer features of tumor tissues, the spectral-spatial transfer model SST-CCN was established.
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In this work, a hyperspectral database was established, including 50 gastric cancer patients
and 37 thyroid cancer patients, with a total of 40,957 image samples and 42,618 spectral
samples. The spectral-spatial transfer model achieved a classification accuracy of 95.46%
and 95.89% in gastric cancer and thyroid cancer datasets, respectively. The results are better
than the models trained on single conventional digital pathology and single hyperspectral
data, thus indicating the effectiveness of hyperspectral spectral-spatial transfer features for
tumor tissue classification. Combined with standardized preprocessing and classification
models, a joint classification diagnosis method based on SST-CCN was established. It
was integrated into acquisition software and successfully applied to clinical sample data,
indicating the portability of the joint diagnostic method for different cancer tissues. The
introduction of this method is not only a new exploration of pathological automation
diagnosis, but also a powerful supplement to traditional histopathology.
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