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Abstract: This study investigates, through a narrative review, the transformative impact of deep learn-
ing (DL) in the field of radiotherapy, particularly in light of the accelerated developments prompted
by the COVID-19 pandemic. The proposed approach was based on an umbrella review following a
standard narrative checklist and a qualification process. The selection process identified 19 systematic
review studies. Through an analysis of current research, the study highlights the revolutionary
potential of DL algorithms in optimizing treatment planning, image analysis, and patient outcome
prediction in radiotherapy. It underscores the necessity of further exploration into specific research
areas to unlock the full capabilities of DL technology. Moreover, the study emphasizes the intricate
interplay between digital radiology and radiotherapy, revealing how advancements in one field can
significantly influence the other. This interdependence is crucial for addressing complex challenges
and advancing the integration of cutting-edge technologies into clinical practice. Collaborative efforts
among researchers, clinicians, and regulatory bodies are deemed essential to effectively navigate
the evolving landscape of DL in radiotherapy. By fostering interdisciplinary collaborations and
conducting thorough investigations, stakeholders can fully leverage the transformative power of DL
to enhance patient care and refine therapeutic strategies. Ultimately, this promises to usher in a new
era of personalized and optimized radiotherapy treatment for improved patient outcomes.

Keywords: deep learning; radiotherapy; digital radiology; artificial intelligence

1. Introduction
1.1. Background

Radiotherapy is a clinical sector based on the therapeutic use of ionizing radiation.
It represents one of the most important methods of anti-tumor therapy in the various
oncological sectors [1,2]. Among the sectors in which it is most used, we find the sector of
gynecological tumors, of the rectum and anus, of the lungs, and of the head and neck area.
However, the new equipment allows this technological method to also be used in many
other sectors, such as, to name a few: sarcomas, primary and secondary tumors of the brain
and spinal cord, breast cancer, pancreatic tumors, primary and secondary liver tumors, and
other categories. This therapy can be used both exclusively and in combination with other
therapeutic methods.

The technological approach is based on a range of solutions that offer different oppor-
tunities, and the most recent results have made it possible to develop different radiotherapy
modalities with the objective of increasing focus on ensuring better control of the disease
and minimizing the medium- and long-term adverse effects. All this requires an increas-
ingly continuous investment in high technological specialization and new experimentation.

Among the dominant methods, we find, for example [3-7]:
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1. Traditional radiotherapy The patient undergoes radiotherapy every day for five days a
week, and for a number of weeks that varies based on the disease and parameters,
which depend on the tumor to be treated [3].

2. Conformal radiotherapy It differs from the previous one due to the use of a linear
accelerator equipped with a multi-leaf collimator, which allows for better focusing
on the neoplasm to be treated while minimizing damage to the surrounding healthy
tissues [4].

3. Intensity-modulated beam radiotherapy (IMRT) It has the use of a multi-leaf collimator in
common with conformal radiotherapy. In this case, however, the collimator blades
move over the area to be irradiated during irradiation with a pre-established sequence
monitored by the computer, while the machine delivers the radiation beam. This
allows for greater precision than conformal radiotherapy [5].

4. Stereotactic radiotherapy It is based on greater attention and accuracy to the immobiliza-
tion of the patient [6]. It is indicated for very particular clinical cases and a very high
specialization of the centers where it is used. In this case, particular accelerators are
used, which use a particular device called a gamma knife (gamma ray scalpel).

5. Hadrontherapy This technology uses subatomic particles, such as protons and ions,
capable of irradiating the disease with extreme precision and with different biological
effectiveness [6]. In this case, as in the previous one, the therapeutic indications are
diverted toward very selected cases [7].

These different methods are now the subject of numerous 360-degree comparative
studies by the scientific community [8,9], with a particular focus on innovative dose
minimization approaches [10].

1.2. Introduction and Potential Applications of Deep Learning in Radiation Therapy

Regardless of which of the five technological methods will be used, radiotherapy is
preceded by complex planning. For example, important parameters come into play, such
as [11]:

e The PTV (planning target volume), which represents the target volume associated
with the body region to be irradiated.

e  The GTV (gross tumor volume), which is associated with the actual tumor mass and is
related to the PTV.

e  The CTV (clinical target volume), which includes the neighboring regions with healthy
tissue. This parameter is also related to PTV.

PTV has a central role in radiotherapy, and for some time we have been trying to sup-
port its selection with algorithms and/or image processing software [11]. The development
of deep learning (DL) has brought new life to all this.

Deep learning, through the use of neural networks with multiple interconnected layers,
allows the processing of an enormous amount of data and learning from them [12,13].

Software solutions for contouring based on DL and automated segmentation of
anatomical structures are becoming increasingly widespread and seem to offer clear ad-
vantages in clinical application [14]. The use of DL-based auto-contouring tools can save
a significant amount of time in the procedure, minimize manual corrections, represent a
third-party solution for standardizing procedures, and minimize collateral exposure of
healthy tissue. In recent years, we have witnessed important developments in this area also
driven by the boom in interest that has spread toward the use of artificial intelligence in the
health domain sector with the explosion of the COVID-19 pandemic [15,16].

1.3. The Rationale and the Purpose of the Study

Some important questions are resonating around the introduction of Al and, in partic-
ular, DL in this area, such as:

o What is the state of development and diffusion of DL in radiotherapy?
o What are the opportunities and the obstacles encountered and the challenges to overcome them?
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Systematic reviews are an important basis for making a map point since they are an
index of the consolidation of emerging themes and an indirect index of the themes that
require greater concentration of scholars.

The objective of this study is, therefore, to carry out, through a narrative review, an
umbrella review [17,18], which allows an analysis of the systematic reviews produced to
date in this area to answer these questions.

Performing an umbrella review based on a narrative review of systematic reviews is
vital for consolidating evidence and identifying both emerging themes and patterns. It
enables a nuanced understanding of the research landscape, an exploration of heterogeneity,
and the identification of gaps [17,18].

1.4. Organization of the Study

The study is structured into five sections, including the introduction in Section 1.

Section 2 outlines the umbrella review design, illustrating the methodology employed
to identify each systematic review included in the study.

Following this is Section 3, presenting the results, which are divided into subsections.

Section 3.1 conducts an analysis of trends in scientific production in this field over time.

Section 3.2 provides a detailed analysis, categorizing each study from the overview,
supported by tables (Table 1 and Table 2).

Additionally, Section 3.2 includes an excerpt from each analyzed study.

Section 4 is devoted to the discussion, organized into seven subsections. Section 4.1
presents preliminary insights, offering initial observations and understandings.

Section 4.2 critically explores emerging opportunities, examining potential paths for
further investigation or development.

In Section 4.3, specific areas warranting deeper examination are identified and discussed.

Section 4.4 elaborates on key areas where a collective need for more in-depth ex-
ploration is recognized. This subsection is further subdivided into detailed paragraphs,
providing targeted analyses derived from the literature.

Section 4.5 introduces and offers commentary on a comprehensive synoptic diagram,
conclusively summarizing the umbrella review project. Following this, the takeaway
message (Section 4.6) and limitations (Section 4.7) of the study are presented.

Finally, Section 5 is dedicated to the conclusions.

2. Methods

This umbrella review, based on a narrative review, used the ANDJ standardized
checklist designed for narrative reviews [19]. Such a narrative checklist is a methodological
tool that provides detailed and structured guidance during the review process. It aids in
standardizing the review process by establishing key criteria for use during the analysis,
making the process of constructing the study transparent.

The PubMed and Scopus databases were used in the overview. A qualification method-
ology was used to choose the studies based on an assessment of qualified parameters [20].
Based on [20], we evaluated each contribution based on six key parameters:

Clarity of study rationale in the introduction,

Appropriateness of the work’s design,

Clarity in describing methods,

Clear presentation of results,

Justification and alignment of conclusions with results,

Adequate disclosure of conflicts of interest by authors,

The scoring system involves assigning graded scores (1 = min; 5 = max) to each one of
the first five parameters based on the quality of each criterion.

Nl b=

For the last parameter, a binary assessment (Yes/No) was conducted regarding the
disclosure of conflicts.
To preselect studies:

e  Each of the first five parameters must obtain a minimum score of 3,
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e  The last parameter must be marked “Yes” for conflict disclosure.

Only peer-reviewed studies were considered.

We used the keys “radiotherapy” and “deep learning” combined in AND logic and
with searches both in the title/abstract and the full text.

We identified 18 studies [21-38].

3. Results

Below is an analysis of the trends of the studies in this field, reported in Section 3.1, a
detailed analysis, with a categorization of the overview of each study supported by tables
(Table 1 and Table 2), in Section 3.2, and a summary in Section 3.3.

3.1. The Trends in the Studies on Deep Learning in Radiotherapy

A search was conducted using specific criteria (see Box 1) on the PubMed database,
resulting in a total of 1003 studies on the use of DL in radiotherapy from 2013 to the
present. Figure 1 shows the increasing number of articles found in PubMed related to
the application of DL in radiotherapy, based on the selected search parameters. Figure 2
presents the distribution of article types, with reviews (1 = 87) being more prevalent than
systematic reviews (n = 19), in relation to DL in radiotherapy.

1050
1003

949
. 909

m Studies on the topic of deep learning in radiotherapy

1000

950

900

850

800

m Studies on the topic of deep learning in radiotherapy in the five years

w Studies on the topic of deep learning in radiotherapy from the Covid-19 outbreak

Figure 1. Studies focusing on deep learning and radiotherapy.

m Other article types = Review m Systematic Review

Figure 2. Article types focusing on deep learning and radiotherapy.
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Box 1. The proposed composite keys.

(radiotherapy[Title/Abstract]) AND (deep learning[Title/Abstract])
(radiotherapy[Title/Abstract])

Research in this field has significantly accelerated during two distinct periods, as
depicted in Figure 1. The first surge occurred in the past five years (from 2019 to now),
with 94.6% of all indexed articles on this topic being published on PubMed. This period
highlighted the growing interest and collaborative efforts to enhance knowledge and
understanding of DL in radiotherapy.

The onset of the COVID-19 pandemic marked an even faster growth phase, with
nearly all published articles (90.6%) since 2020 focusing on this topic.

The COVID-19 pandemic has caused a surge in the use of DL in the medical field,
particularly in radiotherapy. This increase in research activity highlights the ability of the
academic and research communities to respond quickly and effectively to the challenges of
the pandemic. It also showcases their ability to drive innovation during times of crisis.

The rise in publications on DL in radiotherapy on PubMed is a result of advancements
in technology and a growing recognition of DL’s potential to improve the radiotherapy
workflow. By streamlining processes, DL is at the forefront of transforming radiotherapy
practices, making them more personalized, accurate, and efficient. The emphasis placed
by researchers on this subject has been markedly intense from 2020 to the present, as
demonstrated in Figure 3. This figure indeed reveals that interest among researchers has
significantly surged since the COVID-19 pandemic, with approximately 90% of articles
concerning the application of DL in radiotherapy being published since the onset of the
COVID-19 pandemic (n = 897).

= Studies published since the Covid-19 pandemic
= Studies published before the Covid-19 pandemic

Figure 3. Number of articles published about the use of DL in RT pre- and post-COVID-19 pandemic.

In conclusion, the growing body of literature on DL in radiotherapy, especially in light
of the COVID-19 pandemic, emphasizes the important role of DL in shaping the radiother-
apy workflow. This trend not only showcases the field’s ability to adapt and innovate in
response to emerging challenges, but also signifies the increasing acknowledgment of DL
as a crucial element in continuously improving and refining radiotherapy techniques.

3.2. Outcome from the Analysis
3.2.1. General Findings from the Analysis

The collective message that emerged from the analysis of the systematic reviews un-
derscores a profound development in the medical field, particularly within the domain of
radiotherapy, propelled by the advent of cutting-edge technologies, such as artificial intel-
ligence (AI), deep learning (DL), and convolutional neural networks (CNNs) [38]. These
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systematic reviews meticulously delineate the multifaceted impact of these technologies on
various aspects of healthcare, encompassing clinical practice, the education of healthcare
professionals, and the broader healthcare landscape [25].

A salient theme elucidated throughout these reviews is the immense potential of DL
to catalyze a paradigm shift in radiotherapy workflows. DL, especially in its manifestation
within the field of Al, emerges as a pivotal player, offering substantial enhancements across
diverse stages of radiotherapy—ranging from pre-treatment planning to real-time treatment
delivery and post-treatment evaluation [38]. Through a comprehensive analysis of the
systematic reviews, it becomes evident that DL’s scope within radiotherapy spans a myriad
of topics. Notably, DL methodologies empower significant advancements in predicting
treatment outcomes [38], streamlining and automating contour delineation [21,33,35,37],
and optimizing treatment planning procedures [21,24,32,35,37].

Moreover, the integration of DL into radiomic analyses represents a promising avenue
for clinicians, enabling the extraction of intricate features from medical imaging data.
This integration is thoroughly evaluated in several systematic reviews [22,26,27,36,38],
which underscore its potential to enhance diagnostic precision and prognostic assessments.
Furthermore, these reviews illuminate that the development of radiomics not only aims to
augment the accuracy of diagnostic and prognostic evaluations but also endeavors to tailor
radiotherapy interventions to the unique characteristics of individual tumors, potentially
leading to superior clinical outcomes and mitigated side effects.

The imperative of standardizing DL integration looms large in the specialist litera-
ture, alongside considerations regarding user-friendliness and technical nuances [22,26,34].
These systematic reviews underscore the critical necessity of establishing clear guidelines
for the seamless integration of DL into existing systems, thereby addressing challenges
pertaining to user interface, user experience, and the technical intricacies associated with
the deployment of Al technologies in healthcare.

Each systematic review, including those conducted by Boldrini et al. [38] and
Huang et al. [25], accentuates the exigency for further research to comprehensively grasp
the clinical implications and intricacies surrounding the integration of DL into routine
clinical practice. These studies advocate for intensified efforts to discern how DL can be ef-
fectively assimilated into standard daily protocols. Additionally, several systematic reviews
underscore the paramount importance of publicly available, high-quality databases and
rigorous validation processes to bolster the development of DL across diverse radiotherapy
applications [23,26,28,29,32-34]. Notably, the review by Booth et al. [32] draws attention to
the prevailing challenges of small sample sizes and a high risk of bias in current research
endeavors, thereby emphasizing the imperatives for enhanced study quality and refined
research methodologies.

In essence, these systematic reviews collectively paint a compelling narrative of a
transformative shift in the medical landscape, precipitated by the seamless integration of
Al and DL into clinical practice within radiotherapy workflows. A pivotal determinant for
augmenting the efficacy of DL in this context lies in the availability of expansive, shared
datasets. Such repositories of high-quality data serve as indispensable assets in optimizing
DL’s performance and fostering the development of more precise, reliable applications in
the realm of radiotherapy [29,33,34].

Table 1 reports the key findings from the analysis of the overview of systematic
reviews.
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Table 1. Key findings from the analysis of the overview of systematic reviews.

Review Study

Key Findings from the Analysis

Almeida et al. (2020) [21]

This study showcases DL’s potential to revolutionize prostate cancer treatment planning by
automating the contouring process, leveraging CT and MRI for improved efficiency and consistency.
This paper also underscores the hurdles of limited patient datasets and the need for further
development before full clinical adoption is feasible.

Kothari et al. (2020) [22]

Focusing on the prognostic value of radiomics in NSCLC treated with radiotherapy, this systematic
review notes heterogeneity in study methodologies and recommends standardizing radiomics
features and employing robust methods and DL to improve future model performance.

Chlap et al. (2021) [23]

This study explores the critical role of data augmentation in enhancing DL models for radiology and
radiotherapy, categorizing techniques for CT and MRI images to offset the need for large datasets.
The study emphasizes data augmentation’s value in bolstering algorithm performance and validating
clinical applicability amidst dataset limitations.

Spadea et al. (2021) [24]

This study assesses DL-based synthetic CT generation across three clinical applications, including its
use in MR-based treatment planning, IGRT, and PET correction. The study examines the
contributions, challenges, and future potential of DL-based sCT methods, evaluating their readiness
for clinical implementation.

Huang et al. (2021) [25]

This study explores the pivotal role of computer technology and data expansion in advancing Al,
offering radiation oncologists efficient tools to enhance radiotherapy and prompting a crucial need
for understanding DL principles for effective clinical application. This paper also discusses Al’s
potential growth in radiation oncology.

Walls et al. (2021) [26]

This study investigates radiomics’ role in lung cancer radiotherapy decisions, noting the absence of
validated biomarkers for personalized treatment. Despite linking radiomic indicators to clinical
outcomes, challenges, such as data standardization and validation, hinder practical application,
emphasizing the need for improved research methodologies.

Kim et al. (2021) [27]

This meta-analysis evaluates the Al-assisted MRI's diagnostic ability for distinguishing true
progression from non-progression in brain metastasis post-radiotherapy, finding sensitivity and
specificity rates of 77% and 74%, respectively. Despite these findings, the current diagnostic reliability
of Al-assisted MRI is insufficient for clinical application.

Avanzo et al. (2021) [28]

This paper investigates Al applications in Italian imaging research from 2015 to 2020, revealing MRI
as the predominant modality, notably in neurological diseases and cancer diagnosis. The study
highlights a surge in Al research, particularly in classification and segmentation tasks, emphasizing
the necessity for collaborative frameworks and shared databases.

Yang et al. (2022) [29]

This study analyzes the DL models for cervical cancer CT image segmentation, showing high
accuracy in segmenting clinical target volumes and organs-at-risk. Despite the efficient performance,
the study emphasizes the necessity for public, high-quality databases, and extensive validation for
future radiotherapy applications.

Rusanov et al. (2022) [30]

This study investigates DL’s role in improving CBCT image quality for online ART, focusing on
updating patient anatomy to optimize treatment parameters despite traditional CBCT limitations.
This review evaluates DL strategies for CBCT correction and synthetic CT generation, concluding
with recommendations for clinicians and DL practitioners.

Booth et al. (2022) [31]

This study assesses the accuracy of DL models in monitoring biomarkers for glioblastoma treatment
response, revealing promising diagnostic performance in differentiating tumor progression from
mimics using MRI features. Despite moderate sensitivity and specificity, the studies suffer from small
sample sizes and a high bias risk, indicating a need for improved study quality to refine research
methodologies.

Hasan et al. (2022) [32]

This study examines CNNs’ application in ENT radiology, revealing their high accuracy in tasks such
as structure identification, pathology detection, and tumor segmentation for radiotherapy across
various subspecialties. The study highlights the potential of CNN'’s application to revolutionize
clinical practice by automating and improving diagnostic and treatment planning processes.

Liu et al. (2023) [33]

This study assesses DL algorithms’ effectiveness in contouring organs-at-risk in HNC radiation
planning, demonstrating DSC and indicating DL’s potential to automate contouring and enhance
precision in radiotherapy plans. The study emphasizes the importance of quality datasets to optimize
DL’s performance, potentially reducing oncologists” workload.
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Table 1. Cont.

Review Study

Key Findings from the Analysis

Tan et al. (2023) [34]

This study explores the efficacy of DL models in predicting radiotherapy-induced toxicity across
multiple cancer types, emphasizing advanced techniques, such as ensemble learning and transfer
learning, and underscores the necessity for larger datasets and standardized methodologies to
improve research outcomes.

Franzese et al. (2023) [35]

This study analyzes DL’s role in HNC radiotherapy, emphasizing organ-at-risk segmentation’s
prominence and advocating for assessing Al’s clinical impact and confidence levels for predictions.
The study concludes by highlighting Al’s potential to automate HNC radiotherapy workflows.

Eidex et al. (2023) [36]

This systematic review highlights DL’s role on MRI-guided radiation therapy in enhancing tumor
segmentation, deriving X-ray attenuation from MRI, and improving tumor characterization and
motion tracking, with recent trends focusing on multi-modal, visual transformer, and diffusion
models.

Chen et al. (2024) [37]

This study investigates unpaired image-to-image translation in medical imaging, showcasing its
applications in segmentation and clinical tasks but noting limitations, such as limited external
validation and scarce pre-trained models, hindering immediate clinical application.

Boldrini et al. (2024) [38]

This systematic review explores the impact of Al, DL, and radiomics on IGRT, revealing their
potential in diagnosis, treatment optimization, and outcome prediction, though further research is
needed to establish their clinical impact and integration into standard protocols.

Al artificial intelligence; ART: adaptive radiation therapy; CBCT: cone-beam computed tomography; CNN:
convolutional neural network; CT: computed tomography; DSC: dice similarity coefficient; DL: deep learning;
HNC: head and neck cancer; IGRT: image-guided radiation therapy; MRI: magnetic resonance imaging; NSCLC:
non-small-cell lung cancer; PET: positron emission tomography.

3.2.2. Emerging Categorization from the Analysis

Delving into greater detail, we identified the following areas of interest and/or em-
phasis, with a focus on the categorization, as reported in Table 2.

Table 2. Emerging categorization from the systematic reviews analyzed.

Area of Interest Focus on the Categorization

Several systematic reviews (Almeida et al. [21], Huang et al. [25],
Avanzo et al. [28], Yang et al. [29], Liu et al. [33], Franzese et al. [34], and

Automating contouring process Chen et al. [37]) explore the increasing role of DL on image segmentation and

automating the contouring process, permitting a reduction in the workload for
physicians and enabling more precise radiotherapy plans.

Use of radiomics

Kothari et al. [22], Walls et al. [26], Kim et al. [27], Eidex et al. [36], and

Boldrini et al. [38] discuss the increasing role of radiomics in guiding clinical
decisions before, during, and after radiotherapy, highlighting the need of further
research for its integration into clinical practice.

Synthetic CT

Spadea et al. [24] and Rusanov et al. [30] explore the innovative application of DL
to generate and enhance synthetic CT (sCT) images for improved radiation
therapy planning and execution. This approach addresses traditional imaging
limitations by providing high-quality, accurate sCT images for a variety of clinical
applications in radiotherapy.

Sapdea et al. [24] and Rusanov et al. [30] investigate the use of DL to improve the

Application of DL for ART quality of cone-beam CT images for guiding healthcare professionals in online

ART.

Chlap et al. [23] and Tan et al. [34] examine data augmentation techniques for the

Data augmentation development and improvement of DL models with various applications in
techniques for DL models radiotherapy and emphasize their necessity due to the reliance on large datasets

for training.
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Table 2. Cont.

Area of Interest

Focus on the Categorization

Several systematic reviews (Huang et al. [25], Walls et al. [26], Booth et al. [31],

Use of DL for prediction of side effects and clinical ~ Tan et al. [34], Franzese et al. [35], and Boldrini et al. [38]) discuss the application

outcome

and use of DL predictions of the outcome of radiotherapy and use DL to predict
the toxicity and outcomes after radiotherapy.

Improvements in treatment planning process

Several systematic reviews (Almeida et al. [21], Hasan et al. [32], Liu et al. [33],
Franzese et al. [35], Chen et al. [37], and Boldrini et al. [38]) focus on the growing
role of DL techniques in radiotherapy planning optimization, highlighting the
significant innovation due to introduction of DL in daily practice workflow.

Image fusion

Huang et al. [25] discuss the utilization of DL techniques for enhancing medical
image registration across various imaging modalities (multi-time and/or
multimode registration).

ART: adaptive radiation therapy; CT: computed tomography; DL: deep learning.

These emerging themes/patterns collectively indicate a trend toward the integration of
DL to enhance and improve radiotherapy workflow. The systematic reviews also highlight
the need for further research, standardization, and overcoming challenges for broader
adoption of this technology.

3.3. In-Depth Analysis of the Detected Studies: A Comprehensive Overview

To complement our overview, after having identified the themes and focus ele-
ments of the studies, here, we report a more far-reaching summary of each individual
systematic review.

Almeida et al. [21] highlighted the potential of DL in improving treatment planning
for prostate cancer, focusing on automating the contouring process to enhance speed and
consistency while maintaining quality. They examined various network architectures based
on computed tomography (CT) or magnetic resonance imaging (MRI), noting the field’s
rapid growth but also the limitations due to small patient datasets. Despite promising
results, there remains a significant gap before these technologies can be fully integrated
into clinical practice.

The systematic review and meta-analysis proposed by Kothari et al. [22] assessed the
prognostic value of radiomics-based models in non-small-cell lung cancer (NSCLC) treated
with radical radiotherapy, finding modest capabilities with a Harrell’s Concordance Index
(C-index) of 0.57. They highlighted significant heterogeneity in feature selection and model
development across studies and suggested that future research focus on standardized
radiomics features, robust methodology, and DL to enhance model performance.

Chlap et al. [23] examined data augmentation techniques for DL models in radiology
and radiotherapy, highlighting their necessity due to the reliance on large datasets for
training. They categorized augmentation methods applied to CT and MRI medical images
into basic, deformable, and DL-based techniques, aiming to enhance model performance
and provide insights into their clinical validity. The study underscores the importance of
data augmentation in improving DL algorithms where large datasets are scarce.

Spadea et al. [24] evaluated DL-based synthetic CT (sCT) generation methods, grouped
into three main clinical applications: (i) replacing CT in MR-based treatment planning,
(ii) aiding cone-beam CT in image-guided adaptive radiotherapy, and (iii) creating attenua-
tion maps for positron emission tomography (PET) correction. They covered research from
January 2014 to December 2020, detailing each category’s contributions, challenges, and
achievements, and assessed the clinical readiness and potential future trends of DL-based
sCT methods.

Huang et al. [25] highlighted that the widespread use of computers and data explosion
has significantly fueled artificial intelligence (AI) development, with DL algorithms, such
as convolutional neural networks (CNNs), offering radiation oncologists promising tools to
streamline radiotherapy and reduce their workload. This facilitates more time for advanced
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decision-making. As DL evolves closer to clinical application, it is crucial for oncologists to
understand its principles for effective use. This paper delved into Al's development, basic
concepts, and its potential in radiation oncology, suggesting further growth prospects for
DL in this field.

Walls et al. [26] explored the utility of radiomics in guiding clinical decisions for lung
cancer radical radiotherapy, highlighting the lack of validated biomarkers for personalized
treatment in the face of the disease’s significant mortality. Their systematic review included
and analyzed 44 studies that established a connection between radiomic indicators, notably
texture features and kurtosis, and clinical outcomes, including disease management, patient
survival, and treatment-related toxicity. Despite these insights, obstacles, such as the need
for standardized data, improved reporting, and external validation through prospective
studies, pose barriers to the practical application of radiomics, emphasizing the critical
need for enhanced evaluative frameworks and research methodologies in the field.

Kim et al. [27] conducted a systematic review and meta-analysis to tackle the diagnostic
challenge of distinguishing true progression from non-progression in brain metastasis after
stereotactic radiotherapy or surgery using MRI. This analysis, encompassing 7 studies with
a total of 485 patients, found that Al-assisted MRI, through radiomics, achieved sensitivity
and specificity rates of 77% and 74%, respectively. While the overall quality of the studies
was deemed favorable, the current diagnostic capabilities of Al-assisted MRI fall short
of the reliability needed for clinical use, underscoring the necessity for further research
utilizing more sophisticated methodologies and expanded datasets.

Avanzo et al. [28] explored the landscape of Al applications in imaging research in Italy,
covering the period of 2015-2020. They highlighted MRI as the most prevalent imaging
modality, with a significant focus on neurological diseases and cancer diagnosis. The review
noted a dramatic increase in Al research, particularly in classification and segmentation
tasks, with a mix of machine learning and DL approaches. The findings underscore the
burgeoning interest and need for collaborative frameworks, shared databases, and research
guidelines in the Al imaging domain within Italy.

Yang et al. [29] proposed a systematic review and meta-analysis on DL models for
cervical cancer CT image segmentation, reviewing 1893 articles and including 14 in the
analysis. The study included 14 articles and revealed high accuracy in segmenting clinical
target volumes and organs-at-risk, with dice similarity coefficient (DSC) scores ranging
from 0.83 to 0.92. Despite good performance and efficiency (segmentation times between
15 s and 2 min), the findings highlighted the need for public, high-quality databases and
further large-scale validation for future radiotherapy applications.

Rusanov et al. [30] explored the application of DL in enhancing cone-beam CT (CBCT)
image quality for online adaptive radiation therapy (ART), addressing how updated patient
anatomy can optimize treatment parameters despite CBCT’s traditional quality limitations.
This comprehensive review, covering January 2018 to April 2022, evaluated DL strategies
for CBCT correction and synthetic CT generation, emphasizing study designs, DL tech-
niques, image quality, and dosimetric accuracy. They concluded with recommendations
for clinicians and DL practitioners, identifying literature gaps and advocating for the
integration of state-of-the-art DL methods in radiation oncology.

Booth et al. [31] evaluated the accuracy and quality of machine learning (ML) models,
specifically DL, in monitoring biomarkers to assess treatment response in glioblastoma,
based on articles from September 2018 to January 2021. Despite the promising diagnostic
performance of ML models in differentiating between tumor progression and mimics
in glioblastoma using MRI features, the studies suffered from small sample sizes, high
bias risk, and applicability concerns, highlighting the need for improved study quality
and design. The meta-analysis of ten studies showed moderate sensitivity, specificity, and
balanced accuracy, indicating potential yet calling for refinement in research methodologies.

Hasan et al. [32] explored the application of CNNs in ENT radiology, a field where their
use is less common compared to other radiology disciplines, possibly due to unfamiliarity
within the otolaryngology community. Through a systematic review of thirty articles up
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to October 2020, they demonstrated CNNs’ high accuracy in tasks such as identifying
structures, detecting pathology, and segmenting tumors for radiotherapy in various ENT
subspecialties. This study underscores the potential of CNNs to significantly impact
clinical practice in ENT radiology by automating and enhancing diagnostic and treatment
planning processes.

The systematic review and meta-analysis proposed by Liu et al. [33] investigated
the effectiveness of DL algorithms for contouring organs-at-risk in head and neck cancer
radiation treatment planning, assessing 22 studies from a pool of 149. The analysis revealed
high dice similarity coefficient (DSC) scores across various organs-at-risk, indicating DL
algorithms” accuracy in automating the contouring process, thus potentially reducing
the workload for oncologists and enabling more precise radiotherapy plans. The study
highlighted the necessity for high-quality datasets and further algorithmic improvements
to optimize DL’s performance in clinical settings.

Tan et al. [34] evaluated DL models’ effectiveness in predicting radiotherapy-induced
toxicity, analyzing fourteen studies across various cancer types (prostate (n = 2), head and
neck cancer (HNC; n = 4), liver (n = 2), lung (n = 4), cervical (n = 1), and esophagus (1 = 1)).
The review highlighted the utilization of advanced techniques, such as ensemble learning,
data augmentation, and transfer learning, in model development. The authors concluded
that while DL models show promise in toxicity prediction, future research needs larger,
more diverse datasets and standardized methodologies to enhance research consistency
and outcomes.

Franzese et al. [35] investigated the role of DL in the radiotherapy workflow for
HNC, analyzing 62 selected articles from 2016 to 2022 that covered the entire RT workflow:
contouring, planning, and delivery. This systematic review highlighted the significant focus
on organ-at-risk segmentation and the need for studies to assess the clinical impact of Al
and provide confidence levels for Al predictions. The conclusion underscored Al’s potential
in automating the complex radiotherapy workflow for HNC and called for interdisciplinary
research to align Al development with clinical requirements.

Eidex et al. [36] analyzed 197 studies up to 31 December 2022, on MRI-guided radiation
therapy and DL, categorizing them into image segmentation, synthesis, radiomics, and real-
time MRI to fully support ART. This systematic review discussed the clinical significance
and challenges of DL in enhancing tumor segmentation, deriving X-ray attenuation from
MRI, and improving tumor characterization and motion tracking, emphasizing the rise of
multi-modal, visual transformer, and diffusion models in recent trends.

Chen et al. [37] investigated the use of unpaired image-to-image (I2I) translation in
medical imaging. Out of 461 studies, 55 were included, showcasing I2I's role in segmenta-
tion, unpaired domain adaptation, denoising, and clinical applications, such as automatic
contouring for MRI, CT, and radiotherapy planning. Despite its potential, the limited
external validation and the scarcity of publicly available pre-trained models restrict the
immediate practical application of these methods in clinical practice.

Boldrini et al. [38] investigated the influence of AI, DL, and radiomics on image-guided
radiation therapy (IGRT) in radiation treatments, highlighting their promising roles in
diagnosis, treatment optimization, and outcome prediction. Through a systematic search
of electronic databases, 84 papers were analyzed, revealing significant contributions of
Al and radiomics to IGRT, across 23 and 61 papers, respectively. Despite the reliance on
retrospective data, Al and radiomics were shown to significantly enhance IGRT across
all radiotherapy workflow phases, indicating a need for further research to solidify their
clinical impact and integration into standard treatment protocols.

4. Discussion

The section is structured into multiple paragraphs. Section 4.1 presents early insights,
providing initial observations and understandings. Section 4.2 delves into the opportunities
that have arisen, exploring potential avenues for further investigation or development.
In Section 4.3, specific areas warranting deeper examination are identified and discussed.
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Section 4.4 elaborates on key areas where a collective need for more in-depth exploration
is perceived. This section is subdivided into detailed subsections, offering targeted anal-
yses derived from the literature. Section 4.5 introduces and provides commentary on a
comprehensive synoptic diagram, conclusively summarizing the umbrella review project.
Following this, the takeaway message (Section 4.6) and limitations (Section 4.7) of the study
are presented.

4.1. Early Insights and Discussion

Radiation therapy has a history dating back to the early last century. The initial
studies in this field date back to 1903, and since then, 226,830 studies have been published
on PubMed (search key in Box 1, position 2). Over the years, with the advancement of
technological innovations, various techniques, such as traditional radiotherapy, conformal
radiotherapy, IMRT, stereotactic radiotherapy, and hadrontherapy, have been gradually
established, and researchers are still exploring new methods [3-7].

Only a small fraction, approximately 0.44%, of these studies (equivalent to 1003, not
perceptible in a potential graph) have addressed the introduction of DL, and this trend
has only emerged since 2013. The significant push for research in the application of DL
in radiation therapy was fueled by the COVID-19 pandemic (Figure 1). From the onset
of the pandemic until now, 909 studies have been produced, representing over 90% of
the total. Considering the last five years of scientific production, marked almost entirely
by the COVID-19 pandemic, the ratio of total scientific production in radiation therapy,
considering and not considering DL, has increased from 0.44% to 1.6%, quadrupling the
interest and demonstrating a growing focus of researchers on these issues. This trend is
now visually perceptible (Figure 4).

952; 2%

59562; 98%
u pubblications on RT and DL in the last five years

® Pubblications on RT in the last five years

Figure 4. Articles on RT and DL versus articles on RT in the last five years.

The trend of reviews and systematic reviews, as shown in Figure 5, emphasizes
developments in research and the consolidation of specific themes over the past five
years through Cartesian graphs. Indeed, these two types of studies serve as indicators
of both researchers’ interest and the solidification around topics of interest, reflecting
the establishment of medical knowledge. The trends of both types of studies follow a
similar pattern, with systematic reviews naturally exhibiting a slight delay compared to the
initial studies, as expected. This synchronization in trends implies that as primary studies
emerge, systematic reviews follow, providing a comprehensive and reflective overview
of the evolving research landscape. The alignment of these trends signifies the ongoing
interest of researchers and the firm establishment of knowledge within the medical field.
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Figure 5. Temporal trends of reviews and systematic reviews published on the PubMed database
focusing on deep learning and radiotherapy.

The accumulation of research trends, evolving themes, and the growing body of
knowledge in a particular field serves as a compelling motivation and justification for our
umbrella review study. An umbrella review [17,18] involves a comprehensive examination
and synthesis of findings from multiple systematic reviews on a specific subject. In this
context, our decision to conduct an umbrella review was specifically centered on systematic
reviews. By delving into these studies, we aimed to offer a comprehensive overview
of the existing body of research, focusing on the highest editorial scientific tools—the
systematic reviews—recognized for their thorough analyses, which systematically gather
and evaluate evidence, contributing to a comprehensive understanding of the subject matter.
The overview revealed opportunities and specific areas requiring in-depth investigations,
and perceived global areas needing further research and attention.

4.2. Opportunities Explored: Critical Reflections on DL in Radiotherapy

The intersection of deep learning (DL) and radiotherapy presents a dynamic yet
critically transformative force, unveiling a plethora of opportunities across multifaceted
dimensions of cancer care. Recent investigations [21-38] shed light on the expansive vistas
that DL illuminates.

DL stands poised to revolutionize the landscape of radiotherapy, offering a myriad
of transformative prospects across diverse applications. From automating intricate proce-
dures to refining prognostic models and enhancing imaging methodologies, DL emerges
as a disruptive force for innovation. Noteworthy advancements include its application in
prostate cancer treatment planning, where DL streamlines the contouring process, promis-
ing efficiency and consistency [21]. This not only accelerates processes but also maintains
high-quality standards, suggesting a paradigm shift in precision medicine for prostate
cancer patients. Similarly, in non-small-cell lung cancer (NSCLC), DL-driven radiomics
models enhance prognostic accuracy in radical radiotherapy [22], demonstrating the poten-
tial to optimize treatment strategies and outcomes, thus emphasizing DL’s pivotal role in
personalized cancer care.

Augmentation techniques for DL models in radiology and radiotherapy address the
perennial challenge of limited large datasets, potentially improving performance [23]. DL-
based synthetic CT generation methods pave the way for MR-based treatment planning,
adaptive radiotherapy, and PET correction [24,25], offering precision and efficiency while
optimizing treatment parameters based on updated patient anatomy.

Radiomics assumes a central role in guiding clinical decisions for lung cancer radical
radiotherapy, leveraging advanced imaging features for personalized interventions [26].
The integration of radiomic indicators signifies a shift toward more targeted and effective
lung cancer treatments. Moreover, in brain metastasis diagnosis, Al-assisted MRI shows
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promise for enhancing diagnostic capabilities [27], albeit requiring further refinement for
clinical deployment.

Italy has witnessed a surge in Al applications in imaging research, particularly in
classification and segmentation tasks [28], highlighting the necessity of collaborative
frameworks and shared databases to harness the full potential of Al in advancing Italian
imaging research.

DL models exhibit promising accuracy in segmenting clinical target volumes for
cervical cancer CT images, offering precision in treatment planning [29]. Improving cone-
beam CT (CBCT) image quality for online adaptive radiation therapy emerges as a critical
opportunity [30], necessitating the integration of state-of-the-art DL methods for opti-
mized treatment.

Monitoring biomarkers through DL in glioblastoma treatment response assessment
holds promise for personalized therapeutic strategies [31], potentially reshaping treatment
evaluation paradigms.

In ENT radiology, convolutional neural networks (CNNs) emerge as high-accuracy
tools for automating diagnostic and treatment planning processes [32]. Similarly, DL
algorithms show potential in automating the contouring process for head and neck cancer
radiation treatment planning [33], thereby refining precision and reducing oncologists’
workload, leading to enhanced treatment efficiency.

DL models also demonstrate promise in predicting radiotherapy-induced toxicity
across various cancer types [34], offering avenues for refining toxicity prediction mod-
els and tailoring personalized treatment plans. Moreover, DL’s potential in automating
complex radiotherapy workflows for head and neck cancer (HNC) presents transforma-
tive opportunities [35], with applications in organ-at-risk segmentation and workflow
automation for enhanced HNC care.

DL in MRI-guided radiation therapy holds potential for improving tumor segmen-
tation, deriving X-ray attenuation from MRI, and enhancing tumor characterization and
motion tracking [36], promising precision and innovation.

Unpaired image-to-image translation in medical imaging emerges as a potential game-
changer [37], with opportunities for exploring novel applications and methodologies in
clinical practice, leading to advancements in segmentation, adaptation, and denoising.

The integration of Al, DL, and radiomics significantly influences image-guided radia-
tion therapy (IGRT) across all workflow phases [38], offering prospects for further applica-
tions in diagnosis, treatment optimization, and outcome prediction for enhanced IGRT.

In summary, the transformative opportunities brought forth by DL in radiotherapy
are extensive and profound. Collaborative endeavors, standardized methodologies, and a
dedication to surmounting existing challenges are imperative to fully capitalize on these
opportunities. As technology progresses, the potential to improve patient outcomes and
streamline oncological care becomes increasingly tangible, awaiting exploration and imple-
mentation. In essence, the panorama of opportunities ushered in by DL in radiotherapy is
vast and transformative, necessitating critical reflection and concerted efforts to realize its
full potential [21-38]. Table 3 provides a synthesis of these emerging opportunities.

Table 3. Thematic areas within the emerging opportunities.

Opportunity

Application Area Key Insights

Automating Contouring in Prostate Cancer

Treatment Planning

DL automates contouring for speed and
Prostate Cancer Treatment Planning consistency, promising a paradigm shift in
precision medicine [21].

DL-driven radiomics models refine prognostic

Enhanced Prognostic Precision in NSCLC NSCLC Radical Radiotherapy precision, optimizing treatment strategies for

NSCLC patients [22].
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Table 3. Cont.

Opportunity

Application Area

Key Insights

Augmentation Techniques for Improved DL
Performance

Radiology and Radiotherapy
Augmentation

Basic, deformable, and DL-based augmentation
methods enhance DL performance, addressing
limited large datasets [23].

DL-Based Synthetic CT Generation
Opportunities

MR-Based Treatment Planning and
Adaptive Radiotherapy

DL-based synthetic CT generation optimizes
treatment parameters based on updated patient
anatomy, offering precision and efficiency [24].

Radiomics Guiding Clinical Decisions in Lung
Cancer Radiotherapy

Lung Cancer Radical Radiotherapy

Radiomics guides personalized interventions,
incorporating advanced imaging features for
improved clinical decisions [26].

Al-Assisted MRI for Brain Metastasis Diagnosis

Brain Metastasis Diagnosis

Al-assisted MRI enhances diagnostic capabilities,
showing potential for influencing timely and
accurate treatment decisions [27].

Al Applications in Italian Imaging
Research Landscape

Imaging Research in Italy

Italy experienced a surge in Al applications,
particularly in classification and segmentation
tasks, emphasizing the need for collaborative
frameworks [28].

DL Precision in Cervical Cancer CT
Image Segmentation

Cervical Cancer CT Image Segmentation

DL models exhibit high accuracy in segmenting
clinical target volumes, enhancing precision in
treatment planning [29].

Enhancing CBCT Image Quality for Online
Adaptive Radiation Therapy

Online Adaptive Radiation Therapy

Opportunities in optimizing treatment parameters
based on updated patient anatomy, addressing
literature gaps in CBCT image quality
enhancement [30].

Monitoring Biomarkers with DL in

Glioblastoma Treatment Response

DL offers a promising avenue for monitoring
biomarkers, potentially leading to personalized

Glioblastoma Treatment Response Assessment therapeutic strategies [31].
CNNs automate diagnostic and treatment
CNNs in ENT Radiology ENT Radiology planning processes, showcasing high accuracy

within the otolaryngology community [32].

DL Automation in Head and Neck
Cancer Radiation Treatment Planning

Head and Neck Cancer Radiation
Treatment Planning

DL algorithms promise to automate contouring,
refining precision and reducing the workload for
oncologists [33].

DL Models Predicting
Radiotherapy-Induced Toxicity

Radiotherapy-Induced Toxicity Prediction

DL models exhibit promise in predicting toxicity,
with opportunities for refining accuracy, specificity,
and applicability [34].

DL in Complex Radiotherapy Workflow for HNC

Complex Radiotherapy Workflow for
Head and Neck Cancer (HNC)

DL'’s potential in workflow automation presents
opportunities for enhanced HNC care, particularly
in organ-at-risk segmentation [35].

DL in MRI-Guided Radiation Therapy

MRI-Guided Radiation Therapy

Opportunities in enhancing tumor segmentation,
deriving X-ray attenuation from MRI, and
improving tumor characterization and motion
tracking [36].

Unpaired Image-to-Image Translation in Medical

Imaging

Medical Imaging

Potential game-changer in segmentation, unpaired
domain adaptation, denoising, and automatic
contouring, with opportunities for exploration [37].

Integration of Al, DL, and Radiomics in IGRT

Image-Guided Radiation Therapy (IGRT)

Significant influence on IGRT across all workflow

phases, with opportunities for further exploration

in diagnosis, treatment optimization, and outcome
prediction [38].

4.3. Limitations Explored: Critical Reflections on DL in Radiotherapy

While the overview presented promising opportunities, it is imperative to confront
the specific limitations existing within the field and underscore the areas requiring further
scrutiny and refinement. The impact of Al and radiomics on image-guided radiation
therapy (IGRT) appears substantial, promising advancements in treatment planning and
precision radiotherapy [38]. However, the reliance on retrospective data in the literature
casts doubt on the validity of the findings, necessitating rigorous external validation stud-
ies to establish their credibility. Confirmation of the potential of these tools and their
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alignment with clinical outcomes and gold-standard treatment strategies is paramount for
their practical deployment. Automated contouring technology driven by DL algorithms
emerges as a potent tool for contouring head and neck organs-at-risk (OARs), purportedly
reducing the workload of radiation oncologists and facilitating precision radiotherapy [33].
However, the identified need for constructing high-quality datasets highlights the im-
perative of optimizing datasets to bolster DL algorithm performance. Ongoing research
endeavors should prioritize algorithm refinement and innovative approaches to ensure
consistent accuracy.

Toxicity prediction employing DL techniques demonstrates consistent performance,
suggesting their potential utility in radiotherapy [34]. However, the call for future research
with large and diverse datasets and standardized study methodologies underscores the
necessity of overcoming challenges to enhance the reliability and consistency of research
outputs in this domain. The automation of the radiotherapy workflow for head and neck
cancer (HNC) treatment holds transformative potential [35]. Interdisciplinary collabora-
tion, involving both clinicians and computer scientists, is advocated for future studies,
ensuring the effective alignment of Al technologies with clinical needs, and fostering a
comprehensive understanding of their clinical impact.

In ENT radiology, the deployment of Al methodologies shows promise in various
applications, including nodule and tumor identification, anatomical variation identifica-
tion, and tumor segmentation [32]. This evolving field anticipates further evolution and
integration into everyday practice. However, to fulfill its potential, continuous refinement
of technologies and methodologies is indispensable. The translation of medical images
through image-to-image (I2I) models presents valuable applications for medical physi-
cists [37]. Nevertheless, the dearth of external validation studies and pre-trained models
hampers immediate practical application. Initiatives aimed at overcoming these limitations,
such as increased external validation and broader availability of pre-trained models, are
imperative for advancing these techniques in practice.

Deep learning models demonstrate high accuracy in the automatic segmentation of cer-
vical cancer CT images, offering promise for future radiotherapy applications. Nonetheless,
the need for public high-quality databases and large-scale research verification under-
scores the importance of collaborative efforts to enhance the reliability and applicability of
these models.

Future research endeavors should prioritize the development of improved tools for
the evaluation of radiomics studies, addressing issues such as standardization of input scan
data, quality of reporting, and external validation in randomized clinical trials. Machine
learning models utilizing MRI features for distinguishing progression from mimics demon-
strate good diagnostic performance, but the need for improvement in study quality and
design is evident [31]. Future studies should focus on refining methodologies to strengthen
the diagnostic capabilities of Al in MRI-based applications. The evaluation of DL-based
synthetic CT (sCT) generation reveals its potential benefits and clinical readiness [24].
Future studies should delve deeper into the clinical applicability of these methods, ensur-
ing they meet the required standards for safe and effective use. As artificial intelligence
models trained using augmented data move toward clinical implementation, continuous
refinement and validation are essential. The review anticipates the evolving landscape of
Al techniques and aims to instill confidence in the validity of the models produced. The
diagnostic performance of Al-assisted MRI remains inadequate for reliable use in clinical
practice [27]. The identified need for future studies with improved methodologies and
larger training sets emphasizes the ongoing efforts required to enhance the reliability and
effectiveness of Al-assisted MRI. The surge of interest in Al applied to imaging in Italy
highlights the need for collaborative frameworks, shared databases, and research guide-
lines [28]. These initiatives are crucial to fully harness the potential of Al applications in
medical imaging. Radiomics-based models for lung cancer demonstrate modest prognostic
capabilities [22]. Future research should focus on standardizing radiomics features, robust
feature selection, and incorporating DL techniques to improve the predictive accuracy of
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imaging-based models. The comprehensive review outlining the development and applica-
tion of Al in radiation oncology emphasizes the need for ongoing research and clarifies the
potential for further DL development in this field. The recognition of this potential paves
the way for continued exploration and advancements. Although models have achieved
satisfactory results, there is acknowledgment of the need for improvement before safe and
effective clinical application. This recognition underscores the commitment to continuous
refinement and enhancement in the journey toward practical implementation. Overall, the
discourse on DL in radiotherapy reflects a dynamic landscape with transformative potential.
While opportunities are abundant, the identified limitations underscore the importance of
ongoing research, interdisciplinary collaboration, and standardization efforts. Addressing
these challenges will be instrumental in unlocking the full potential of DL in this field,
ultimately enhancing patient outcomes and advancing the field of radiotherapy.
Table 4 reports the specific emerging suggestions for a broader investigation.

Table 4. Thematic areas and key suggestions for a broader investigation for each reference.

Thematic Area Key Suggestions for Broader Investigation References
Integration of Al and Radiomics Conduct further studies to confirm the impact of Al and
3 in IGRT radiomics on IGRT, emphasizing the need for evidence beyond [38]
retrospective data.
Focus on constructing high-quality datasets for automated
. . contouring technology using DL algorithms in head and neck
Aduvanced Contouring Technologies OARs. Enhance DL performance through algorithm optimization (331
and innovation.
Utilize large and diverse datasets for toxicity prediction,
Toxicity Prediction in Radiotherapy emphasizing the standardization of study methodologies to [34]
improve the consistency of research outcomes.
Align the development of Al technologies in HNC treatment with
Automation of HNC Treatment Workflow clinical needs by conducting interdisciplinary studies involving [35]
clinicians and computer scientists.
Explore the potential uses of CNN methodology in ENT
Application of CNN Methodology in ENT radiology, including nodule and tumor identification, anatomical [32]
Radiology variation identification, and tumor segmentation. Encourage
continued evolution of technologies in everyday practice.
Address the scarcity of external validation studies for
Image-to-Image Models and image-to-image (I2I) models, emphasizing the need for publicly [37]
External Validation available pre-trained models to enhance the immediate
applicability of proposed methods.
Despite good accuracy in automatic segmentation of CT images
. . . for cervical cancer, future investigations should focus on
Automatic Segmentation in Cervical Cancer obtaining public high-quality databases and conducting [29]
large-scale research verification.
Recommendations for Clinical Provide recommendations for clinicians and DL practitioners
Practice based on literature trends and the current state-of-the-art DL [30]
methods in radiation oncology.
Recognize the good diagnostic performance of ML models using
Diagnostic Performance Using MRI Features MRI features but suggest improvements in study quality and [31]
design for enhanced reliability.
Evaluate the clinical readiness of DL-based synthetic CT
DL-Based Synthetic CT Generation generation methods and suggest further initiatives for their [24]
potential implementation.
Techniques Using Augmented Data Explore techniques using augmented data in clinical settings and [23]

build confidence in the validity of models produced.
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Table 4. Cont.
Thematic Area Key Suggestions for Broader Investigation References
Acknowledge the need for future studies with improved
Future Studies for AI-Assisted MRI methodologies and larger training sets to enhance the diagnostic [27]
performance of Al-assisted MRI in clinical practice.
Recognize the unprecedented interest in Al applied to imaging in
Al Applied to Imaging in Italy Italy and suggest initiatives for building common frameworks, [28]
databases, collaborations, and guidelines for research on AL
Standardized Radiomics Features and Deep Advocate for future research focusmg on standa?dlzed rac;homlcs
Learnin features, robust feature selection, and deep learning techniques to [22]
J improve prognostic capabilities in lung cancer models.
Development of Al in Radiation Explore the developn}ent and basic concepts of Alin rac.hatlon
Oncology oncology based on different task categories of DL algorithms. [25]
Clarify the potential for further DL development in the field.
Acknowledge the satisfactory results achieved by models but
Continuous Improvement of Models highlight the need for continuous improvement before safe and [21-38]

effective clinical practice.

4.4. Navigating Critical Focus Areas: Global Explorations and Expansion of Literature Analysis in
Deep Learning Applications in Radiotherapy

From the emerging studies, critical areas that demand further research in this field
came to light. These aspects primarily highlight the strong interconnection between radio-
therapy and digital radiology, suggesting the need for deeper investigations considering
this interdependence.

4.4.1. Navigating Critical Focus Areas in Deep Learning Applications in Radiotherapy

The extensive analysis conducted across a multitude of studies underscores with ut-
most gravity the critical imperatives that lie at the heart of advancing DL within the realm of
radiotherapy [21-38]. These pivotal focal points, which include the paramount importance
of standardization, the establishment of robust frameworks, unfettered access to diverse
and comprehensive datasets, rigorous external validation protocols, and the adherence to
methodological standardization, stand as the bedrock upon which the reliability, efficacy,
and broader applicability of DL models in this intricate domain hinge.

First and foremost, the resounding call for “standardization” reverberates throughout
the corpus of literature, as elucidated in [36]. The glaring absence of standardized proto-
cols governing data collection methodologies and analysis procedures poses a formidable
barrier, significantly impeding the validity and practical utility of DL technologies across
radiotherapy applications [36]. This unequivocal realization underscores the urgent ne-
cessity for a cohesive, uniform approach that ensures coherence and comparability across
diverse research endeavors and clinical implementations alike.

Furthermore, the fervent advocacy for collaborative “frameworks and guidelines”
echoes resoundingly, particularly in the context of burgeoning interest witnessed in nations
such as Italy [28,35]. The burgeoning landscape of Al applications within Italy’s dynamic
imaging research sphere underscores the indispensable need for collaborative frameworks,
shared repositories of data, and meticulously crafted research guidelines aimed at harness-
ing the transformative potential of Al within the realm of medical imaging [28]. Similarly,
concerted initiatives are urgently called on for the establishment of common frameworks,
centralized repositories of data, and collaborative networks within Italy, all aimed at foster-
ing the rapid advancement of Al research [35]. These compelling insights underscore the
pivotal role played by collaborative endeavors and meticulously structured frameworks
in driving forward the frontiers of DL application within the intricate domain of medical
imaging and radiotherapy.
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Moreover, the profound significance of unfettered access to “diverse and standard-
ized datasets” emerges as a recurrent, overarching theme, particularly in the context of
confronting the formidable challenges posed by limited data availability [23,28]. The
acute shortage of expansive, heterogeneous datasets poses a formidable impediment to
the widespread adoption of DL methodologies across various applications, including but
not limited to prostate cancer treatment planning and radiology, thereby impeding the
refinement and robustness of DL models [23]. This pressing need for diverse datasets is
further underscored within Italy’s dynamic imaging research landscape, where collabo-
rative frameworks are identified as indispensable vehicles for harnessing the burgeoning
interest witnessed in Al applications [28]. These profound insights serve to underscore
the indispensable role played by comprehensive datasets in augmenting the efficacy, gen-
eralizability, and real-world applicability of DL models across the expansive spectrum of
radiotherapy applications.

Equally crucial is the unequivocal recognition of “external validation” as an indis-
pensable linchpin for ensuring the reliability, validity, and immediate applicability of DL
models [27]. The dearth of comprehensive external validation studies, particularly in the
context of image-to-image models, is acknowledged as a glaring deficiency, underscoring
the imperative need for further validation endeavors aimed at bolstering the immediate
applicability and real-world efficacy of proposed methodologies [27]. External validation
thus emerges as a pivotal step in cementing the credibility, robustness, and generalizability
of DL models, thereby instilling much-needed confidence in their real-world performance
across diverse radiotherapy applications.

4.4.2. Harmonizing Challenges between Digital Radiology and Radiotherapy

The above considerations align with the broader trends seen in the integration of
artificial intelligence (Al) into digital radiology [39-41], a phenomenon that can be said to
encompass and permeate various sectors, including radiation therapy [41-46].

The integration of artificial intelligence (Al) into digital radiology, encompassing radio-
therapy as an integral component, has evolved into a prevalent and transformative theme.
Recent studies, exemplified by Giansanti and Di Basilio [39], accentuate the challenges,
acceptance, and consensus associated with the incorporation of Al in both digital radiology
and radiotherapy. Their work not only highlights the technological advancement but
also emphasizes a paradigm shift that significantly influences medical imaging practices,
presenting crucial challenges and areas that warrant in-depth studies and research.

Moreover, the comprehensive exploration of regulatory aspects pertaining to Al in
digital radiology, which is equally applicable to radiotherapy, is evident in Giansanti’s
comprehensive review [40]. This review underscores substantial challenges and bottlenecks
in the regulatory landscape, emphasizing the need for a thorough understanding of these
aspects in both domains.

In the realm of radiation oncology, the impact of digital radiology has been acknowl-
edged since the early 1990s [41]. Aznar et al. [42] provided a contemporary perspective
on radiation oncology in the digital era, emphasizing its transformative nature and the
escalating reliance on digital technologies within radiation oncology practices. The pivotal
role of Digital Imaging and Communications in Medicine—Radiation Therapy (DICOM-RT)
in radiology informatics was highlighted by Law and Liu [43]. Their discussion under-
scores the significance of DICOM-RT in radiation therapy, emphasizing the importance of
standardized protocols for managing and sharing medical imaging data. The longstanding
integration of digital radiology into radiotherapy, anchored in [44], has been a fundamental
aspect of treatment planning and delivery. Van den Berge et al. [44] elaborated on the
significance and challenges associated with digital radiology in radiotherapy, tracing its
evolution over the years. This interconnection is sustained with the introduction of DL,
where its advent significantly influences both digital radiology and radiation therapy [45].
Sahiner et al. [45] reinforced the interplay between digital radiology and radiotherapy,
emphasizing the potential for DL to revolutionize image analysis and treatment planning.



Diagnostics 2024, 14, 939

20 of 27

The utilization of digital radiology in the planning and delivery of radiation therapy re-
mains a subject of continued interest [46]. Kalet and Austin-Seymour [46] delved into the
intricate role of digital radiology in radiation therapy, emphasizing the critical importance
of accurate imaging data for effective treatment planning and delivery.

4.4.3. Insights into Key Areas: A Comprehensive Exploration

The need for standardization, frameworks and guidelines, access to diverse and
standardized datasets, and the importance of external validation have been specifically
mentioned in some studies but are a vaguely perceived necessity in all the analyzed studies.
All of this is in line with the common sentiment in digital radiology, upon which, as
previously seen, DL applied to RT builds its foundation.

Focus on Ethics

The issues related to standardization and the need for guidelines and shared frame-
works are strongly highlighted, for example, with emphasis on ethics in [40,47-50].

Mudgal et al. [47] conducted an in-depth study focusing exclusively on ethical con-
siderations surrounding Al deployment. Their review covered ethical issues related to
harmless and justifiable Al integration across training, incorporation into the health sector,
and regulatory frameworks. Emphasizing the need for centralized and non-dispersive
data management, the authors advocated for thorough evaluation, refinement, purification,
and representation of all demographics. Transparency and security were highlighted as
pivotal, and the authors stressed the importance of following authorization processes set
by competent authorities.

In a related vein, Harvey et al. [48] explored the transformative potential of Al in
digital radiology, addressing nascent phases and untested aspects within clinical spaces.
The study outlined challenges, including the evolving legal-regulatory environment, im-
pacting Al introduction. Issues such as FDA approval pathways, government oversight,
privacy concerns, ethical dilemmas, and practical considerations in radiologist practice
were discussed. Notably, the study underscored the need for careful considerations in
nuclear medicine, encompassing reliability, safety, non-maleficence, beneficence, justice,
fairness, data privacy, security, confidentiality, bias minimization, clear communication,
autonomy, and clarification ability.

Jaremko et al. [49] contributed a study for the Canadian Association of Radiologists,
focusing on both regulatory and ethical facets. Their work presented a comprehensive
framework outlining legal and ethical issues, with specific reference to the Canadian
health domain.

Currie et al. [50] centered their review specifically on nuclear medicine. They high-
lighted the substantial opportunities associated with “ethical Al,” emphasizing its potential
to enhance productivity, workflow, research capabilities, and clinical applications.

Focus on Regulatory Frameworks

The issues related to standardization and the need for guidelines and shared frame-
works are strongly emphasized, along with the necessity for standardizing datasets, for
instance, with a focus on regulatory frameworks in [39,48,49,51-55].

Two studies focused on regulatory frameworks in both the European Union and the
US. Pesapane et al. [53] analyzed medical device (MD) regulations in both regions, noting
the European emphasis on cybersecurity, data protection, and MDs’ integration, while the
US FDA prioritized data processing, consent, and user/consumer consent. Muehlemat-
ter [52] expressed concerns about the approval processes for Al-based MDs in both regions,
highlighting an increase in approved MDs but suggesting a lack of a well-defined pathway.
Transparency and a dedicated database for MDs were recommended.

Harvey et al. [48] examined the US context, addressing the FDA’s innovative approach
to streamline Al approval by adopting a total product lifecycle method. Jaremko et al. [49]
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provided a study on Canada, discussing regulatory and ethical recommendations for
patient data, algorithms, and healthcare practices.

The concept of Al in digital radiology being treated as medical devices (MDs) was
emphasized in [52,53]. Arora et al. [54] highlighted Al’s recognition as “Software as a
Medical Device (5aMD)” and its interconnection with the Internet of Things, genetic data,
and patient records. Allen et al. [55] warned about biases in commercial algorithms affecting
gender, ethnicity, and social factors in healthcare. They proposed a solution involving
collaboration among institutions to develop robust shared datasets and algorithms with
standards to mitigate biases.

Focus on Bottlenecks

On these topics, including the need for evaluation of the retrieval of validated external
datasets, we found the identification of bottlenecks in [39,40,56-59]. Three studies on
regulatory aspects [56-58] provided complementary and comprehensive insights, empha-
sizing the critical need for external datasets. Alexander et al. [57] examined the impact of
workload on decision correctness in radiology, underscoring the importance of regulating
workloads with a scientifically sound approach. They cautioned that inadequate regulation
could pose more risks than having no regulation at all, especially when considering the
influence of Al on decision speediness.

Mezrich [56] delved into legal liability associated with errors linked to Al use. High-
lighting critical issues, the review focused on enforcing Al-based product liability laws in
the US, uncovering ambiguities that could significantly impact the integration of Al into
the health domain and erode trust among stakeholders.

Ebrahimian et al. [58] concentrated on FDA-regulated Al algorithms, reviewing 127
regulated software to classify available information. They observed a growing number of
FDA-regulated medical devices (MDs) from 2008 to 2021. Crucially, their review empha-
sized a lack of sufficient public data on validation/testing datasets for various algorithms,
rendering applications in healthcare unjustifiable due to potential generalization and bi-
ases. The consensus across these reviews underscores the urgent need for transparent
and comprehensive external datasets to ensure the safe and effective integration of Al
in healthcare.

Focus on Consensus and Acceptance

An alternative viewpoint on these matters is discussed in [39,59-72], emphasizing
the significance of consensus-building and acceptance initiatives. These initiatives are not
solely targeted at professionals involved in the field but extend to patients, caregivers, and
patient associations. The recognition of the importance of involving a broader spectrum of
stakeholders underscores a holistic approach to address and incorporate diverse perspec-
tives, fostering a more inclusive and well-rounded understanding of the challenges and
advancements in the discussed topics.

Three studies [59-61] focused on patient questionnaires, exploring various aspects
of artificial intelligence (Al) integration. Lennartz et al. [59] investigated opinions on Al
integration throughout the medical workflow, while Zhang et al. [60] conducted inter-
views on Al in diagnostics, revealing positive considerations with some cybersecurity
concerns. Ongega et al. [61] examined perceived perspectives on Al, emphasizing patients’
importance, social factors’ impact, and the utility of questionnaires as sensors.

Hendrix et al. [62] concentrated on primary care providers, highlighting the impor-
tance of sensitivity and other parameters in Al-supported clinical reports. Al was deemed
suitable for triage roles without radiologist validation.

Other studies [63-68] explored the opinions of other stakeholders, including radiogra-
phy students. Abuzaid et al. [63] found enthusiasm for Al integration in training programs
but concerns about job security. Abuzaid et al. [64] in another study focused on magnetic
resonance imaging applications, with participants acknowledging Al’s potential to improve
workflow. Giansanti et al. [65] gathered opinions on post-pandemic Al use, emphasizing
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the need for a structured questionnaire for scientific societies. Abuzaid et al. [66] in a third
article investigated opinions on Al integration into radiology workflow, revealing low
awareness and the importance of tailored training.

Alelyani et al. [67] explored attitudes toward Al among radiologists, radiographers,
technologists, and students, noting varying levels of awareness and the importance of
specific Al training in medical schools. The European Society of Radiology [68] extended the
investigation internationally, reporting favorable positions on Al and detailed expectations
for 5-10 years.

Caparros Galan et al. [69] focused on student opinions, finding a belief in AI's potential
to reform the radiology workflow without jeopardizing radiologists” work. Di Basilio et al.’s
study [70] involved professionals with diverse backgrounds and highlighted the importance
of survey administration procedures.

Two surveys sponsored by different scientific societies were reported in [71,72]. Diaz
et al. [71] surveyed international medical physicists, exploring training aspects and opin-
ions on Al introduction. Coppola et al. [72] conducted a nationwide survey on Italian
radiologists, examining their interactions with Al, ethical concerns, job loss risks, policy
needs, and opinions.

Further Areas of Focus with the Point of View of the Challenges

Further domains exploring these themes as challenges encompass algorithms [73],
examining the pivotal role of the responsible professional [74], delving into tools, datasets,
and workflows [75], understanding the dynamics of teamwork [76], and exploring educa-
tional aspects [77]. Each of these areas merits a dedicated review [39] for a comprehensive
understanding of the challenges posed by these critical components in the integration of
artificial intelligence in healthcare. The challenges in algorithm development, also with
a focus on the need for standardization, were explored by Fazal et al. [73]. The study
highlighted macro-areas of challenges, including the need to decrease false-positive rates
for computer-aided detection and to enhance the understanding of Al reasoning. Moreover,
the study emphasized, from a standardization viewpoint, the importance of well-defined
responsibilities in case of algorithm-induced errors. Gampala et al. [74] delved into chal-
lenges related to the professional role and responsibilities in digital radiology in the context
of Al integration. The study discussed how Al could simplify various activities in the
working chain, emphasizing the need for clinical teams to become familiar with guiding
principles for data management and curation and to standardize it.

Ahmad [75] focused on challenges in engineering and machinery aspects, such as
hardware, software, and workflow impact. The study reported on new activities, such as
selecting Al products and vendors, piloting Al algorithms, and creating proprietary Al
algorithms that need standardization.

Martin-Noguerol et al. [76] highlighted challenges in teamwork concerning the collab-
oration between engineers, system developers, and radiologists. Communication between
radiologists and data scientists was deemed crucial for successful collaborative work and
needs to be regulated.

Pesapane et al. faced the importance of education [77] and underscored the significance
of continuous, specialized training, considering the evolving nature of Al and the need for
well-defined and standardized programs.

4.5. Comprehensive Synoptic Overview

This extensive investigation, conducted via an umbrella review using a narrative
review methodology, has allowed for the illumination of intricate themes regarding the
application and integration of DL techniques within RT. This comprehensive exploration
(Figure 6A) extends beyond mere thematic revelations (Figure 6B,C), encapsulating trends
(Figure 6D), nuanced emerging opportunities (Figure 6E), needs for broader investigation
areas (Figure 6F), and key focus areas for global explorations in DL for RT suggested from
the overview (Figure 6G). The last passage suggested a further elaboration of the overview
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with complementary information. The complementation with a non-systematic review
of recent contributions has made it possible to perform an evaluation and comparison by
linking the technological challenges faced in the reality of digital radiology and Al, strictly
interconnected with the investigated field of the integration of DL in RT (Figure 6H), and a
comprehensive exploration of the key areas identified has been provided (Figure 6]). This
exploration has facilitated a series of focused discussions on the detected key focus areas for
global exploration: ethical considerations (Figure 6l1), regulatory frameworks (Figure 6K),
identification of bottlenecks (Figure 6L), the cultivation of consensus and acceptance within
the field (Figure 6M), and the focus with the point of view of the challenges (Figure 6N).
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Figure 6. Synoptic diagram representing the flow and the key points of the study.

As emerged from the synoptic diagram, the study of recent literature has allowed for a
detailed exploration of the key areas identified by the systematic literature reviews initially
analyzed in this umbrella review.

To summarize, the comprehensive overview, combined with the additional analytical
discussion, successfully addressed the critical issues arising from the original hypothesis.
However, it is important to emphasize that although a narrative review does not inherently
aim for such outcomes, the in-depth nature of this investigation greatly enhances the
understanding and development of the topic under discussion.

4.6. Takeway Message

Significant initiatives have involved the integration of DL with radiotherapy. These
injtiatives experienced a notable acceleration during the COVID-19 pandemic. This period
highlighted significant development opportunities alongside specific niches needing im-
provements and further scientific exploration. Furthermore, there is a widespread call for
in-depth examination regarding standardization, guidelines, access to dataset databases,
and the corresponding external validations.

4.7. Limitations

This study utilized the PubMed and Scopus databases, focusing on systematic review
studies through an umbrella review narrative. Further targeted research on emerging
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themes is encouraged. Exploring national databases can also enhance knowledge in this
domain by identifying local initiatives, with particular emphasis on standardization and
regulatory compliance.

5. Conclusions

In conclusion, the synthesis of the findings shed light on the profound potential of DL
in revolutionizing radiotherapy. The acceleration driven in this field (as in others) by the
COVID-19 pandemic has led to significant advancements that indeed have the potential
to offer great opportunities in the healthcare domain. However, attention must be paid to
specific areas that require further research.

The overview not only highlighted key areas poised for further exploration but also
underscored the nuanced interplay between digital radiology and radiation therapy. This
interdependence aids in addressing cross-cutting areas that require further developments
in the realms of both research and regulation.

As technological advancements continue to progress, concerted collaborative efforts
and thorough investigations are essential to fully harness the transformative power of DL.
Ultimately, such endeavors hold the promise of significantly improving patient care and
refining treatment strategies for optimal outcomes.
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