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Abstract: Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psy-
choneuroimmunological processes and affects neurological and psychiatric health. It exerts a pro-
found effect on immune cell activation and brain function, suggesting potential roles in both neu-
roprotection and neuroinflammation. IL-8 production is stimulated by several factors, including
reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally,
CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease
susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric
conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be
detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate
for a broad-spectrum biomarker. This review highlights the need for further research on the diverse
effects of IL-8 and the associated implications for personalized medicine. A thorough understanding
of its complex role could lead to the development of more effective and personalized treatment
strategies for neuropsychiatric conditions.
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1. Introduction

The intricate balance between the neuroendocrine and immune systems is critical
for maintaining an organism’s homeostasis. During times of stress, the redistribution of
immune cells across various immune compartments becomes crucial, ensuring the effi-
ciency of cell-mediated immune responses [1]. The activation of the immune system in
the periphery impacts the central nervous system (CNS), and disturbances in systemic im-
mune functions can significantly contribute to the onset of neuropsychiatric conditions [2].
Dysregulation in neuroimmune interactions may lead to dysfunction in vital organs and
result in the widespread impairment of neuromodulation and symptoms across multiple
body systems [3]. Peripheral afferent neurons activated by the immune system, along
with circulating cytokines and microbial products, stimulate neurons and glial cells in
the hypothalamus and medulla, triggering sympathetic and humoral responses [3,4]. The
gaining of insight into the comorbidities between psychiatric conditions and cardiovas-
cular, cerebrovascular, and neurological disorders has been greatly enhanced through the
perspective of psychoneuroimmunology, revealing the complex interconnections between
the brain and the immune system [5,6].

Neuroinflammatory processes influence the health of the nervous system, exerting
control over the development and viability of brain cells and their connections [7]. CNS
immune responses can lead to synaptic dysfunction, neurotransmitter imbalances or de-
ficiencies, neuronal loss, and the exacerbation of brain-related pathologies [5]. Neuroin-
flammation, implicated in a diverse array of CNS disorders, including autoimmune and
degenerative pathologies, often manifests as a dysregulated chemokine system [7,8].

Chemokines, also referred to as chemotactic cytokines, comprise a diverse family
of relatively small proteins, ranging from 8 to 12 kDa. These proteins are secreted and
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play a critical role in inducing chemotactic responses in immune cells, and participate in
numerous inflammatory processes [9–11]. Their distinctive features lie in the presence of
three to four conserved cysteine residues, which leads to their categorization into four
families (CXC, CC, CX3C, and C) based on the arrangement of these N-terminal cysteine
residues [12–15].

Chemokines play a key role in controlling the development and equilibrium of the
immune system. They actively participate in all aspects of both protective and detrimental
immune and inflammatory reactions [10]. These proteins can attract and activate a wide
range of cells, including both immune and non-immune varieties [12,14]. Beyond their role
in inducing chemotaxis, chemokines also exert control over cell proliferation, survival, and
differentiation [16].

Chemokines and their receptors play a prominent role in facilitating communication
between neurons and inflammatory cells, a crucial aspect of normal neuronal function [7].
These molecules and their receptors are naturally expressed in the brain, under physio-
logical conditions. Their presence suggests their potential involvement in intercellular
communication and the modulation of neuronal activity, in addition to their well-known
immunological functions. Furthermore, chemokines are actively engaged in brain develop-
ment and in the maintenance of brain homeostasis, influencing synaptic activities, as well
as the processes of migration, differentiation, and proliferation in both glial and neuronal
cells [8,14,17–20].

The recruitment of inflammatory cells is a well-recognized driver of the secondary
damage cascades commonly observed in CNS injuries. Changes in the expression of
chemokines drive the activation and infiltration of cells to the injury site. This post-
traumatic infiltration of inflammatory cells has been linked to secondary tissue damage,
cell death, and the demyelination of axons [21]. Furthermore, the potential of chemokines
to induce neuronal death, either directly through the activation of neuronal chemokine
receptors or indirectly by triggering microglial destroying mechanisms, underscores their
significant role in CNS injury [7,8,13].

2. IL-8 and CXCR1/2 Receptors

Within the chemokine family, the CXC or α chemokines, are characterized by a single
amino acid separating the first two cysteine residues, denoted as cysteine-X amino acid-
cysteine (CXC). Among the CXC chemokines, there is a subgroup distinguished by the
presence of a specific three-amino-acid motif near their N-terminal region, known as the
glutamic acid-leucine-arginine (ELR) motif [12].

Interleukin-8 (IL-8), also recognized as neutrophil-activating peptide 1 (NAP1) and
CXC chemokine ligand 8 (CXCL8) [22], is a proinflammatory CXC chemokine that plays
a prominent role in inducing neutrophil chemotaxis, the release of intracellular granule
contents, and the upregulation of cell surface adhesion molecules [23–25].

IL-8 belongs to the ELR+ CXC chemokine family, known for its diverse biological
functions. It serves a critical role in guiding neutrophils and promoting angiogenesis [26].
IL-8 exists in two forms, a monomeric and a dimeric form, and this distinction can lead to
different effects on its CXCR1/2 receptors, including desensitization and receptor internal-
ization [26,27].

The action of IL-8 involves several cellular responses, including alterations in cy-
toskeletal structure, fluctuations in intracellular calcium concentrations, the activation
of integrins, the release of granule proteins through exocytosis, and the initiation of a
respiratory burst [28].

The production and release of IL-8 can be modulated by multiple factors that influ-
ence its expression and levels. For instance, IL-8 may be induced by several cytokines
and substances, including IL-1α [29–32], IL-1β [30,33–35], IL-7 [35,36], IL-17 [35,37–42],
IL-22 [39–41,43], tumor necrosis factor-alpha (TNF-α) [29,30,33,35,44–46], histamine [46–50],
stromal cell-derived factor-1 (SDF-1, CXCL12) [51–55], lipopolysaccharides (LPSs)
[33,35,44,56], reactive oxygen species (ROS) [57–60], cadmium (Cd) [61–64], phytohemag-
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glutinin (PHA) [35,56], prostaglandin E2 (PGE2) [65–68], polyinosinic-polycytidylic acid
(poly I:C) [35,69,70], concanavalin A (ConA) [35,71], NaCl [72–75], thrombin [49,76–78],
all-trans-retinoic acid (ATRA) [79–81], and other cellular stressors (Figure 1).
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Figure 1. Schematic presentation of IL-8 inducers: IL-1α, IL-1β, IL-7, IL-17, IL-22, tumor necrosis
factor-alpha (TNF-α), histamine, stromal cell-derived factor-1 (SDF-1, CXCL12), lipopolysaccharides
(LPSs), reactive oxygen species (ROS), cadmium (Cd), phytohemagglutinin (PHA), prostaglandin
E2, polyinosinic-polycytidylic acid (poly I:C), concanavalin A (ConA), NaCl, thrombin, and all-trans-
retinoic acid (ATRA).

Additionally, numerous other cytokines and compounds demonstrate the ability to
reduce IL-8 levels, such as IL-4 [29,33,35,44,45,82], IL-10 [33,45,73,82,83], IL-35 [84–86], trans-
forming growth factor-beta 1 (TGF-β1) [33,87,88], interferon-alpha (IFN-α) [82,89,90],
interferon-beta (IFN-β) [82,89–92], glucocorticoids (GCs) [29,35,44,45,82,93], lipoxins [94–96],
vitamin D [29,35,44,97–99], lipoxygenase (LOX) inhibitors [29,35,100,101], antcin K [102],
tannins [103,104], glycyrrhizin (GL) [50,105–107] and N-acetylcysteine (NAC) [31,108–110]
(Figure 2). It is important to note that these are not the only examples of IL-8 modulators,
and their impact on IL-8 levels can vary depending on factors such as their concentration,
duration of exposure, and the specific cellular context.

IL-8 displays remarkable resilience when exposed to temperature variations and
proteolytic enzymes, and it maintains a relative resistance to acidic conditions, making IL-8
an exceptional candidate for deployment at sites experiencing inflammation, where it must
endure harsh and adverse surroundings [111,112]. Unlike most inflammatory cytokines,
which have a brief lifespan in vivo, IL-8 remains active for days or even weeks after its
early production in the inflammatory response [111,112].
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Figure 2. Schematic presentation of IL-8 reducers: IL-4, IL-10, IL-35, transforming growth factor-beta
1 (TGF-β1), interferon-alpha (IFN-α), interferon-beta (IFN-β), glucocorticoids (GCs), lipoxins, vitamin
D, lipoxygenase (LOX) inhibitors, antcin K, tannins, glycyrrhizin (GL), and N-acetylcysteine (NAC).

IL-8 exerts its effects by binding to specific G protein-coupled receptors known as
CXCR1 and CXCR2 [25]. These receptors, belonging to the γ subfamily of G-protein
coupled receptors with seven transmembrane domains, play an essential role in mediating
IL-8’s effects [113]. Both CXCR1 and CXCR2 interact with IL-8, sharing significant amino
acid sequence similarity and exhibiting a binding affinity for IL-8 [114–116].

However, these receptors show distinctions in their second extracellular loop, fourth
transmembrane domain, C-terminal (intracellular), and N-terminal (extracellular)
regions [114–116]. Moreover, their desensitization processes differ significantly, with
CXCR2 internalizing more rapidly and at lower ligand concentrations compared to
CXCR1 [114,116,117]. Additionally, CXCR2 undergoes recycling back to the cell surface at
a significantly slower pace than CXCR1 [114,116,117].

Upon binding to CXCR1 and CXCR2, IL-8 induces calcium flows, chemotaxis, and
degranulation. However, only CXCR1 is responsible for activating phospholipase D and
the stimulation of the superoxide production through the NADPH oxidase enzyme, con-
tributing to the respiratory burst and generation of reactive oxygen species (ROS) in
neutrophils [27,114,118–122].

3. IL-8 and CNS

IL-8 plays a crucial role in the peripheral immune response, but it may also exert central
effects and be involved in the regulation of neuroendocrine functions related to stress [123].
Glucocorticoids (GCs) have been shown to downregulate IL-8 mRNA expression [124]
and decrease IL-8 serum levels [125]. Moreover, the CXCL8 gene features a glucocorticoid
receptor binding core site situated at positions -330 to -325, making it susceptible to inhibi-
tion by glucocorticoids [123]. Interestingly, IL-8 mRNA expression was detected in the rat
paraventricular nucleus of the hypothalamus (PVN), a key site for corticotropin-releasing
hormone (CRH) synthesis, and the hippocampus, where negative feedback to CRH produc-
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tion is generated [17,123]. IL-8’s activation of the hypothalamic-pituitary-adrenal (HPA)
axis increases cortisol production, which, in turn, helps protect the body from autoimmune
disorders by suppressing proinflammatory cytokine production [126].

Additionally, IL-8 possesses the capability to influence glutamatergic synaptic trans-
mission, impacting both presynaptic and postsynaptic processes. Increased IL-8 levels are
implicated in notable alterations of synaptic transmission in the prefrontal cortex and may
contribute to the development of persistent inflammatory pain [127].

Various cell types within the brain, including astrocytes, neurons, microglia, and
endothelial cells, consistently express CXCL8 receptors [128]. The production of IL-8 has
been noted upon the stimulation of microglia, resident brain tissue macrophages, and
monocyte-derived macrophages (MDMs) [33]. These innate immune cells play crucial
roles in the inflammatory response, the phagocytosis of cellular debris, and tissue repair
following injury [129]. Furthermore, IL-8 is secreted by astrocytes, which are the most
abundant cell types in the brain [33,130,131]. Astrocytes participate in numerous functions
within the CNS, encompassing the regulation of glutamate, ion homeostasis (e.g., Ca2+,
K+), and water balance, as well as the control of blood–brain barrier permeability, scar
formation, tissue repair through angiogenesis and neurogenesis, and the modulation of
synaptic activity [132,133]. IL-8 transcription in astrocytes is negatively regulated by β-
catenin, and positively regulated by the interaction of T cell factors (TCFs), lymphoid
enhancing factor (LEF), and activating transcription factor 2 (ATF2) [131].

IL-8 demonstrates strong trophic properties, guiding the movement and survival of
neural stem cells and glial progenitor cells. Additionally, it facilitates glia-neuron com-
munication by modulating neuronal excitability, triggering both excitatory and inhibitory
activity [134,135]. The release of IL-8 by glial cells can activate CXCR1 and CXCR2 recep-
tors on cholinergic septal neurons. This activation results in the immediate, direct, and
reversible modulation of ion channels, leading to a reduction in Ca2+ currents through
G-protein activation. Notably, cholinergic septal neurons, a neuronal type particularly vul-
nerable in patients with Alzheimer’s disease (AD), may be influenced by IL-8, potentially
contributing to the cognitive deficits observed in these individuals [134]. Additionally,
elevated levels of IL-8 in both plasma and cerebrospinal fluid (CSF) have been associated
with increased CSF p-tau levels. Similarly, higher CSF IL-8 levels correlate with elevated
CSF Aβ42 levels, while higher CSF sAβPPβ levels are linked to increased plasma IL-8
concentrations [136].

In the context of drug abuse, particularly Methamphetamine (METH) use, the impor-
tance of IL-8 and CXCR1 is exemplified. CXCR1 has been associated with the process of
neuronal apoptosis induced by METH. The use of METH is linked to oxidative stress, the
apoptosis of dopaminergic neurons, and neuroinflammation related to astrocytes [137].
Exposure to METH upregulates the expression of CXCR1 in neurons and amplifies the ex-
pression of IL-8 via the nuclear factor-kappa B (NF-κB) pathway in astrocytes. On the other
hand, the suppression of CXCR1 expression using siRNA sequences notably mitigated
METH-induced neuronal apoptosis and promoted the neuroprotective effect of astrocytes
on neurons [137].

Furthermore, the neuroinflammation mediated by glial cells appears to exert an in-
fluence on cognitive aging. In healthy older individuals, there is a positive correlation
between plasma IL-8 concentrations and glia-related metabolites, such as the total choline
in the anterior cingulate cortex and hippocampal myo-inositol, as observed through proton
magnetic resonance spectroscopy (1H-MRS) [138]. Moreover, IL-8 might serve as a sig-
nificant contributor to neuronal loss in Alzheimer’s disease by influencing the release of
neurotoxic substances like matrix metalloproteinases (MMPs), and prompting the expres-
sion of proteins associated with neuronal cell death, including MMP-2, MMP-9, cyclin D1,
and Bim [139].
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4. IL-8 and Brain Barrier Integrity

The blood–brain barrier (BBB) and the blood–cerebrospinal fluid–brain barrier (BCSFB)
collectively act as crucial interfaces between the cerebrovascular system and the brain
parenchyma, thereby restoring homeostasis and enhancing the physiological environment
of the CNS [140,141].

The BBB plays a vital role in safeguarding the brain and is frequently compromised
during various diseases. It primarily consists of brain endothelial cells securely sealed by
intercellular junctional structures, including tight junctions [140–145]. These endothelial
cells, along with other components, such as glia (astrocytes, oligodendrocytes, microglia),
neurons, pericytes, and the basement membrane (BM), collectively form the neurovascular
unit, ensuring the proper physiological functioning of the CNS [141,146].

The inflammatory response involves complex interactions of various cell types and
signaling molecules. Consequently, peripheral inflammation can trigger a neuroinflam-
matory response involving the BBB, neurons, astrocytes, and microglia. Additionally, the
brain itself can release pro-inflammatory mediators upon stimulation [5].

Chemokines act as signaling molecules for immune and nerve cells. They can induce
neuroinflammation to protect the organism from pathogens, helping with phagocytosis
of debris and apoptotic cells, and contributing to tissue repair. On the other hand, the
overexpression of chemokines can disrupt the integrity of the brain barrier and allow
immune cells to infiltrate the brain [7,147].

IL-8 has been shown to induce the recruitment of neutrophils to the brain and reg-
ulate their adhesion to endothelial cells. This process can result in a significant influx
of neutrophils into the subarachnoid space [33]. Once neutrophils breach the BBB, IL-8
induces their degranulation, leading to the release of chemoattractants for T lymphocytes
and priming neutrophils for superoxide production, among other potentially neurotoxic
molecules [33,148]. Indeed, patients who have had an ischemic stroke have demonstrated
an increase in IL-8 plasma levels [149]. In addition, a correlation was observed between the
size of the lesion in acute ischemic stroke patients and the levels of IL-8 in the serum [150].
Moreover, the serum level of IL-8 exhibited a positive correlation with the severity of dis-
ability in patients who have had an acute ischemic stroke within the initial 48 h post-stroke,
as evaluated using the National Institute of Health Stroke Scale (NIHSS) [151].

IL-8 mRNA has been identified within the choroid plexus (CP) [123], an extensively
vascularized tissue residing in the brain’s ventricular system [152]. The CP mainly com-
prises capillary beds, the pia mater, and numerous epithelial cells resting on a basal lamina.
Positioned at the interface between the blood and the CSF, the CP plays an essential role in
the production of CSF and the formation of the BCSFB [153–156].

Moreover, the CP is a significant source of biologically active molecules involved in
brain development, stem cell proliferation, differentiation, and brain repair [157]. The
CP serves as a gateway for the trafficking of immune cells into the CSF and maintains
continuous immune surveillance via CD4+ T cells, macrophages, and dendritic cells. It also
regulates immune cell trafficking in response to diseases and trauma [153]. Additionally,
the CP synthesizes various growth factors, including insulin-like, fibroblast, and platelet-
derived growth factors [155].

Inflammation leads to substantial modifications in both the BBB and the BCSFB, caus-
ing the disruption of tight junctions (TJs) and the impairment of barrier functionality [158].
TJs are comprised of various proteins, including transmembrane proteins like Occludin,
the Claudin family, and the peripheral membrane-associated Zonula occludens (ZOs) fam-
ily [159,160]. IL-8 has been shown to down-regulate the mRNA expression of Occludin,
Claudin-5, and ZO-1. The expression levels of these proteins decrease with higher concen-
trations and longer durations of IL-8 exposure, displaying a dose- and time-dependent
relationship [159].

The CP is implicated in various neurological disorders, including inflammatory, infec-
tious, traumatic, neoplastic, and systemic diseases, as well as autoimmune diseases [161,162].
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Additionally, an increased CP volume has been observed in neurodegenerative disor-
ders [163] and psychiatric conditions [164,165].

5. IL-8 and CSF

The primary role of CP epithelial cells is to secrete CSF into the brain’s ventricles,
and the formation of CSF in the CP depends primarily on the transport of Na+, K+, Cl−,
HCO3

−, and H2O [162]. The CP mainly contributes to CSF production by allowing free
access to the blood compartment through leaky vessels [161]. CSF serves a multitude of
functions, including providing mechanical support, acting as a conduit for certain nutrients,
eliminating metabolic by-products and waste generated by synaptic activity, and partici-
pating in hormonal signaling processes [155,166]. It represents a rich reservoir of various
components, including proteins, lipids, hormones, cholesterol, glucose, microRNAs, and
numerous other molecules and metabolites, all of which play pivotal roles in modulating a
wide spectrum of CNS functions [167].

The identification of the cytokine and chemokine biomarkers within the CSF that
correlate with different neuroinflammatory conditions has the potential to serve as a
diagnostic tool and offer novel insights into the pathogenesis of these diseases [168,169].

Interestingly, CSF IL-8 levels were found to be elevated in cases of coronavirus disease
2019 (COVID-19) [170,171]. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) can affect multiple organs, including the brain, leading to neuropsychiatric symptoms
and cognitive impairments in patients with COVID-19 [172,173]. It is important to note
that SARS-CoV-2 can invade the host’s brain tissue through the olfactory tracts, resulting in
anosmia or ageusia [172]. In cases of encephalopathy related to SARS-CoV-2, inflamma-
tion within the CNS, induced by IL-8, follows the systemic inflammatory cascade. This
inflammation may persist and intensify even after immunotherapy [174]. Moreover, the
prolonged production of IL-8 could be associated with extended neurological complications
in SARS-CoV-2 infections [174].

Furthermore, elevated CSF levels of IL-8 were observed in individuals with schizophre-
nia [175], schizophrenia spectrum disorders [176,177], bipolar disorder (BD) [178], major de-
pressive disorder (MDD) [175], in adult patients with autism spectrum disorder (ASD) [179],
and patients with Parkinson’s disease and dementia (PDD) [180].

In addition, increased levels of CSF IL-8 were observed in patients with Multiple
Sclerosis (MS) [181]. Notably, the time between the first anamnestic episode of focal
neurological dysfunction and the diagnosis of relapsing-remitting MS was shown to be
a key factor linked to an increase in CSF IL-8 levels. Moreover, a higher risk of disease
reactivation, an inadequate response to treatments, and clinical disability were observed in
correlation with increased CSF IL-8 levels [182].

Conversely, CSF IL-8 levels were found to be significantly lower in individuals who
had attempted suicide [183,184], and were also negatively correlated with symptoms of
anxiety in suicide attempters [184].

6. CXCL8 Gene and SNPs

The CXCL8 gene is located on chromosome 4q13-21 and comprises four exons and
three introns, featuring a unique CAT- and TATA-like structure [113,185,186]. The proximal
segment of the CXCL8 promoter includes around 200 nucleotides within the 5′-flanking
region of the CXCL8 gene, playing a significant role in regulating the transcription of this
gene [187]. Notably, the 5′-flanking region of the IL-8 gene displays distinct sequence
dissimilarity compared to other cytokine and acute phase reactant genes [113].

In resting cells, CXCL8 is present in extremely low levels, making it difficult to de-
tect [116,188]. However, the expression of CXCL8 is induced by a range of factors and
stressors, with transcription factors NF-κB and activator protein-1 (AP-1) playing key
roles in mediating this response. This induction results in a significant increase in CXCL8
expression, typically ranging from 10 to 100-fold [116].
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Moreover, genetic polymorphisms, seen in any population, can influence CXCL8 gene
expression and may differ between individuals [189–191]. For example, the SNP rs4073
(−251A/T), which is located in the promoter region of the CXCL8 gene, influences the tran-
scriptional activity of the CXCL8 gene and has been linked to various diseases [190–192].
The A allele of rs4073 is associated with an increased expression of the IL-8 gene and
increased IL-8 production. The A/A genotype exhibits the highest values, while the T/T
genotype shows the lowest values [191–193].

Furthermore, the complex interplay between different SNPs influences CXCL8 gene
expression. For instance, in their study, Benakanakere et al., (2016) investigated the effects
of stimulating HEK293T cells carrying different genotypes (rs4073 AT, rs2227307 TT, and
rs2227306 TC/CC) at the IL-8 locus with the TLR3 agonist poly I:C. They observed that cells
with the ATC/TTC haplotype significantly upregulated IL-8 gene expression at both tran-
scriptional and translational levels, leading to enhanced neutrophil transmigration [189].

Table 1 presents four single nucleotide polymorphisms (SNPs) in the Human CXCL8
gene which were reviewed using the SNP database of the National Library of Medicine
“https://www.ncbi.nlm.nih.gov/snp/ (accessed on 12 January 2024)”.

Table 1. CXCL8 gene SNPs.

SNP Alleles Gene: Consequence Genomic Position

rs4073 A > C/A > G/A > T CXCL8: 2KB Upstream Variant chr4:73740307
(GRCh38.p14)

rs1126647 A > C/A > T CXCL8: 3 Prime UTR Variant chr4:73743328
(GRCh38.p14)

rs2227306 C > T CXCL8: Intron Variant chr4:73741338
(GRCh38.p14)

rs2227307 T > C/T > G CXCL8: Intron Variant chr4:73740952
(GRCh38.p14)

CXCL8 gene polymorphisms demonstrate differences in the disease susceptibility
between individuals carrying different alleles. For instance, Kang et al., (2015) observed
higher frequencies of CXCL8 −251T/A alleles in patients with Alzheimer’s disease (AD),
compared to those without AD. However, the significance of these associations was lost
after Bonferroni correction [194]. Interestingly, other studies did not find any significant
association between patients with AD and the rs4073 polymorphism [195–197]. Yet, Infante
et al., (2004) discovered a synergistic effect between the rs4073 TT genotype and the
IL-1A -889 T allele in patients with AD. Individuals carrying both polymorphisms had
about twice the risk of developing AD compared to subjects without these risk genotypes,
suggesting a gene–gene interaction [195]. Nonetheless, another study found no interactive
effect between the rs4073 and IL-1α -889C/T (rs1800587) polymorphisms in patients with
AD [197]. Furthermore, meta-analyses of the rs4073 polymorphism suggested a possible
predisposition to AD in individuals of Asian ethnicity [198,199].

In a study by Kamali-Sarvestani et al., (2006), it was noted that there was a significant
increase in the presence of the rs4073 TT genotype among patients with Multiple Sclerosis
(MS) compared to a group of healthy individuals [200]. Moreover, Dolcetti et al., (2023) dis-
covered a significantly higher concentration of CSF IL-8 in patients with relapsing-remitting
MS carrying the rs2227306 T allele and CT/TT genotypes. The study also observed a signif-
icant inverse relationship between CSF IL-8 levels and cortical thickness (CT) in individuals
carrying the T allele at rs2227306, as assessed through structural MRI measures [201]. In
addition, Dolcetti et al., (2023) established a significant positive association between CSF
IL-8 levels and patients with a clinical disability in rs2227306 CT/TT assessed with the
Expanded Disability Status Scale (EDSS) [201]. Furthermore, the rs2227306 polymorphism
was found to be associated with BD I and methamphetamine addiction, but not with BD II,
ADHD, MDD, or schizophrenia [202].

Variations in the CXCL8 gene and the resulting changes in IL-8 production could
potentially lead to shifts in personality traits that may be associated with an increased

https://www.ncbi.nlm.nih.gov/snp/
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risk of suicidal behavior [203]. In their study, Noroozi et al., (2018) determined that the
presence of the rs4073 T allele was notably higher in the group of individuals who at-
tempted suicide, in comparison to both the control group and those who completed suicide.
Moreover, the haplotype rs4073T/rs2227306C/rs1126647A was significantly less prevalent
in the completed suicide group compared to the suicide attempt group. Additionally, the
rs4073A/rs2227306T/rs1126647A haplotype was significantly more prevalent in individ-
uals who utilized “hard” suicide methods compared with those who attempted “soft”
suicide methods [203].

Janelidze et al., (2015) found that anxiety symptoms were more severe in suicide
attempters carrying the rs4073T, and the T allele was more common among females who
attempted suicide than in a population-based cohort. Notably, those who attempted suicide
and also had rs4073 AA demonstrated a lower median Brief Scale for Anxiety (BSA) score
when compared to rs4073 AT and rs4073 TT carriers [184].

Furthermore, Ben Afia et al., (2020) found that the rs1126647 polymorphism within
the Tunisian population showed a significant risk for schizophrenia. Notably, females
displayed a significant association between the rs1126647 T allele and the T/T genotype,
correlating with an elevated risk of paranoid schizophrenia. In males, this predisposition
was observed specifically in those carrying the rs1126647 T/T genotype [186]. Moreover,
the presence of the rs1126647 T allele and T/T genotype in paranoid schizophrenia was
significantly associated with an adult-onset age of 24 years and older. Interestingly, the
haplotypes TTT, ACT, and TCT at rs4073/rs2227306/rs1126647, each incorporating the
risk allele rs1126647T, were associated with an increased risk for paranoid schizophrenia.
However, only the combination of TCT was seen as a risk factor for schizophrenia more
generally [186].

In other research, Reyes-Gibby et al., (2013) discovered a notable association between
the rs4073 polymorphism and depressed mood, pain, and fatigue in patients with non-
small cell lung cancer (NSCLC) in advanced stages (IIIB-IV) of the disease, assessed before
cancer treatment. Importantly, individuals carrying rs4073 T/T genotypes were more
likely to experience severe depression compared to those with A/T and A/A genotypes.
Interestingly, similar rs4073 T/T genotypes among these patients were associated with less
severe pain and fatigue compared to carriers of the A/T and A/A genotypes [204].

Additionally, Kim et al., (2013) observed a gene–environment interaction related to
the incidence of late-life depression. They identified an association between declining
physical health and depression, which was strongest in individuals genetically predisposed
to a cytokine-mediated inflammatory response. Notably, they found that rs4073A had a
significant modifying effect on the association between physical disorders and the incidence
of depression over two years in a Korean population of adults aged 65 and over [205]. How-
ever, other studies, including those regarding patients with post-stroke depression [206],
depression in breast cancer patients [207], and depression in an elderly Korean popula-
tion [194], did not find significant associations with the rs4073 polymorphism.

7. Maternal IL-8 during Pregnancy and Implications for Offspring

Chemokines can cross the placental and brain barriers, regulating the communication
between neurons and microglia in the CNS [208]. During healthy gestation, IL-8 undergoes
tight regulation and reaches higher peripheral concentrations during preterm compared to
term labor [209]. Additionally, there is a decrease in IL-8 levels from early to later pregnancy,
followed by an increase at postpartum [210]. The natural process of childbirth leads to
increased circulating IL-8 levels, accompanied by rises in the numbers of neutrophils and
monocytes [1]. This elevated post-birth IL-8 level may result from spillage originating in
activated vascular endothelial cells or circulating immune cells [1].

Nelson et al., (2006) reported that IL-8 concentrations in newborn infants, both those
at preterm and term, surpassed those found in adults [211]. Moreover, Yektaei-Karin et al.,
(2007) found that the transmigration of IL-8-induced neutrophils in newborns following
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normal delivery was significantly higher in cord blood compared to neutrophils from
Cesarean section births or adult peripheral blood [1].

IL-8 exhibits dual pro-inflammatory and anti-inflammatory roles based on its concen-
tration, suggesting that higher and lower levels of IL-8 might exert opposing effects [212].
This duality implies that IL-8 could play both damaging and defensive roles in the potential
demyelination process [212].

Changes in inflammatory cytokines, influenced by environmental factors affecting both
maternal and fetal immune systems, can profoundly impact fetal brain development [213].
The exposure of the developing fetus to elevated levels of maternal cytokines has been
associated with structural changes in neuroanatomy [214]. Moreover, elevated levels of
IL-8 can have significant adverse effects on the developing brain, influencing both its
structure and function. Dysregulated IL-8 appears to play a critical role in connecting
perinatal systemic inflammation with atypical white matter development in infants born
prematurely [215].

Furthermore, increased IL-8 levels in blood samples taken from the umbilical cord
or in the infant shortly after birth are strongly associated with visible white matter injury,
cerebral palsy, neurodevelopmental challenges, and cognitive impairments in children born
prematurely [215]. Remarkably, even among children born at full term, IL-8 stands out
as one of the neonatal cytokines most strongly linked to later diagnoses of autism [215].
Interestingly, Jones et al., (2017) found that mothers with higher mid-gestational IL-8 serum
levels had a higher risk of having children with autism spectrum disorders with intellectual
disabilities. However, mothers of children with developmental delays or autism spectrum
disorders without intellectual disabilities had lower mid-gestational IL-8 levels compared
to the general population [216].

The increased secretion of IL-8 in Down syndrome may contribute to the observed
reduction in postnatal brain growth seen in individuals with this condition. In infants
with Down syndrome, IL-8 levels exceed those observed in both subjects with autism
and neurotypical control subjects [211]. Additionally, IL-8 appears to amplify the effect of
amyloid beta peptide in stimulating the production of IL-6, IL-1β, TNF-α, and COX-2 in
cultured human microglia [211,217], suggesting a potential role in the early development
of Alzheimer’s neuropathology in Down syndrome [211].

During the second trimester, mothers of offspring with schizophrenia spectrum dis-
orders displayed significantly higher IL-8 levels compared to mothers in the control
group [218]. Moreover, within the group of individuals with schizophrenia, the expo-
sure of the fetus to increased maternal IL-8 levels during the second and third trimesters
correlated significantly with enlarged ventricular CSF volumes [214]. Additionally, Ellman
et al., (2010) reported significant associations between maternal IL-8 levels and reductions
in the volumes of the left entorhinal cortex and right posterior cingulate among individuals
with schizophrenia. They also observed volumetric reductions that approached signifi-
cance in the right caudate, bilateral putamen, and the right superior temporal gyrus [214].
Furthermore, Osborne et al., (2022) found notably elevated IL-8 levels, measured in the
early third trimester in pregnant women with a previous history of MDD but without
depression symptoms during pregnancy, in comparison to pregnant women without an
MDD history [219].

Elevated levels of maternal IL-8 in the first trimester were significantly linked to
externalizing symptoms (e.g., aggression, impulsivity) and subsequent conduct problems
in the offspring [220]. Given that externalizing symptoms in children are tied to cognitive
difficulties, it is possible that fetal exposure to IL-8 increases the risk of developing external-
izing symptoms through cognitive impairment [220]. Moreover, higher IL-8 levels during
early pregnancy (10–18 weeks) were linked to notable decreases in fine motor skills and
problem-solving abilities in children at age two [208].

However, prenatal exposure to IL-8 has also been shown to have opposite effects
on neurodevelopmental processes. For instance, maternal IL-8 levels during gestation
exhibited a positive correlation with verbal abilities while displaying a negative correla-
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tion with a child’s spatial abilities [213]. Moreover, reduced IL-8 levels throughout the
second and third trimesters were associated with poorer neurocognitive functioning at
age seven [221]. Children exposed to lower prenatal IL-8 levels exhibited lower scores
in cognitive performance and motor function. Conversely, higher gestational IL-8 levels
were associated with improved performance in the Drawing Task and the Tactile Finger
Recognition Task [221].

Interestingly, mothers of a higher socioeconomic status (SES) demonstrated higher
IL-8 concentrations, while mothers from lower SES families had lower IL-8 levels. More-
over, the decrease in IL-8 levels during pregnancy was associated with compromised child
self-regulation [222]. Additionally, increased maternal socioeconomic disadvantage corre-
sponded to noticeably lower IL-8 concentrations during the third trimester, along with a
lower ratio of IL-8 to the anti-inflammatory cytokine IL-10. These associations remained
unaffected by maternal medical conditions known to disrupt immune responses [223].
Furthermore, lower maternal serum IL-8 concentrations were linked to the presence of
neurologic abnormalities in offspring during early life (at ages of 4 months and 1 year) [223].

8. IL-8 in Depressive and Bipolar Disorders

Both Bipolar Disorder (BD) and Major Depressive Disorder (MDD) are associated
with the activation of the immune-inflammatory response system and the compensatory
immune-regulatory system [224–226]. BD has been linked to an imbalance in the immune
system and low-grade inflammation [227]. This suggests that alterations in IL-8 levels
could potentially play a significant role in the pathophysiology of BD.

Tang et al., (2021) established a correlation between increased serum IL-8 levels and
impaired functional connectivity (FC) in the right precentral gyrus in unmedicated patients
with BD II depression using resting-state functional magnetic resonance imaging (rs-fMRI).
This finding suggests that inflammation may contribute to brain functional abnormalities
in BD [228]. Moreover, Isgren et al., (2015) found higher CSF IL-8 concentrations in patients
with euthymic BD compared to control subjects. Additionally, patients taking lithium
or/and antipsychotic medications had even higher IL-8 levels compared to those not taking
these medications. Furthermore, IL-8 levels were found to increase with age and with a
higher CSF/serum albumin ratio [178]. Notably, in a prospective study, Isgren et al., (2017)
did not find an association between CSF IL-8 baseline concentrations and clinical outcomes
in patients with BD followed for 6–7 years [229].

The specific pattern of IL-8 alterations appears to be complex. Wang et al., (2016)
reported higher IL-8 levels in patients with BD I compared to patients with BD II and other
specified BDs with short-duration hypomanic episodes (2–3 days) [230]. In another study,
elevated levels of IL-8 in peripheral blood were found only during the depressive phase of
BD [231]. Interestingly, in the same study, an association was established between lower
blood IL-8 levels and a longer illness duration in BD [231].

Despite the association of both BD and MDD with immune system imbalance, IL-8
levels demonstrate different patterns. For instance, serum IL-8 levels were exclusively
elevated in BD patients, but not in MDD patients [232]. Additionally, plasma IL-8 levels
were directly associated with bipolar depression when compared to MDD [224]. This
suggests that IL-8 may serve as a potential biomarker to differentiate between MDD and
BD, especially in cases of atypical clinical presentations [232]. Moreover, IL-8 testing may
even hold prognostic value in identifying resilience or a risk of depression [233].

Despite the above-described evidence, inconsistencies regarding IL-8 levels in BD exist.
For instance, Barbosa et al., (2013) reported decreased plasma levels of IL-8 in patients with
BD I compared to controls [234]. Conversely, some studies found no significant differences
in IL-8 levels between patients with BD patients and controls [235,236].

Research indicates that immune dysregulation plays a significant role in depres-
sion [237], and numerous studies have evaluated the correlation between IL-8 levels and
disease progression as well as treatment response. For instance, higher baseline plasma
levels of IL-8 in breast cancer survivors were linked to a reduced risk of incident and
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recurring major depression [233]. Moreover, elevated IL-8 plasma levels demonstrated
an association with a lower severity of depressive symptoms in depressed patients, while
treatment-induced increases in IL-8 predicted a positive treatment response [238]. Con-
versely, a decline in serum IL-8 levels was associated with depression [239]. Notably,
patients with MDD who positively responded to antidepressant treatment exhibited lower
baseline IL-8 levels than those who did not respond [240].

In a study by Zou et al., (2018), patients with MDD showed significantly lower serum
levels of IL-8 compared to controls, revealing linear correlations between IL-8 and the
severity of depression [241]. They also observed significant linear correlations between
IL-8 levels and anxiety levels in patients with comorbid anxiety disorders. Thus, higher
IL-8 levels were associated with lower scores on the Hamilton Depression Rating Scale
(HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A) [241].

Furthermore, a higher baseline level of IL-8 in plasma was correlated with less pro-
nounced increases in depressed mood and feelings of social disconnection [238]. Inter-
estingly, Cai et al., (2023) suggested that elevated serum IL-8 levels might correspond to
improvements in delayed memory and visuospatial/constructional function in patients
with MDD [242]. However, it is important to note that this positive association was not
universally observed. Baune et al., (2008) found that higher IL-8 levels in healthy elderly
individuals were associated with poorer performance on specific neuropsychological tests
related to memory, processing speed, and motor function. Notably, IL-8 levels in these indi-
viduals were not associated with general cognitive function as assessed by the Mini-Mental
State Examination (MMSE) [243].

Intriguingly, the concentrations of IL-8 appear to be influenced by several factors,
including sex differences, which were reported in various studies exploring IL-8 findings.
For example, an elevated plasma concentration of IL-8 was inversely related to the HAM-
D score in females, but this relationship was not detected in males [244]. Additionally,
Moriarity et al., (2019) found a correlation between higher initial plasma IL-8 levels and a
reduction in depressive symptoms at a follow-up 31 months later, specifically in adolescent
males [245].

Moreover, treatment response may also exhibit sex-specificity. For instance, baseline
plasma levels of IL-8 and changes in IL-8 related to treatment with electroconvulsive
therapy (ECT) were associated with improvements in depression in females, but not
males [246]. Similarly, lower baseline plasma levels of IL-8 and subsequent increases
in IL-8 were specifically correlated with improved depression in females treated with
ketamine [247]. These findings highlight the need for personalized treatment approaches
based on individual IL-8 profiles and possible gender-specific responses.

Interestingly, physical activity has also been shown to influence IL-8 levels. For
instance, in patients with MDD, serum concentrations of IL-8 significantly increased fol-
lowing vigorous exercise, while no changes occurred after light and moderate exercise.
Importantly, depression severity did not seem to impact the acute inflammatory response
to exercise [248].

It is noteworthy that research on IL-8 remains multifaceted and ongoing, and there are
conflicting findings regarding IL-8 levels in depression. Several studies have reported sig-
nificantly higher serum IL-8 levels in patients with MDD compared to controls [212,249,250].
Another study found no association between plasma IL-8 levels and depressive symptom
severity in physically active individuals after SARS-CoV-2 infection and a follow-up after
3 months [251]. In contrast, Ogłodek (2022) reported an increase in IL-8 serum concentration
with depression severity. Notably, the highest increase in IL-8 levels was seen in a group
of patients with severe depression that co-occurred with Post-traumatic Stress Disorders
(PTSDs) [252]. Additionally, Suneson et al., (2023) found significantly higher plasma IL-8
levels in patients with difficult-to-treat depression compared to controls [253]. Impor-
tantly, Szałach et al., (2022) identified that serum IL-8 values exceeding 19.55 pg/mL were
associated with a 10.26 likelihood ratio of developing treatment-resistant depression [254].
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9. IL-8 and BDNF

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family,
plays a significant role in neuronal survival and differentiation during development and
maintains high expression levels in the adult brain [255,256]. BDNF participates in many
functions, including neuronal migration, synaptic structure regulation, and neurotransmit-
ter release, all of which are vital for brain circuits regulating memory, learning, emotions,
sleep, and appetite [257]. Moreover, BDNF regulates synaptic transmission and activity-
dependent plasticity and is predominantly found in various regions of the brain, including
the hippocampus, amygdala, cerebellum, and cerebral cortex, with hippocampal neurons
exhibiting the highest BDNF levels [256]. Therefore, given the wide array of functions
attributed to BDNF, it is not surprising that it is associated with a multitude of neuropsy-
chiatric conditions [258–260].

In neonates without brain injury born between 23- and 41-weeks of gestation, there
is a significant gestation-dependent increase in serum BDNF levels (3.7%) and IL-8 levels
(8.9%) for every week of gestation [261]. However, BDNF concentrations do not show any
association with the first 7 days of life (DOL), while IL-8 levels increase with each DOL by
18.9% [261]. Additionally, BDNF concentrations exhibit a remarkable increase with age,
with a progressive and significant ascent from an average of 740 pg/mL in very preterm
control infants to nearly 5500 pg/mL in adults [211].

Interestingly, BDNF can directly contribute to anti-inflammatory effects on microglia
by regulating cytokine responses, which in turn can impact neurons. BDNF’s priming
of microglia may reprogram the inflammatory state, leading to alterations in neuron–
microglia interactions [262]. It is worth noting that both human fetal and adult microglial
cells produce IL-8 in response to lipopolysaccharide (LPS), along with two key cytokines
involved in initiating an inflammatory response, namely IL-1β and TNF-α [33].

Newborns diagnosed with neonatal encephalopathy exhibited increased plasma levels
of IL-8 and decreased BDNF levels, in comparison to healthy newborns. Notably, there
was an inverse correlation between BDNF levels and the encephalopathy grade, while IL-8
levels were inversely linked to motor outcomes [263]. Additionally, research has found that
patients with schizophrenia have significantly lower BDNF levels and higher IL-8 serum
levels compared to individuals without schizophrenia [264,265]. Interestingly, a positive
correlation was observed between BDNF and IL-8 levels [264,265]. This could suggest that
a relative increase in BDNF levels possibly acts as a compensatory response in patients with
schizophrenia, although it might not be sufficient to counteract the inflammatory damage
caused by increased cytokines like IL-8 [264,265]. Notably, Xiu et al., (2019) discovered
a negative correlation between reduced serum BDNF levels and executive function in
patients with chronic schizophrenia. They observed an interaction between low BDNF and
high IL-8 concentrations, which were positively correlated with executive dysfunction as
measured by verbal fluency tests (VFT) and Wisconsin card sorting tests (WCST) in patients
with schizophrenia [265].

Moreover, Wang et al., (2016) noted elevated IL-8 plasma levels in individuals with BD,
while BDNF levels did not exhibit significant differences compared to a control group [230].
In contrast, another study found no significant difference in IL-8 plasma levels between
subthreshold bipolar disorder (SBD) and BD-II at baseline and following a 12-week mood
stabilization treatment. However, in the SBD group, the study revealed markedly lower
baseline BDNF plasma levels which remained low even after 12 weeks of treatment, despite
similar treatment responses between the two groups [266].

Furthermore, Liou et al., (2023) reported a significant difference in IL-8 and BDNF
plasma levels between patients with BD and those in a control group. Moreover, patients
with BD and comorbid alcohol use disorder (AUD) displayed higher IL-8 levels compared
to patients with BD without AUD [267]. Additionally, lower BDNF levels were associated
with decreased performance on cognitive assessments, while plasma IL-8 levels in patients
with BD demonstrated a significant negative correlation with the number of completed
categories in the Wisconsin Card Sorting Test (WCST) [267].
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10. IL-8, ROS, and Oxidative Stress

ROS act as signal transduction molecules activating IL-8 and significantly regulating
the production of this cytokine [58,268]. While ROS play a crucial role as cellular sig-
naling molecules for normal biological processes, their excessive production can induce
harm to various cellular components and functions, potentially disrupting physiological
equilibrium [269–271].

The etiology of various diseases has been linked to an imbalance between ROS produc-
tion and the protective antioxidant defenses of cells, particularly in conditions involving in-
flammation or ischemia-reperfusion, where excessive ROS generation occurs [121,269,272].
In the brain, ROS can trigger cellular damage contributing to cognitive dysfunction and the
development of neuropsychiatric conditions [273–275].

Oxidative stress occurs when the production of ROS and other oxidants surpasses the
body’s antioxidant defenses and ability to neutralize them [276,277]. This is particularly
concerning for brain neurons, which rely heavily on oxidative phosphorylation for energy
and are vulnerable to oxidative stress [278]. Indeed, even minor disturbances in the redox
equilibrium during neural development, when combined with genetic or environmental
susceptibilities, can significantly impact neurogenesis, neuronal differentiation, and neural
connectivity [276]. ROS generate free radical oxidation products that can interact with
cellular metabolites, potentially causing cell death through apoptosis or necrosis [279]. One
significant consequence of ROS overproduction and oxidative damage is DNA alteration,
potentially leading to permanent mutations and other genomic instabilities [278]. It is
important to note that ROS are generated by various sources and are mostly produced in
mitochondria as byproducts of cellular metabolism [280,281].

The role of IL-8, ROS, and oxidative stress becomes even more critical when consider-
ing the impact of viral infections such as COVID-19. The inflammatory response triggered
by SARS-CoV-2 leads to the release of cytokines, chemokines, and ROS, causing the disrup-
tion of TJs and compromising the brain barrier’s integrity [282]. Furthermore, coronavirus
infection disrupts mitochondrial regulation, leading to a reduction in Adenosine Triphos-
phate (ATP) synthesis and the activation of NADPH oxidase, thereby contributing to ROS
production [283]. Moreover, COVID-19 affects the morphological features and distribution
of astrocyte and microglia cells [284]. Notably, the SARS-CoV-2 receptor, angiotensin-
converting enzyme 2 (ACE2), is expressed by astrocytes and microglia [285].

Interestingly, Clough et al., (2021) observed an increase in IL-8 gene expression in
microglial cells treated with both the SARS-CoV-2 spike protein and heat-inactivated SARS-
CoV-2, compared to untreated controls. Moreover, higher IL-8 cytokine expression was
seen in microglia treated with heat-inactivated SARS-CoV-2 compared to those treated
with the SARS-CoV-2 spike protein [286]. Activated microglia and astrocytes can release
ROS and cytokines, contributing to sustained neuroinflammatory responses and neuronal
damage [282,287,288].

Furthermore, when stimulated by IL-8, neutrophils migrate to the inflammation site,
degranulate and release lysosomal enzymes that not only damage pathogens but also
inadvertently harm nearby tissue by oxidizing cellular components like lipid membranes,
proteins, and DNA [289]. Furthermore, activated neutrophils contribute to oxidative stress
through the production of ROS via NADPH oxidase during the respiratory burst [290].
Prolonged oxidative stress can facilitate the development and persistence of inflammation
by activating transcription factors that modify the expression of various genes and proteins,
including pro-inflammatory cytokines [291]. Consequently, in severe cases, excessive ROS
production by deregulated neutrophils can escalate the local inflammatory response to a
systemic level [292].

The oxidative stress and cytokine storm create a vicious cycle, escalating inflammation
and ultimately contributing to multi-organ failure in severe COVID-19 cases [286]. Neurons,
being particularly vulnerable to such inflammatory and oxidative damage, are increasingly
implicated in the development of Long COVID, a post-infection condition characterized by
lingering neurological and psychiatric symptoms [283]. Patients with Long COVID often
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report fatigue, cognitive impairments, sensory dysfunctions, headaches, post-exertional
malaise, and experience mood disorders. These symptoms can persist for months or even
years, affecting memory, language, processing speed, and executive function [283,293–299].

Importantly, individuals with pre-existing health comorbidities or neuropsychiatric
vulnerabilities are at an increased risk of developing severe COVID-19 and long-term
post-COVID neurological and psychiatric consequences [300]. This could be partly ex-
plained by the oxidative stress and elevated levels of IL-8 which are found in patients with
neuropsychiatric conditions. For example, Wu et al., (2021) observed decreased activities of
superoxide dismutase (SOD) and glutathione peroxidase (GPx), along with elevated levels
of malondialdehyde (MDA) and IL-8 in individuals with chronic schizophrenia. Moreover,
the combined effects of IL-8 with MDA or SOD were found to correlate with executive
function in patients with chronic schizophrenia [301]. Similarly, Wei et al., (2020) discovered
a connection between oxidative stress parameters and serum BDNF levels in individuals
with chronic schizophrenia, revealing lower GPx and SOD activities, reduced BDNF levels,
and elevated MDA levels compared to those of controls [276]. Enzymatic antioxidants
such as SOD, catalase (CAT), GPx, and non-enzymatic antioxidants like glutathione (GSH)
serve as a defense mechanism, reducing ROS activity and maintaining cellular redox bal-
ance [281,302,303]. Additionally, MDA, a lipid peroxidation by-product, is commonly used
as a marker of oxidative stress [304–306].

It was shown that the production and concentration of IL-8 can be suppressed by an-
tioxidants, notably N-acetylcysteine (NAC) [31,57,58,108–110,307,308]. NAC possesses both
anti-inflammatory and antioxidant properties, facilitating the replenishment of glutathione
and the scavenging of free radicals [309–312]. Glutathione is essential for intracellular
and intercellular signaling in the brain, and its depletion contributes to oxidative stress,
leading to neuronal metabolic disturbances and consequential alterations in synaptic sig-
naling [313–320]. Adjunctive therapy with NAC has demonstrated positive outcomes in
various neuropsychiatric conditions [321–330].

11. Discussion

Many factors, including genetic predisposition, environmental conditions, and im-
mune responses, contribute to neuropsychiatric conditions. The host’s immune system
significantly modulates both physiological and pathological processes, and inflammatory
immune responses have been linked to disease severity and treatment efficacy [331,332].
Peripheral immune and inflammatory cells can migrate to the brain through the compro-
mised BBB, and proliferate at sites of inflammation, directly exacerbating the inflammatory
response or amplifying it via glial and neuronal activation [333].

Chemokines play a crucial role in the interaction between the immune and nervous
systems, being involved in various brain-related processes such as neurodevelopment,
neurogenesis, neuromodulation, synaptic transmission, neuroendocrine homeostasis, brain
barrier integrity, neuroinflammation, and stress response [19,20,334–336].

IL-8 belongs to the CXC chemokine subfamily and is produced early in the inflamma-
tory response. It can remain active for a prolonged period, making it particularly relevant to
the long-term inflammatory alterations observed in neuropsychiatric conditions [337–339].
IL-8 is secreted by various cell types and is released when exposed to an inflammatory
trigger. Furthermore, numerous cell types possess receptors for IL-8, and upon binding,
they generate molecules with both local and systemic activity [35,340].

The variety of cellular origins for IL-8 highlights the pleiotropic nature of its functions.
While IL-8 is essential for the host’s defense mechanism due to its influencing neutrophil
activation and trafficking, its prolonged presence in the bloodstream during inflammatory
conditions can result in varying degrees of tissue damage, and contribute to disease-related
processes, such as fibrosis, angiogenesis, and tumorigenesis [9,340].

Considering the various roles of IL-8, it is significant that psychological stress can
cause an increase in IL-8 secretion, which could potentially worsen disease processes [341].
Experiencing chronic stress during early life can lead to long-lasting immune, endocrine,
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neural, and inflammatory alterations, contributing to a broad range of neuropsychiatric
conditions later in life [342].

The production of IL-8 has been linked to depression, negative affect traits, and
perceived stress [289]. Interestingly, individuals with strong social support and larger social
networks have lower IL-8 plasma levels, particularly among healthy midlife adults [289].
Additionally, a positive association has been found between IL-8 levels and fewer years
of education, indicating a potential link with lower socioeconomic statuses [289]. Suarez
et al., (2004) found that both the severity of depressive symptoms, measured by the 21-item
Beck Depression Inventory (BDI), and hostility, assessed using the 50-item Cook–Medley
Hostility (Ho) scale, independently and synergistically increase IL-8 expression in healthy
premenopausal women [343].

Stressful work conditions elevate urinary IL-8, which indicates its potential use as a
reliable biomarker of stress [344,345]. For example, Dutheil et al., (2013) reported that emer-
gency physicians on 24 h shifts showed a nearly doubled level of urinary IL-8 compared to
controls or those on 14 h shifts. This prolonged immune response persisted for at least three
days after the 24 h shifts, despite a day of rest following the 24 h shifts. Notably, older age,
stressful work conditions, and long shifts were associated with increased IL-8 levels [344].
Additionally, IL-8 levels correlated positively with exposure to life-and-death emergencies
and were exacerbated by sleep deprivation and poor sleep quality during shifts [344].
Furthermore, Fukuda et al., (2008) observed that hospital acute care department nurses
with higher professional stress had higher urinary IL-8 levels compared to chronic care
departmental nurses [345].

Prolonged and intense exposure to stress can disrupt the body’s energy balance and
reduce adaptation mechanisms, resulting in adverse effects on overall well-being [346].
Psychological stress is associated with an elevated production of oxidants, exacerbating
oxidative stress within the body [347]. This oxidative burden is particularly pronounced
in individuals experiencing chronic stress, as the continuous activation of the HPA axis
perpetuates oxidative damage over time [348]. Moreover, Kim et al., (2021) reported that
acute psychosocial stress can induce a noticeable elevation in oxidative stress within less
than 2 h [349]. Such oxidative stress arises from an imbalance between ROS production
and antioxidant defenses and is often exacerbated by various cellular stressors that elevate
ROS levels or reduce the body’s ability to neutralize them [350,351].

Given the brain’s high metabolic activity and oxygen consumption, it is especially
vulnerable to oxidative stress, which can significantly impair CNS functions and contribute
to neuroinflammation and neurodegeneration [352–354]. Moreover, the interplay between
oxidative stress and inflammatory responses adds complexity to stress-induced pathophys-
iological alterations. Indeed, oxidative stress and neuroinflammation have the potential to
mutually reinforce each other [355]. ROS accumulation within cells can disrupt intracel-
lular signaling, leading to the dysregulation of inflammatory processes [353]. In addition,
elevated ROS levels upregulate the production of IL-8 by promoting NF-κB signaling [356].
Thus, ROS and oxidative stress contribute to IL-8 production [60,357,358]. IL-8 exhibits
remarkable stability and prolonged biological activity, resisting proteolysis and denatu-
ration, while its mRNA maintains sustained expression in the presence of stimulating
agents, underscoring its significant biological impact [290]. Excessive IL-8 correlates with
heightened NF-κB translocation and reduced glutathione levels [359]. Additionally, IL-8
facilitates the ROS metabolism and induces ROS production [35,360]. Therefore a potential
positive feedback loop may exist between oxidative stress and IL-8, fueling each other and
contributing further to cellular damage.

IL-8 plays a crucial role in attracting neutrophils, and a deficiency in CXCL8 can
impair the movement of these cells to tissues [361]. For example, children suffering from
microcephaly because of Congenital Zika Syndrome showed a significant decrease in serum
IL-8 levels, leading to an impairment in leukocyte migration [361]. On the other hand, a
rise in the absolute neutrophil count and IL-8 levels in the bloodstream were linked to the
severity of COVID-19, wherein plasma IL-8 levels were associated with mortality [362].
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Critically ill patients with COVID-19 demonstrated a high neutrophil-to-lymphocyte ratio
associated with elevated levels of ROS, which could lead to tissue damage, thrombosis, and
the dysfunction of red blood cells, thereby contributing to the severity of COVID-19 [292].

The nervous and immune systems engage in complex communication, which is regu-
lated by multiple mechanisms. This interaction can be disrupted by various triggers such as
infections, autoimmune diseases, peripheral and systemic inflammation, traumatic brain in-
juries, environmental toxins, and stress, potentially leading to neuroinflammation [363–375].

One important diagnostic tool for measuring this inflammatory response is IL-8.
However, the use of this marker needs to be personalized, as diverse populations exhibit
variances not only in their susceptibility to and progression of diseases, but also in the
levels of inflammatory markers, such as IL-8. For instance, Mayr et al., (2007) reported that
healthy young volunteers of African descent had higher average IL-8 levels compared to
their Caucasian counterparts [376]. Moreover, plasma IL-8 levels demonstrated an inverse
correlation with neutrophil counts in individuals of African descent and in combined
groups, but not in those who were Caucasian alone [376]. Additionally, Mayr et al., (2007)
reported a lower oxidative burst capacity in stimulated neutrophils among volunteers of
African descent [368].

It was also observed among African American women that both stress/distress and
poor sleep quality had notable impacts on the production of proinflammatory cytokines
during the postpartum period [377]. Specifically, in African American women, but not in
White women, evaluations conducted at 7–10 weeks postpartum revealed that poorer sleep
quality, heightened parenting stress, increased depressive symptoms, and elevated general
perceived stress were all associated with greater LPS-stimulated IL-8 production [377].

The observed variations in IL-8 levels across individuals and different populations can
be partially attributed to genetic polymorphisms. The CXCL8 gene, which encodes IL-8,
exhibits several functional polymorphisms that may influence IL-8 production [191,378].
For example, rs4073 (−251A/T) has been linked to inflammatory diseases, and the rs4073
A allele has an association with increased IL-8 production [193,379,380]. Additionally, the
A/A genotype may reduce the threshold for IL-8 synthesis [380].

Wacharasint et al., (2012) reported that critically ill Caucasian patients with the rs4073
A/A genotype had an increased risk of a PaO(2)/FiO(2) < 200 (the PaO2/FiO2 ratio is the
ratio of arterial oxygen partial pressure), and demonstrated greater IL-8 mRNA expression
than those with the A/T or T/T genotypes [190]. Additionally, Hildebrand et al., (2007)
suggested that rs4073 polymorphism can influence the severity of the inflammatory re-
sponse following multiple traumas. They found that the rs4073 A/A genotype showed a
significantly longer duration of mechanical ventilation after trauma compared to genotype
T/T [379]. In contrast, the rs4073 T allele, which is linked to lower IL-8 production, was as-
sociated with the severity of microcephaly in children with congenital Zika syndrome [381].
In addition, Zhao et al., (2020) identified the rs4073 T/T genotype as a potential risk factor
for sepsis in full-term neonates [382].

Ethnic groups exhibit varying distributions of genetic polymorphisms. For instance,
Fujihara et al., (2007) reported that Ovambos and Gambians displayed the lowest rs4073
T allele frequencies at 8% and 10%, respectively, while those who are Japanese had the
highest T allele frequency at approximately 80%, with the T/T genotype being 67% [191].

Interestingly, the same genetic polymorphisms can have varying impacts on disease
vulnerability across populations. For example, Wang et al., (2013) discovered a signifi-
cant association between the A/A and A/T genotypes of the rs4073 polymorphism and
increased oral cancer risk among Caucasian populations, while no statistically significant
association was found among Asian populations [383]. In contrast, Zhang et al., (2019)
found a significant association between the rs4073 A allele increasing coronary artery
disease (CAD) risk in a Chinese population, but this association was not observed in Cau-
casians [384]. Zhang et al., (2021) conducted a meta-analysis revealing that CXCL8 rs4073
polymorphisms may affect a predisposition to Alzheimer’s disease in people who are Asian,
but not in people who are Caucasian [198]. This suggests that CXCL8 gene polymorphism
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can have a distinct influence not only on various disease states but also on health outcomes
across diverse populations. Such variability indicates the presence of additional factors that
may modulate these effects. Indeed, environmental factors can interact with the genome by
modifying epigenetic mechanisms that regulate gene expression [385].

Furthermore, it is important to note that there can be an interplay between SNPs of
the CXCL8 gene, which may result in a combined effect when inherited together. For
instance, the haplotype of CXCL8 rs4073T/rs2227306C/rs1126647T is associated with an
increased risk for schizophrenia [186]. Additionally, a significant effect can be seen in
gene–gene interactions. For example, Ghazy (2023) discovered a significant correlation
between the simultaneous presence of IL-8 rs2227306C and IL-6 rs1800795G alleles in an
individual and an increased risk of severe COVID-19 outcomes. Conversely, individuals
carrying the IL-8 rs2227306T and IL-6 rs1800795C alleles were found to have a reduced risk
of severe COVID-19 [386]. In summary, considering individual and ethnic differences is
crucial when interpreting inflammatory markers for an accurate diagnosis and personalized
treatment plans.

12. Conclusions

IL-8 emerges as an important mediator in the crosstalk between the body’s defense
mechanisms and the nervous system, demonstrating a profound influence on a multitude
of psychoneuroimmunological processes. This underscores its potential role in the patho-
genesis of various neuropsychiatric conditions. The current data highlight the complex
interplay between IL-8, ROS, environmental factors, psychosocial stressors, and genetic
backgrounds, underscoring the need for further studies to fully understand these potential
influences and their implications for personalized medicine. Polymorphisms in the CXCL8
gene can impact IL-8 production, potentially leading to diverse research findings related
to disease susceptibility, progression, and severity across different populations. There-
fore, further research on IL-8 is essential to enhance our knowledge of its diverse roles in
physiologic and pathologic processes, and to consider individual variations. Its potential
use as a biomarker could ultimately lead to more personalized and effective strategies for
diagnosing and treating patients with neuropsychiatric conditions.
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Szewczuk-Bogusławska, M.; Pawlak-Adamska, E.; et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional
and meta-analysis study. Brain Behav. Immun. 2018, 71, 28–36. [CrossRef] [PubMed]

336. Kölliker-Frers, R.; Udovin, L.; Otero-Losada, M.; Kobiec, T.; Herrera, M.I.; Palacios, J.; Razzitte, G.; Capani, F. Neuroinflammation:
An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediat. Inflamm. 2021, 2021, 9999146.
[CrossRef] [PubMed]

337. Schmouder, R.L.; Strieter, R.M.; Wiggins, R.C.; Chensue, S.W.; Kunkel, S.L. In vitro and in vivo interleukin-8 production in human
renal cortical epithelia. Kidney Int. 1992, 41, 191–198. [CrossRef] [PubMed]

338. Tsai, S.J. Role of interleukin 8 in depression and other psychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021,
106, 110173. [CrossRef] [PubMed]

339. Skibinska, M.; Rajewska-Rager, A.; Dmitrzak-Weglarz, M.; Kapelski, P.; Lepczynska, N.; Kaczmarek, M.; Pawlak, J. Interleukin-8
and tumor necrosis factor-alpha in youth with mood disorders-A longitudinal study. Front. Psychiatry 2022, 13, 964538. [CrossRef]
[PubMed]

340. Atta-ur-Rahman Harvey, K.; Siddiqui, R.A. Interleukin-8: An autocrine inflammatory mediator. Curr. Pharm. Des. 1999, 5,
241–253.

341. Weik, U.; Herforth, A.; Kolb-Bachofen, V.; Deinzer, R. Acute stress induces proinflammatory signaling at chronic inflammation
sites. Psychosom. Med. 2008, 70, 906–912. [CrossRef]

342. Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; de Lima Umeoka, E.H. A Comprehensive Overview on
Stress Neurobiology: Basic Concepts and Clinical Implications. Front. Behav. Neurosci. 2018, 12, 127. [CrossRef] [PubMed]

343. Suarez, E.C.; Lewis, J.G.; Krishnan, R.R.; Young, K.H. Enhanced expression of cytokines and chemokines by blood monocytes to
in vitro lipopolysaccharide stimulation are associated with hostility and severity of depressive symptoms in healthy women.
Psychoneuroendocrinology 2004, 29, 1119–1128. [CrossRef]

344. Dutheil, F.; Trousselard, M.; Perrier, C.; Lac, G.; Chamoux, A.; Duclos, M.; Naughton, G.; Mnatzaganian, G.; Schmidt, J. Urinary
interleukin-8 is a biomarker of stress in emergency physicians, especially with advancing age--the JOBSTRESS* randomized trial.
PLoS ONE 2013, 8, e71658. [CrossRef]

345. Fukuda, H.; Ichinose, T.; Kusama, T.; Sakurai, R.; Anndow, K.; Akiyoshi, N. Stress assessment in acute care department nurses by
measuring interleukin-8. Int. Nurs. Rev. 2008, 55, 407–411. [CrossRef] [PubMed]

346. Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants:
The interplay. BioMed Res. Int. 2014, 2014, 761264. [CrossRef] [PubMed]

347. Wang, L.; Muxin, G.; Nishida, H.; Shirakawa, C.; Sato, S.; Konishi, T. Psychological stress-induced oxidative stress as a model of
sub-healthy condition and the effect of TCM. Evid. -Based Complement. Altern. Med. Ecam 2007, 4, 195–202. [CrossRef] [PubMed]

348. Aschbacher, K.; O’Donovan, A.; Wolkowitz, O.M.; Dhabhar, F.S.; Su, Y.; Epel, E. Good stress, bad stress and oxidative stress:
Insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 2013, 38, 1698–1708. [CrossRef] [PubMed]

349. Kim, E.; Zhao, Z.; Rzasa, J.R.; Glassman, M.; Bentley, W.E.; Chen, S.; Kelly, D.L.; Payne, G.F. Association of acute psychosocial
stress with oxidative stress: Evidence from serum analysis. Redox Biol. 2021, 47, 102138. [CrossRef]

350. Srivastava, K.K.; Kumar, R. Stress, oxidative injury and disease. Indian J. Clin. Biochem. IJCB 2015, 30, 3–10. [CrossRef] [PubMed]
351. Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory

Signaling. Circ. Res. 2018, 122, 877–902. [CrossRef] [PubMed]
352. Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [CrossRef] [PubMed]

https://doi.org/10.9758/cpn.2021.19.2.282
https://www.ncbi.nlm.nih.gov/pubmed/33888657
https://doi.org/10.1177/0004867420952540
https://www.ncbi.nlm.nih.gov/pubmed/32900213
https://doi.org/10.3390/antiox11020416
https://www.ncbi.nlm.nih.gov/pubmed/35204298
https://doi.org/10.1002/npr2.12360
https://www.ncbi.nlm.nih.gov/pubmed/37386885
https://doi.org/10.1155/2017/5071786
https://doi.org/10.1016/j.heliyon.2020.e05645
https://www.ncbi.nlm.nih.gov/pubmed/33319101
https://doi.org/10.3389/fncel.2015.00357
https://doi.org/10.1016/j.bbi.2018.05.002
https://www.ncbi.nlm.nih.gov/pubmed/29730395
https://doi.org/10.1155/2021/9999146
https://www.ncbi.nlm.nih.gov/pubmed/34158806
https://doi.org/10.1038/ki.1992.26
https://www.ncbi.nlm.nih.gov/pubmed/1593855
https://doi.org/10.1016/j.pnpbp.2020.110173
https://www.ncbi.nlm.nih.gov/pubmed/33186640
https://doi.org/10.3389/fpsyt.2022.964538
https://www.ncbi.nlm.nih.gov/pubmed/36032249
https://doi.org/10.1097/PSY.0b013e3181835bf3
https://doi.org/10.3389/fnbeh.2018.00127
https://www.ncbi.nlm.nih.gov/pubmed/30034327
https://doi.org/10.1016/j.psyneuen.2004.01.002
https://doi.org/10.1371/journal.pone.0071658
https://doi.org/10.1111/j.1466-7657.2008.00646.x
https://www.ncbi.nlm.nih.gov/pubmed/19146551
https://doi.org/10.1155/2014/761264
https://www.ncbi.nlm.nih.gov/pubmed/24587990
https://doi.org/10.1093/ecam/nel080
https://www.ncbi.nlm.nih.gov/pubmed/17549236
https://doi.org/10.1016/j.psyneuen.2013.02.004
https://www.ncbi.nlm.nih.gov/pubmed/23490070
https://doi.org/10.1016/j.redox.2021.102138
https://doi.org/10.1007/s12291-014-0441-5
https://www.ncbi.nlm.nih.gov/pubmed/25646036
https://doi.org/10.1161/CIRCRESAHA.117.311401
https://www.ncbi.nlm.nih.gov/pubmed/29700084
https://doi.org/10.1124/jpet.116.237503
https://www.ncbi.nlm.nih.gov/pubmed/27754930


J. Pers. Med. 2024, 14, 488 33 of 34

353. Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by
CD4+T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018, 12, 114. [CrossRef]

354. Fabisiak, T.; Patel, M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front. Cell Dev. Biol. 2022, 10, 976953.
[CrossRef]

355. He, J.; Zhu, G.; Wang, G.; Zhang, F. Oxidative Stress and Neuroinflammation Potentiate Each Other to Promote Progression of
Dopamine Neurodegeneration. Oxidative Med. Cell. Longev. 2020, 2020, 6137521. [CrossRef] [PubMed]

356. Sheppard, A.J.; Barfield, A.M.; Barton, S.; Dong, Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at
Potential Therapeutics and Bioengineering Applications. Front. Bioeng. Biotechnol. 2022, 10, 836764. [CrossRef] [PubMed]

357. Verhasselt, V.; Goldman, M.; Willems, F. Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells.
Eur. J. Immunol. 1998, 28, 3886–3890. [CrossRef]

358. Ivison, S.M.; Wang, C.; Himmel, M.E.; Sheridan, J.; Delano, J.; Mayer, M.L.; Yao, Y.; Kifayet, A.; Steiner, T.S. Oxidative stress
enhances IL-8 and inhibits CCL20 production from intestinal epithelial cells in response to bacterial flagellin. American journal of
physiology. Gastrointest. Liver Physiol. 2010, 299, G733–G741. [CrossRef] [PubMed]

359. Sarir, H.; Mortaz, E.; Janse, W.T.; Givi, M.E.; Nijkamp, F.P.; Folkerts, G. IL-8 production by macrophages is synergistically
enhanced when cigarette smoke is combined with TNF-alpha. Biochem. Pharmacol. 2010, 79, 698–705. [CrossRef] [PubMed]

360. Miyoshi, T.; Yamashita, K.; Arai, T.; Yamamoto, K.; Mizugishi, K.; Uchiyama, T. The role of endothelial interleukin-8/NADPH
oxidase 1 axis in sepsis. Immunology 2010, 131, 331–339. [CrossRef] [PubMed]

361. Bezerra, W.P.; Salmeron AC, A.; Branco AC, C.C.; Morais, I.C.; de Farias Sales, V.S.; Machado PR, L.; Souto, J.T.; de Araújo JM, G.;
Guedes PM, D.M.; Sato, M.N.; et al. Low CCL2 and CXCL8 Production and High Prevalence of Allergies in Children with
Microcephaly Due to Congenital Zika Syndrome. Viruses 2023, 15, 1832. [CrossRef] [PubMed]

362. Masso-Silva, J.A.; Moshensky, A.; Lam MT, Y.; Odish, M.F.; Patel, A.; Xu, L.; Hansen, E.; Trescott, S.; Nguyen, C.; Kim, R.; et al.
Increased Peripheral Blood Neutrophil Activation Phenotypes and Neutrophil Extracellular Trap Formation in Critically Ill
Coronavirus Disease 2019 (COVID-19) Patients: A Case Series and Review of the Literature. Clin. Infect. Dis. Off. Publ. Infect. Dis.
Soc. Am. 2022, 74, 479–489. [CrossRef] [PubMed]

363. Dantzer, R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol. Rev. 2018, 98, 477–504.
[CrossRef]

364. Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and neuroinflammation: A systematic
review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology 2016, 233, 1637–1650.
[CrossRef]

365. Godinho-Silva, C.; Cardoso, F.; Veiga-Fernandes, H. Neuro-Immune Cell Units: A New Paradigm in Physiology. Annu. Rev.
Immunol. 2019, 37, 19–46. [CrossRef] [PubMed]

366. Thomson, C.A.; McColl, A.; Graham, G.J.; Cavanagh, J. Sustained exposure to systemic endotoxin triggers chemokine induction
in the brain followed by a rapid influx of leukocytes. J. Neuroinflammation 2020, 17, 94. [CrossRef] [PubMed]

367. Munhoz, C.D.; García-Bueno, B.; Madrigal, J.L.; Lepsch, L.B.; Scavone, C.; Leza, J.C. Stress-induced neuroinflammation:
Mechanisms and new pharmacological targets. Braz. J. Med. Biol. Res. Rev. Bras. De Pesqui. Medicas E Biol. 2008, 41, 1037–1046.
[CrossRef] [PubMed]

368. Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for
therapeutic intervention. Neurobiol. Dis. 2010, 37, 510–518. [CrossRef] [PubMed]

369. Thibaut, F. Neuroinflammation: New vistas for neuropsychiatric research. Dialogues Clin. Neurosci. 2017, 19, 3–4. [CrossRef]
[PubMed]

370. Limphaibool, N.; Iwanowski, P.; Holstad MJ, V.; Kobylarek, D.; Kozubski, W. Infectious Etiologies of Parkinsonism: Pathomecha-
nisms and Clinical Implications. Front. Neurol. 2019, 10, 652. [CrossRef] [PubMed]

371. Aggarwal, V.; Mehndiratta, M.M.; Wasay, M.; Garg, D. Environmental Toxins and Brain: Life on Earth is in Danger. Ann. Indian
Acad. Neurol. 2022, 25 (Suppl. S1), S15–S21. [CrossRef] [PubMed]

372. Drieu, A.; Lanquetin, A.; Prunotto, P.; Gulhan, Z.; Pédron, S.; Vegliante, G.; Tolomeo, D.; Serrière, S.; Vercouillie, J.;
Galineau, L.; et al. Persistent neuroinflammation and behavioural deficits after single mild traumatic brain injury. J. Cereb. Blood
Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2022, 42, 2216–2229. [CrossRef]

373. Sun, Y.; Koyama, Y.; Shimada, S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause
Neuroinflammation? Front. Aging Neurosci. 2022, 14, 903455. [CrossRef]

374. Tan, S.; Chen, W.; Kong, G.; Wei, L.; Xie, Y. Peripheral inflammation and neurocognitive impairment: Correlations, underlying
mechanisms, and therapeutic implications. Front. Aging Neurosci. 2023, 15, 1305790. [CrossRef]

375. Millán Solano, M.V.; Salinas Lara, C.; Sánchez-Garibay, C.; Soto-Rojas, L.O.; Escobedo-Ávila, I.; Tena-Suck, M.L.; Ortíz-Butrón, R.;
Choreño-Parra, J.A.; Romero-López, J.P.; Meléndez Camargo, M.E. Effect of Systemic Inflammation in the CNS: A Silent History
of Neuronal Damage. Int. J. Mol. Sci. 2023, 24, 11902. [CrossRef] [PubMed]

376. Mayr, F.B.; Spiel, A.O.; Leitner, J.M.; Firbas, C.; Kliegel, T.; Jilma, B. Ethnic differences in plasma levels of interleukin-8 (IL-8) and
granulocyte colony stimulating factor (G-CSF). Transl. Res. J. Lab. Clin. Med. 2007, 149, 10–14. [CrossRef] [PubMed]

377. Christian, L.M.; Kowalsky, J.M.; Mitchell, A.M.; Porter, K. Associations of postpartum sleep, stress, and depressive symptoms
with LPS-stimulated cytokine production among African American and White women. J. Neuroimmunol. 2018, 316, 98–106.
[CrossRef] [PubMed]

https://doi.org/10.3389/fncel.2018.00114
https://doi.org/10.3389/fcell.2022.976953
https://doi.org/10.1155/2020/6137521
https://www.ncbi.nlm.nih.gov/pubmed/32714488
https://doi.org/10.3389/fbioe.2022.836764
https://www.ncbi.nlm.nih.gov/pubmed/35198545
https://doi.org/10.1002/(SICI)1521-4141(199811)28:11%3C3886::AID-IMMU3886%3E3.0.CO;2-M
https://doi.org/10.1152/ajpgi.00089.2010
https://www.ncbi.nlm.nih.gov/pubmed/20595617
https://doi.org/10.1016/j.bcp.2009.10.001
https://www.ncbi.nlm.nih.gov/pubmed/19874800
https://doi.org/10.1111/j.1365-2567.2010.03303.x
https://www.ncbi.nlm.nih.gov/pubmed/20518825
https://doi.org/10.3390/v15091832
https://www.ncbi.nlm.nih.gov/pubmed/37766239
https://doi.org/10.1093/cid/ciab437
https://www.ncbi.nlm.nih.gov/pubmed/33988226
https://doi.org/10.1152/physrev.00039.2016
https://doi.org/10.1007/s00213-016-4218-9
https://doi.org/10.1146/annurev-immunol-042718-041812
https://www.ncbi.nlm.nih.gov/pubmed/30379595
https://doi.org/10.1186/s12974-020-01759-8
https://www.ncbi.nlm.nih.gov/pubmed/32213184
https://doi.org/10.1590/s0100-879x2008001200001
https://www.ncbi.nlm.nih.gov/pubmed/19148364
https://doi.org/10.1016/j.nbd.2009.11.004
https://www.ncbi.nlm.nih.gov/pubmed/19913097
https://doi.org/10.31887/DCNS.2017.19.1/fthibaut
https://www.ncbi.nlm.nih.gov/pubmed/28566942
https://doi.org/10.3389/fneur.2019.00652
https://www.ncbi.nlm.nih.gov/pubmed/31275235
https://doi.org/10.4103/aian.aian_169_22
https://www.ncbi.nlm.nih.gov/pubmed/36213101
https://doi.org/10.1177/0271678X221119288
https://doi.org/10.3389/fnagi.2022.903455
https://doi.org/10.3389/fnagi.2023.1305790
https://doi.org/10.3390/ijms241511902
https://www.ncbi.nlm.nih.gov/pubmed/37569277
https://doi.org/10.1016/j.trsl.2006.06.003
https://www.ncbi.nlm.nih.gov/pubmed/17196517
https://doi.org/10.1016/j.jneuroim.2017.12.020
https://www.ncbi.nlm.nih.gov/pubmed/29406850


J. Pers. Med. 2024, 14, 488 34 of 34

378. Chen, C.H.; Ho, C.H.; Hu, S.W.; Tzou, K.Y.; Wang, Y.H.; Wu, C.C. Association between interleukin-8 rs4073 polymorphism and
prostate cancer: A meta-analysis. J. Formos. Med. Assoc. Taiwan Yi Zhi 2020, 119, 1201–1210. [CrossRef] [PubMed]

379. Hildebrand, F.; Stuhrmann, M.; van Griensven, M.; Meier, S.; Hasenkamp, S.; Krettek, C.; Pape, H.C. Association of IL-8-251A/T
polymorphism with incidence of Acute Respiratory Distress Syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine
2007, 37, 192–199. [CrossRef] [PubMed]

380. Bishu, S.; Koutroumpakis, E.; Mounzer, R.; Stello, K.; Pollock, N.; Evans, A.; Whitcomb, D.C.; Papachristou, G.I. The -251 A/T
Polymorphism in the IL8 Promoter is a Risk Factor for Acute Pancreatitis. Pancreas 2018, 47, 87–91. [CrossRef]

381. Santos CN, O.; Magalhães, L.S.; Fonseca AB, L.; Bispo AJ, B.; Porto RL, S.; Alves, J.C.; Dos Santos, C.A.; de Carvalho, J.V.; da
Silva, A.M.; Teixeira, M.M.; et al. Association between genetic variants in TREM1, CXCL10, IL4, CXCL8 and TLR7 genes with the
occurrence of congenital Zika syndrome and severe microcephaly. Sci. Rep. 2023, 13, 3466. [CrossRef] [PubMed]

382. Zhao, X.F.; Zhu, S.Y.; Hu, H.; He, C.L.; Zhang, Y.; Li, Y.F.; Wu, Y.Q. Association between interleukin-8 rs4073 polymorphisms and
susceptibility to neonatal sepsis. Zhongguo Dang Dai Er Ke Za Zhi Chin. J. Contemp. Pediatr. 2020, 22, 323–327. [CrossRef]

383. Wang, Z.; Wang, C.; Zhao, Z.; Liu, F.; Guan, X.; Lin, X.; Zhang, L. Association between -251A>T polymorphism in the interleukin-8
gene and oral cancer risk: A meta-analysis. Gene 2013, 522, 168–176. [CrossRef]

384. Zhang, S.; Gao, Y.; Huang, J. Interleukin-8 Gene -251 A/T (rs4073) Polymorphism and Coronary Artery Disease Risk: A
Meta-Analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 1645–1655. [CrossRef]

385. Peedicayil, J. Genome-Environment Interactions and Psychiatric Disorders. Biomedicines 2023, 11, 1209. [CrossRef] [PubMed]
386. Ghazy, A.A. Influence of IL-6 rs1800795 and IL-8 rs2227306 polymorphisms on COVID-19 outcome. J. Infect. Dev. Ctries. 2023, 17,

327–334. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jfma.2019.10.016
https://www.ncbi.nlm.nih.gov/pubmed/31718853
https://doi.org/10.1016/j.cyto.2007.03.008
https://www.ncbi.nlm.nih.gov/pubmed/17498967
https://doi.org/10.1097/MPA.0000000000000967
https://doi.org/10.1038/s41598-023-30342-3
https://www.ncbi.nlm.nih.gov/pubmed/36859461
https://doi.org/10.7499/j.issn.1008-8830.1910068
https://doi.org/10.1016/j.gene.2013.03.066
https://doi.org/10.12659/MSM.913591
https://doi.org/10.3390/biomedicines11041209
https://www.ncbi.nlm.nih.gov/pubmed/37189827
https://doi.org/10.3855/jidc.17717
https://www.ncbi.nlm.nih.gov/pubmed/37023437

	Introduction 
	IL-8 and CXCR1/2 Receptors 
	IL-8 and CNS 
	IL-8 and Brain Barrier Integrity 
	IL-8 and CSF 
	CXCL8 Gene and SNPs 
	Maternal IL-8 during Pregnancy and Implications for Offspring 
	IL-8 in Depressive and Bipolar Disorders 
	IL-8 and BDNF 
	IL-8, ROS, and Oxidative Stress 
	Discussion 
	Conclusions 
	References

