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Abstract: Blast furnace (BF) ironmaking is a key process in iron and steel production. Because BF
ironmaking is a dynamic time series process, it is more appropriate to use a recurrent neural network
for modeling. The long short-term memory (LSTM) network is commonly used to model time series
data. However, its model performance and generalization ability heavily depend on the parameter
configuration. Therefore, it is necessary to study parameter optimization for the LSTM model.
The sparrow search algorithm (SSA) holds advantages over traditional optimization algorithms in
several aspects, such as no need for prior knowledge, fewer parameters, fast convergence, and high
scalability. However, the algorithm still faces some challenges, such as the tendency to become
trapped in the local optimum and the imbalance between global search ability and local search ability.
Therefore, on the basis of SSA, this study examined the Levy flight strategy, sine search strategy, and
step size factor adjustment strategy to improve it. This algorithm, improved by three strategies, is
called the improved sparrow search algorithm (ISSA). Then, the ISSA-LSTM model was established.
Furthermore, considering the limitations of SSA in dealing with multi-objective problems, the fast
non-dominated sorting genetic algorithm (NSGAII) was introduced, and the ISSA-NSGAII model
was established. Finally, experimental validation was performed using real blast furnace operation
data, which demonstrated the proposed algorithm’s superiority in parameter optimization for the
LSTM model and prediction for real industrial data.

Keywords: LSTM; sparrow search algorithm; levy flight strategy; NSGAII; blast furnace ironmaking

1. Introduction

The blast furnace (BF) ironmaking system consists of several parts, such as the BF
body, charging system, top gas treatment system, pulverized coal blowing system, hot air
system, and iron discharge system. A typical BF ironmaking system is shown in Figure 1.
During the process of BF ironmaking, the iron ore, basic fuel, and slag-forming additives,
which are mixed in a specific proportion, are loaded from the top of the furnace and then
move downward. At the same time, the hot air as well as pulverized coal are blown into
the lower air outlet of the BF. A series of complex physicochemical reactions occur, and
a significant amount of reducing gas is produced at high temperatures. After a series of
processes, including heating, reduction, melting, slagging, carburizing, and desulfurization,
the furnace burden finally generates liquid slag and pig iron. The slag and pig iron are
separated by the iron discharge system. Then the qualified pig iron can be used for iron and
steel production [1,2]. The physical and chemical reactions in BF ironmaking are complex,
and the process is numerous. There are numerous parameters in the smelting process,
including state parameters, control parameters, and molten iron quality (MIQ) parameters.
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Figure 1. Schematic diagram of the blast furnace ironmaking system. 
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Figure 1. Schematic diagram of the blast furnace ironmaking system.

The MIQ indicators, which reflect the overall operational performance of the ironmak-
ing process, are the focus of BF ironmaking modeling [3,4]. However, due to the inability
of existing technology and measurement devices to directly obtain information about the
MIQ in the BF, offline analysis of the molten iron is conducted after tapping, resulting in
a lag between the detection and adjustment of the MIQ indicators. Additionally, with its
time-varying and nonlinear characteristics, BF ironmaking is an extremely complex indus-
trial process involving numerous physical and chemical reactions [5,6]. Thanks to the rapid
advances in computer and sensor technology, as well as the widespread use of modern
distributed control systems, a significant amount of data is stored in time series format.
By analyzing this data, the variations and trends of the data can be revealed, providing
powerful support for predicting future trends and making decisions. Therefore, how to
mine useful information from massive time series data has become an important issue. As
artificial intelligence technology continues to develop, a variety of machine learning algo-
rithms have been applied to time series analysis. Common methods include support vector
machines, artificial neural networks, decision trees, and random forests [7–9]. Jian [10]
used a support vector machine to classify the silicon content of molten iron into multiple
categories, which improved the accuracy of predicting the silicon content. Chen et al. [11]
used a backpropagation (BP) neural network to establish a prediction model of the silicon
content and achieved good prediction results. Zhang [12] introduced the autoencoder and
principal component analysis into the conventional random vector functional link network
(RVFLNs), which enhanced the computational speed and accuracy of the MIQ model.
Lv [13] improved the robustness and adaptive capability of conventional RVFLNs based on
the theory of robust estimation and the online sequential learning technique and used the
improved model to predict the silicon content and molten iron temperature. Dai [14] pro-
posed a subspace identification algorithm based on a bilinear system to establish a model
of MIQ indicators, which was applied in the nonlinear adaptive predictive control of MIQ
indicators. Zhou [15] proposed a robust least-squares support vector machine model based
on a nonlinear autoregressive model to simultaneously predict multiple MIQ indicators.
These methods mainly model data through feature extraction and model training, ignoring
the dynamics of time series data as well as dependencies among the series.

Recurrent neural networks (RNNs) were introduced as a solution to address these
problems, which originated from the Hopfield network proposed by Hopfield in 1982 [16].
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At each time step, RNN receives the current inputs along with the hidden state from the
previous time step. It uses activation functions and weight matrices to transmit and update
information over time. However, RNN suffers from problems such as vanishing gradients
and exploding gradients, making it difficult to converge during training [17,18]. Hochreiter
and Schmidhuber [19] introduced long-term memory and gating mechanisms into RNN to
create the long short-term memory (LSTM) network. LSTM has a stronger memory capacity
and is good at capturing long-term dependencies, which solves the problems of traditional
RNN in dealing with long sequence data. Consequently, LSTM has been generally applied
to the modeling of time series data. However, the performance and generalization ability
of the LSTM model heavily depend on its parameter configuration [20], so research on
optimizing the parameters of the LSTM model has become an important direction for
improving its performance.

Previous studies have proposed various methods for LSTM hyperparameter optimiza-
tion. Bengio et al. [21] and Abbasimehr et al. [22] used random search and grid search
to find the optimal hyperparameter configuration, respectively. However, these methods
have the problems of high computational costs, the tendency to fall into the local optimum,
and the inability to deal with dependencies among the hyperparameters. Snoek et al. [23]
proposed a method based on Bayesian optimization that models the relationship between
the hyperparameters and performance through the Gaussian process model. This method
selects the next set of hyperparameters according to the continuously updated Gaussian
process model. Although this method is superior to traditional random search and grid
search in terms of performance, it relies on prior knowledge and typically assumes that
the hyperparameter space is continuous. If the prior knowledge is chosen inappropriately
or the hyperparameter space is discrete, it may lead to biased search results. Meanwhile,
Gorgolis et al. [24] used the genetic algorithm to simulate the process of selecting and
mutating biological evolution to quickly discover the optimal hyperparameter configura-
tion in the predefined search space. Although this method is superior to the traditional
methods of randomly generating models in terms of performance, it still suffers from high
computational cost, complex parameter selection, and the risk of getting trapped in the
local optimum.

Recently, a novel swarm intelligence algorithm called the sparrow search algorithm
(SSA) was proposed by Xue et al. [25]. SSA performs local and global searches by imitating
the foraging and anti-predation behaviors of sparrows. Compared to traditional optimiza-
tion algorithms, SSA does not require prior knowledge. It has faster convergence speed,
fewer parameters, and strong scalability, which can effectively avoid certain problems,
such as vanishing gradients. However, despite the several advantages of SSA, further
research has revealed some shortcomings of this algorithm, including the tendency to
become trapped in the local optimum and the imbalance between global search and local
search ability. To overcome these challenges, this paper proposes an improved sparrow
search algorithm (ISSA). In this paper, three strategies, namely, the Levy flight strategy, sine
search strategy, and step size factor adjustment strategy, are introduced to improve SSA.
Furthermore, ISSA is combined with the fast non-dominated sorting genetic algorithm
(NSGAII) to establish the ISSA-NSGAII model. Finally, real operation data of BF is used to
verify the superior optimization performance of the proposed algorithm.

2. Basic Algorithm
2.1. Long Short-Term Memory Networks

Unlike other conventional neural networks, RNN is able to handle data with sequence
variations. In order to overcome the problems of vanishing gradients and exploding
gradients that occur when training long sequence data, scholars have proposed LSTM,
which is a special kind of RNN. It can selectively retain and forget information through
the introduction of the forget gate, the input gate, the output gate, and the memory cell.
This enables the LSTM network to capture long-term dependencies in sequential data, thus
making the network more efficient. The structure diagram of LSTM is shown in Figure 2.
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Based on the current input xt and the previous hidden state ht−1, the update formula
of the LSTM network is represented as

ft = σ(W f · [ht−1, xt] + b f )
it = σ(W f · [ht−1, xt] + bi)
at = tanh(Wc · [ht−1, xt] + bc)
Ct = f · Ct−1 + it · at
ot = σ(Wo · [ht−1, xt] + bo)
ht = ot · tanh(Ct)

(1)

where f , i, and o denote the forget gate, the input gate, and the output gate, respectively;
C denotes the unit state of the network; ht and ht−1 denote the hidden state at moment t
and t − 1, respectively; W and b are the weight and bias matrices, respectively; σ denotes
the sigmoid activation function; and tanh is a hyperbolic tangent activation function.

The prediction quality of the LSTM model is directly influenced by the selection and
adjustment of hyperparameters [26]. Some of the key hyperparameters include the number
of layers of the model, the number of nodes in the hidden layer, the learning rate, and the
number of iterations. If a model has too many layers, it may lead to gradient problems,
which will affect the model’s training. Increasing the number of nodes in the hidden layers
can improve the expressiveness of the network, but it also increases the complexity of the
model, which may lead to overfitting and longer training times. If the learning rate is set too
high or too low, convergence will be affected. Increasing the number of iterations can better
fit the data and improve the prediction performance of the network. However, too many
iterations can lead to overfitting and reduce the ability of the model to generalize new data.
The choice of these hyperparameters significantly affects the performance of the LSTM
model. Generally, there are multiple hyperparameters that need to be adjusted. Therefore,
the optimization of hyperparameters is a composite problem. Traditional methods rely
on continuous observation of changes in the loss function to comprehensively consider
hyperparameters, making it difficult to find the optimal hyperparameter configuration.
Therefore, research on the optimization of LSTM hyperparameters has become important
to improve the performance of the LSTM model.

2.2. Sparrow Search Algorithm

SSA uses the overall characteristics of the sparrow population and the characteristics
of each individual to establish a mathematical model. The sparrows are divided into
producers and scroungers. The sparrows that are able to find better sources of food are
producers, while the rest are scroungers. The proportion of producers and scroungers in the
total population is constant, and their roles change dynamically [27,28]. The fitness value
reflects the level of energy reserves of the individual sparrow. In addition, the sparrows,
which make up 10% to 20% of the population, are selected so that they can be aware of
the danger. Once they detect the danger, they will immediately give up their food. They
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are generally located at the periphery of the group [29]. The process of SSA involves
initializing the parameters of the sparrow population, calculating the fitness value of each
individual and determining the maximum and minimum values, updating the position of
producers, updating the position of scroungers, updating the position according to the alert,
determining whether to continue or terminate the loop based on whether the fitness values
meet the requirements, obtaining the optimal hyperparameters of LSTM, and predicting the
time series data. The flow chart of the SSA-LSTM prediction model is shown in Figure 3.
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1. The formula for updating the position of the producer is described as

xt+1
i,j =

{
xt

i,j · exp
(

−i
α·Tmax

)
, R2 < ST

xt
i,j + Q · L, R2 ≥ ST

(2)

where t denotes the current iteration; Tmax is a constant, which denotes the maximum
number of iterations; xt

i,j denotes the value of the j-th dimension of the i-th sparrow
at iteration t; α ∈ (0, 1] is a random number; R2 ∈ [0, 1] denotes the alarm value;
ST ∈ [0.5, 1] denotes the safety threshold; Q is a random number that obeys a normal
distribution; and L denotes a matrix of 1 × d whose elements inside are all 1. When
R2 ≥ ST, it indicates that there are no predators around the foraging area, so the
producers can conduct a wide search. When R2 < ST, it indicates that some sparrows
have detected the predators in the foraging area and alerted the other sparrows
in the population, at which point all sparrows need to quickly fly to other safe
areas to forage.
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2. The formula for updating the position of the scrounger is described as

xt+1
i,j =

Q · exp
(

xt
worst −xt

i,j
i2

)
, i > n/2

xt+1
P +

∣∣∣xt
i,j − xt+1

P

∣∣∣ · A+ · L, i < n/2
(3)

where xt+1
p denotes the optimal position occupied by the producer of generation

t + 1; xworst denotes the current position occupied by the global worst individual;
A denotes a matrix of 1 × d whose elements inside are randomly assigned 1 or −1;
and A+ = AT(AAT)

−1. When i > n/2, it indicates that the i-th scrounger with the
worst fitness value does not find food and needs to go to other areas for food.

3. The sparrows that sense danger are called sentinels. The formula for updating the
position of the sentinel is described as

xt+1
i,j =


xt

best + β ·
∣∣∣xt

i,j − xt
best

∣∣∣, fi > fg

xt
i,j + K ·

( ∣∣∣xt
i,j−xt

worst

∣∣∣
( fi− fw)+ε

)
, fi = fg

xt
i,j , fi < fg

(4)

where xt
best denotes the current global optimal position; β ∈ (−1, 1) denotes the step

size control parameter of the sentinel position update, which is a random number
obeying a normal distribution with a mean value of 0 and a variance of 1; K ∈ [−1, 1],
as the step size control parameter, is a random number indicating the direction in
which the sentinel is moving; fi is the fitness value of the present sparrow; fg and fw
are the current global best and worst fitness values, respectively; and ε is the smallest
constant to avoid the denominator being zero. When fi > fg, it indicates that the
individual sparrow is at the periphery of the group, and it needs to move to obtain
a higher fitness value. When fi = fg, it indicates that the sparrows in the center of
the group sense danger and must move towards other sparrows to avoid the danger
of predation.

2.3. Non-Dominated Sorting Genetic Algorithm II

NSGAII is a typical multi-objective optimization algorithm for the solution of opti-
mization problems with multiple conflicting objectives [30]. This algorithm simulates the
process of natural evolution. The individual in the solution space is evolved and selected
by genetic operators to generate a set of non-dominated solutions. The NSGAII algorithm
introduces mechanisms including fast non-dominated sorting, crowding distance, and
elitism strategy to maintain the diversity and convergence of the population [31].

1. Population initialization: Two random generation methods, uniform distribution and
Gaussian distribution, are used to generate the population. Each individual in the popula-
tion is then initially evaluated. The feasibility of constraints and solutions is considered to
ensure that the generated population meets the requirements of the problems.

2. Fast non-dominated sorting: Each solution is assigned two attributes: np represents
the number of dominant solutions p, and Sp represents the set of solutions dominated
by solution p.

3. Calculation of crowding distance: The crowding distance is used to measure the
diversity of populations. The schematic diagram of crowding distance is shown in
Figure 4a. The x-axis of the graph represents the objective function, and the y-axis
represents the crowding distance. A point on the graph represents each candidate
solution. The candidate solution that is closer to the left side of the graph indicates
better performance on the objective function. The candidate solution that is closer
to the top of the graph indicates a sparser distribution within the entire solution set,
with a higher crowding distance and greater diversity. The density between candidate
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solutions can be measured by the distance on the x-axis. Solutions that are closer
together in terms of the x-axis distance suggest that they have similar performance on
the objective function. The crowding distance of the individual in the population is
calculated as

di =
M

∑
k=1

| fk(xi−1)− fk(xi+1)| (5)

where di denotes the crowding distance of individual xi, and fk(xi+1) denotes the
k-th objective function of individual xi+1. The crowding distance between the first
and last individuals is expressed as ∞. After performing fast non-dominated sorting
and calculating the crowding distance, each individual in the population obtains
two attributes: non-domination rank nrank and crowding distance d. With these two
attributes, the dominant relationship between any two individuals in the population
can be determined.
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4. Elitism strategy: To prevent the loss of good individuals, the elitism strategy retains
the good individuals from the parent generation directly into the offspring. Fast
non-dominated sorting and the calculation of the crowding distance are used to sort
the individuals in the parent generation, the offspring generation, and the synthetic
populations so that the next generation can be selected. The schematic diagram of the
elitism strategy is shown in Figure 4b.

5. Selection, crossover, and mutation: A binary tournament selection strategy is used
to simulate binary crossover and polynomial mutation. Specifically, two individuals
are randomly selected from the population in each iteration, and the better of them
is chosen to join the offspring population until the new population size reaches the
original population size.

6. Termination condition: During the iteration process, if the iteration reaches the maximum
value, the algorithm will be stopped. Otherwise, it continues to repeat the above steps.

3. Improved Sparrow Search Algorithm: Non-Dominated Sorting Genetic Algorithm II

Although SSA performs better than the traditional optimization algorithm, it also has
certain limitations. First, the algorithm may be trapped in the local optimum. Second, in the
SSA, the positions of producers and scroungers are updated based on unchanged update
formulas, which means they cannot be updated by more suitable methods. Additionally,
the step size control parameters β and K are generated randomly and cannot be adjusted
according to the actual situation of the search, which may lead to the algorithm falling
into the local optimum. To address these problems, this paper introduces the Levy flight
strategy, sine search strategy, and step size factor adjustment strategy to improve the
basic SSA. Furthermore, considering the excellent performance of NSGAII in dealing with
multi-objective problems, this paper combines NSGAII with ISSA to construct the NSGAII-
ISSA model. These improvements and combinations are designed to further enhance the
performance of SSA, particularly in dealing with complex problems.
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3.1. Improved Sparrow Search Algorithm

Aiming at the weaknesses of SSA, including the tendency to fall into the local optimum,
the fixed position update formulas, and the inability to adjust step size control parameters
appropriately, three strategies are used for improvement.

1. Levy fight strategy: The Levy fight strategy is a random behavior strategy. Based on
the Levy distribution, it simulates long-distance and random flight behavior. It is a
kind of random walk with occasional large steps. In optimization, this characteristic
of Levy flight enables a potentially stuck algorithm to escape from a local optimum
and restart the search in a different region of the search space [32]. The formula for
the Levy flight strategy is

Levy(d) = 0.01 · r1 · σ

|r2|1/β
(6)

σ =

〈
Γ(1 + θ) · sin(πθ/2)

Γ[(1 + λ)/2] · θ · 2(θ−1)/2

〉1/θ

(7)

where Γ denotes the gamma function; θ is a constant; and r1 ∈ [0, 1] and r2 ∈ [0, 1] are
random numbers.

The Levy flight strategy is introduced into (4) so that the position of the sentinels
can be updated according to the distance between the current position and the optimal
position of the sparrows, which reduces the risk of the sparrow becoming trapped in a local
optimum. It allows the algorithm to effectively perform local searches over short distances
and also fully perform global searches over long distances. The improved formula for
updating the position of the sentinel is

xt+1
i,j =


Levy(d) · xt

best + β ·
∣∣∣xt

i,j − Levy(d) · xt
best

∣∣∣, fi > fg

xt
i,j + K ·

( ∣∣∣xt
i,j−xt

worst

∣∣∣
( fi− fw)+ε

)
, fi = fg

xt
i,j, fi < fg

(8)

2 Sine search strategy: The sine search strategy simulates the oscillation process of the
sine and cosine functions [33]. By adjusting the oscillation parameters to control the
step size and direction of the search process, the global search and the local search are
balanced until the solution space gradually converges to the optimal solution. The
sine search strategy is introduced into (2) and (3), which are the formulas for updating
the positions of the producer and the scrounger, so that the individual sparrows can
be given different weight values according to their different positions. When the
fitness value of the individual approaches the optimal fitness value fbest, the weight
ω is small, and the algorithm continues to search in the interval near the position of
the current individual. When the fitness value of the individual approaches the worst
fitness value fworst, the weight ω increases to ωmax, and the algorithm begins to search
in the interval far from the position of the current individual. Thanks to this strategy,
individuals with higher fitness values in the population can search near their current
positions, so the local search ability is enhanced. On the other hand, individuals with
lower fitness values in the population can explore away from their own positions,
thus improving global search ability. The formula for the sine search strategy is

ω = ωmin + (ωmax − ωmin )× (sin((
f t
i − f t

best
f t
worst − f t

best
+ 1)× π

2
+ π) + 1) (9)

where ωmin and ωmax denote the minimum and maximum values of the weight range,
respectively; f t

i denotes the fitness value of the i-th sparrow in the population at iteration
t; and f t

best and f t
worst denote the best and worst fitness values in the population at

iteration t, respectively. Figure 5 is the variation law of adaptive weight ω.
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The sine search strategy is incorporated into the position update formula of SSA. The
improved formulas for updating the position are

xt+1
i,j =

xt
i,j · exp

(
−1

α·Tmax

)
, R2 < ST

xt
i,j + w · Q · L, R2 ≥ ST

(10)

xt+1
i,j =

Q · exp
(

xt
worst −xt

i,j
i2

)
, i > n/2

xt+1
P + w ·

∣∣∣xt
i,j − xt+1

P

∣∣∣ · A+ · L, i ≤ n/2
(11)

xt+1
i,j =


xt

best + w · β
∣∣∣xt

i,j − xt
best

∣∣∣, fi > fg

xt
i,j + w · K

∣∣∣xt
i,j−xt

best

∣∣∣
( fi− fw)+ε

, fi = fg

xt
i,j, fi < fg

(12)

3 Step size factor adjustment strategy: The step size factor adjustment strategy dy-
namically adjusts the step size during different stages of the search by selecting
appropriate adaptive factors with their special mathematical characteristics [34]. This
achieves a balance between the local search and the global search. The step size
control parameters β and K in the (4) are improved as

β = f itnessbest − ( f itnessbest − f itnessworst ) ·
(

T − t
T

)1.5
(13)

K = ( f itnessbset − f itnessworst) · exp
(
−20 · tan

(
t
T

)z)
· (2 · rand − 1) (14)

where f itnessbest and f itnessworst denote the best fitness value and the worst fitness
value, respectively, and T denotes the maximum number of iterations.

From (13), it can be seen that the improved step size control parameter β varies
nonlinearly and incrementally. In the early iterations of SSA, the population has high
diversity, and the algorithm has a great ability to search the global space but a weak
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ability to explore the local space. Therefore, the control parameter β is set to a small
value to enhance the local search ability. On the other hand, at the later iterations of
SSA, all individual sparrows are attracted by the current global optimum, and there is
not enough space to search, which may lead to premature convergence. Therefore, the
control parameter β is set to a larger value in order to avoid becoming trapped in the local
optimum. As can be seen from (14), the improved step size control parameter K increases
first and then decreases, which promotes SSA to thoroughly explore the search space in
the early iterations and improve convergence speed in the later iterations. By introducing
the step size factor adjustment strategy, the global search and local search abilities of SSA
are balanced. The optimization accuracy is improved while preventing the algorithm from
becoming trapped in the local optimum.

3.2. ISSA-NSGAII Algorithm

SSA was originally designed for single-objective optimization problems and has no
ability to handle multi-objective problems directly. By introducing NSGAII, the capability
of the algorithm can be extended to handle multi-objective problems, and a solution set
with better diversity and balance can be found. The flow chart of ISSA-NSGAII is shown in
Figure 6. The process for ISSA-NSGAII is as follows:

1. Define the hyperparameter space: The range of hyperparameters is determined for
the LSTM network.

2. Initialize the sparrow population: The random initialization method of SSA is used to
generate the initial sparrow population, where each sparrow represents a hyperpa-
rameter configuration.

3. Evaluate the fitness value of the sparrow: For each sparrow, the LSTM network is
trained using the training set divided by cross-validation, and its performance is
evaluated on the validation set. According to the specific indicators of the problem,
such as accuracy and loss function, the fitness value of each sparrow is calculated.

4. Fast non-dominated sorting and calculation of crowding distance: NSGAII is used to
perform fast non-dominated sorting on the sparrow population. The sparrows are
divided into different levels, and the crowding distance of each sparrow on the Pareto
front is calculated.

5. Selection: Based on fast non-dominated sorting and crowding distance, the elitism
strategy is used to select sparrows with higher fitness values in the population as
parents for the next generation.

6. Genetic operation: Crossover and mutation operations are performed on selected
parent sparrows to generate the next generation of sparrow populations. The crossover
operation is performed using the cross strategy of the NSGAII, which can be adapted
according to the characteristics of the hyperparameters.

7. Updated sparrow population: The newly generated sparrow population is merged
with the original population to form an updated sparrow population.

8. Termination condition: According to the predefined termination condition, such as the
maximum number of iterations or the threshold of the fitness value, it is determined
whether to terminate the optimization process. If the termination condition is not
satisfied, return to step 4.

9. Output optimal hyperparameters: At the end of the optimization, the sparrow with
the best fitness value, which represents the optimal hyperparameters, is selected from
the final sparrow population as the best configuration for the LSTM network.
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4. Experimental Results

To verify the effectiveness of the improved strategies and the excellent performance of
the improved algorithm, the SSA, ISSA, and ISSA-NSGAII algorithms were tested under
the same conditions. For the tests, this study focused on several evaluation indicators of the
intelligent population optimization algorithm, including convergence time, evolutionary
algebra, and global search ability. However, it should be noted that these evaluation
indicators usually cannot be optimized at the same time because of the trade-off relationship
between them. Usually, as the population size increases, the change in direction of each
evaluation indicator will be contradictory. In order to accelerate the convergence speed
of the algorithm on the basis of improving global search ability, the population size of
all algorithms was set to 10 to ensure a fair performance comparison under the same
population size. This setting can better test the performance of the algorithm in different
aspects and help find the algorithm that is most suitable for the specific problems.

4.1. Benchmark Function

We selected the four benchmark functions in Table 1. Among them, ZDT1 is a multi-
dimensional unimodal flat-bottom function with random interference. ZDT2 is a multi-
modal test function. The distance between the global minimum point and the next local
minimum point of ZDT2 is a geometric distance, which is deceptive, and may cause the
algorithm to converge in the wrong direction. ZDT3 is also a multimodal test function
and has a large search space and many local minima. ZDT4 is a test function for global
optimization. It has six local minima, two of which are global minima. Through these four
benchmark functions, the SSA, ISSA, and ISSA-NSGAII algorithms were tested in terms of
anti-interference, the ability to global search, and so on.

Considering that the randomness of the initial position of the population will affect the
optimization process, the average values of 25 tests were taken as the final results to avoid
contingencies and make the test results more authentic. The test results of the benchmark
functions iterated 500 times are shown in Figure 7.
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Table 1. Benchmark function.

Number Benchmark Function

ZDT1
n
∑

i=1
i × x4

i + random[0, 1)

ZDT2
n
∑

i=1
−xi × sin(

√
|xi|)

ZDT3
n
∑

i=1
[x2

i − 10 cos 2πxi + 10]

ZDT4 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2
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The performance of the algorithms was tested under the same parameters, iterations,
and test environment. Because the initial value was randomly selected, the results of each
algorithm at the first iteration are different. Specifically, thanks to the more homogenous initial
distribution of the population, the initial value of ISSA-NSGAII is the closest to the optimal
feasible solution. It can be seen from Figure 7a that ISSA-NSGAII had strong anti-interference
performance under the ZDT1 with fast convergence speed and a smooth convergence curve.
The performance of ISSA is poor, and the performance of SSA is the worst. It can be seen
in Figure 7b that ISSA and ISSA-NSGAII converge at fewer than 10 iterations, while SSA
converges at more than 10 iterations. It can be seen from Figure 7c that ISSA-NSGAII converges
to the optimal value the fastest. ISSA falls into the local optimum, and SSA converges to
the optimal value more slowly. As shown in Figure 7d, ISSA-NSGAII converges the fastest.
ISSA converges more slowly, and SSA converges at more than 10 iterations. To summarize,
ISSA-NSGAII converges the most smoothly without obvious jump changes. Its advantages
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are mainly reflected in its convergence speed, anti-interference ability, and high global search
ability. ISSA has a slightly weaker performance, and SSA has the worst performance.

In order to evaluate the performance of the multi-objective algorithm, inverted gener-
ational distance (IGD) was chosen as the performance indicator of the algorithm, which
represents the average value of the distance from each reference point to the nearest
solution [35]. IGD can reflect the convergence of the algorithm. The smaller the IGD, the
more the algorithm converges to the true Pareto frontier and the better the comprehensive
performance of the algorithm. The calculation formula of IGD is

IGD(P, Q) =
∑v∈P d(v, Q)

|P| (15)

where P denotes the set of points distributed on the true Pareto frontier; |P| denotes the
number of points in P; Q denotes the set of Pareto optimal solutions solved by the algorithm;
and d(v, Q) denotes the minimum Euclidean distance from v to the points in Q.

The IGD values of each algorithm under the benchmark function are shown in Table 2.
The mean values of SSA under ZDT1, ZDT2, ZDT3, and ZDT4 are 1.5364, 0.8428, 51.364,
and 40.309, respectively. The mean values of ISSA are 1.7228, 0.7523, 0.8152, and 40.211.
The mean values of ISSA-NSGAII are 0.1971, 0.1524, 0.03242, and 40.024, which are the
optimal values. This shows that ISSA-NSGAII is better in terms of search performance and
stability compared to ISSA and SSA under the same experimental conditions.

Table 2. IGD of each algorithm under the benchmark function.

Benchmark Function SSA ISSA ISSA-NSGAII

ZDT1
Mean value 1.5364 1.3228 0.1971

Standard deviation 0.06954 0.0551 0.0375

ZDT2
Mean value 0.8428 0.7523 0.1524

Standard deviation 0.7628 0.5241 0.03241

ZDT3
Mean value 51.364 47.742 42.284

Standard deviation 72.653 53.651 52.413

ZDT4
Mean value 40.309 40.211 40.024

Standard deviation 65.577 65.354 65.586

4.2. Ablation Experiment

In order to demonstrate the effectiveness of the three improvement strategies for
SSA, the benchmark functions ZDT1, ZDT2 ZDT3, and ZDT4 were used to test the five
algorithms: SSA, SSA improved by the Levy flight strategy (Levy-SSA), SSA improved
by the sine search strategy (Sine-SSA), SSA improved by the step size factor adjustment
strategy (Step-SSA), and SSA improved by the combination of the three strategies (ISSA).
The results of ablation experiments are shown in Figure 8.

The results show that ISSA converges the fastest and most smoothly. The IGD values
of each improvement strategy under the benchmark functions are shown in Table 3. Under
the same experimental conditions, it is evident that the IGD values of ISSA are all the
optimal values. This indicates that ISSA, which is improved by the three improvement
strategies, has better optimization performance than the algorithms improved by a single
strategy. Additionally, it also indicates that all three strategies can improve the SSA.
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Table 3. IGD of each improvement strategy under the benchmark function.

Benchmark Function SSA Levy-SSA Sine-SSA Step-SSA ISSA

ZDT1
Mean value 1.5364 1.5653 1.5376 1.6638 1.3228

Standard deviation 0.06954 0.04459 0.06975 0.05743 0.0551

ZDT2
Mean value 0.8428 0.7579 0.7794 0.8281 0.7523

Standard deviation 0.7628 0.7334 0.6461 0.6983 0.5241

ZDT3
Mean value 51.364 50.685 51.587 51.257 47.742

Standard deviation 72.653 67.972 66.221 65.785 53.651

ZDT4
Mean value 40.309 40.163 40.272 40.046 40.211

Standard deviation 65.577 65.415 65.569 65.422 65.354

4.3. Experiments Based on Real Industrial Operation Data

At the BF ironmaking site, the operation status of the BF is monitored in real time, and
the operation data is recorded by the information management system. Some BF parameters
can be directly measured by the monitoring devices, and some BF parameters need to be
calculated by relevant formulas based on the directly measured parameters. Additionally,
some BF parameters require offline analysis before being imported into the information
management system, such as silicon content ([Si]), sulfur content ([S]), and phosphorus
content ([P]), which are all MIQ indicators. Considering the current production conditions
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and equipment, there are 19 input variables to be selected, such as furnace top pressure,
pressure drop, and feed blast ratio, and 4 output variables to be selected, including [Si],
[S], [P], and molten iron temperature (MIT). Among the 19 input variables, some cannot
be directly measured and some cannot be controlled. Because of the high coupling among
the variables, not all of them are suitable as control parameters. Considering the large
number of variables and the fact that not all of them are suitable as control or controlled
variables, it is necessary to select input and output variables that reduce the dimension of
the model. Because BF operators typically focus on [Si] and MIT, these two MIQ indicators
were selected as the output variables of the model. Then, six variables that have a high
correlation with the output variables were selected by the canonical correlation analysis.
Furthermore, the correlation analysis was used to find out the combinations of variables
with a higher correlation among these six variables. The results of canonical correlation
analysis and correlation analysis are shown in Table 4. The measurable and controllable
variables among the combinations were selected as the input variables of the model. Finally,
the flow rate of cold air, pressure drop, volume of coal injection, and flow rate of rich oxygen
were determined as the input variables of the model, and [Si] and MIT were determined as
the output variables of the model.

Table 4. Results of canonical correlation analysis and correlation analysis.

Variable
Typical Variable

−0.191[Si] − 0.912MIT −1.063[Si] + 0.578MIT

Flow rate of cold air (m3/min) −1.618 9.488
Feed blast ratio (%) −0.295 −2.416
Blast pressure (kPa) 0.072 0.778

Furnace top pressure (kPa) −0.220 −0.140
Pressure drop (kPa) −2.342 2.687

Top pressure air volume ratio (kPa/m3 × min) −0.299 1.252
Gas permeability (m3/min × kPa) −0.475 −2.435

Resistance coefficient (-) 0.744 −5.188
Blast temperature (◦C) −0.293 −3.298

Flow rate of rich oxygen (m3/h) −2.587 −0.450
Oxygen enrichment rate (%) 1.590 −3.421

Volume of coal injection (Kg/t) 0.959 3.781
Blast humidity (g/m3) 0.170 1.528

Theoretical burning temperature (◦C) 0.991 8.740
Standard wind speed (m/s) 0.479 1.450

Actual wind speed (m/s) −0.284 2.270
Blast kinetic energy (KJ/s) 0.062 −2.939

Gas volume of bosh (m3/min) 2.186 −12.154
Bosh gas index (m3/min/m2) 0.231 0.175

The experiments were conducted based on the BF body data and the MIQ data of
the 2# blast furnace of the Liuzhou Steel Group. Among the collected industrial data, the
sampling frequency of the process input variables was more uniform at around 10 s, while
the sampling frequency of the MIQ indicators was not uniform and the timing of the inputs
and outputs was not consistent. Therefore, time-matching of the input variables and MIQ
indicators was required prior to conducting the experiment. Before time-matching, outliers
and missing values were removed. Considering that the offline analysis time for the MIQ
indicators is around 1 h, it was necessary to bring forward the MIQ data by 1 h and then
select the MIQ data that correspond to the sampling interval of approximately 1 h. Because
it is not possible to strictly satisfy the sampling interval of 1 h, the sampling interval of the
MIQ data obtained will have an error of approximately 10 min. Using the approximately
uniformly sampled MIQ data as the reference, input variable data whose sampling time
difference was less than a certain threshold (1 min was taken in this experiment) was
selected, and the average value of the multiple process variables obtained was taken as
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the final process variables. The data were normalized to facilitate further processing.
The aim was to predict [Si] and MIT for a future period of sampling. The ironmaking
number represents the sampling time at 1 h intervals. Using the preprocessed data, the
LSTM, SSA-LSTM, ISSA-LSTM, and ISSA-NSGAII-LSTM models were used to model the
MIQ parameters of BF. The processed BF body data were grouped. Of them, 255 groups
were selected as the training set for modeling, and 100 groups were used as the test set
for modeling.

To ensure fairness of the test results, the ISSA-NSGAII-LSTM, ISSA-LSTM, SSA-LSTM,
and unoptimized LSTM models were compared and analyzed with the same test set under
the same experimental environment. The population size was set to 10, the maximum
number of iterations was 20, the initial position was random, and the early warning value
was set to 0.5. The proportions of producers, scroungers, and sentinels were 0.2, 0.6, and 0.2,
respectively. The hyperparameters, including the number of nodes in the first hidden layer
(L1), the number of nodes in the second layer (L2), the learning rate (lr), and the number of
iterations (K) of the model, were optimized by the algorithms.

The search processes of the hyperparameters are shown in Figure 9. It can be seen that
the main changes in the four hyperparameters are mainly concentrated in the third to sixth
iterations. The number of iterations K finally converges to 210. The number of nodes in
the first hidden layer L1 converges to 92. The number of nodes in the second hidden layer
L2 converges to 63. The learning rate lr converges to 0.0032.
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Based on the screened and processed BF operation data and the four hyperparameters
in Table 5, a dataset was established, and the four different models were used to predict the
MIQ parameters [Si] and MIT. The prediction results are shown in Figure 10.

Table 5. LSTM hyperparameter settings and optimization results.

Model K L1 L2 lr

LSTM 100 50 50 0.0020
SSA-LSTM 134 62 48 0.0057
ISSA-LSTM 167 79 54 0.0072

ISSA-NSGAII-LSTM 210 92 63 0.0032
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In molten iron quality modeling, the root mean square error (RMSE) is commonly
used as a model evaluation indicator [36]. The calculation formula for RMSE is

RMSE =

√√√√ 1
N

N

∑
i=1

(Ŷi − Yi)
2 (16)

where Ŷi and Yi denote the predicted value and the true value of the i-th sample, respectively,
and i = 1, 2, · · · , N. The smaller the result of the RMSE, the better the performance of
the model. Figure 10a–f show the prediction results of the six different models. Scatter
diagrams of the sampling points of the MIQ parameters versus the prediction results are
given in Figure 11, with each diagram comparing the prediction effectiveness of each
algorithm on the MIQ parameters [Si] and MIT. The x-axis of each subplot is the actual
value of the parameters, and the y-axis is the estimated value using the different algorithms.
If the scatter is distributed closer to the red diagonal, it indicates a better prediction. If
the estimated value matches the actual value, the scatter is distributed along the diagonal.
Table 6 lists the RMSEs of each model for [Si] and MIT. As shown in Figure 11, conventional
prediction models have scatters far from the diagonal. The scatters of the four LSTM-
based models are closer to the diagonal. The scatters of the LSTM model based on the
proposed algorithm are closest to the diagonal, which indicates the proposed algorithm
has better prediction performance. According to Figure 10 and Table 6, the RMSEs of
the backpropagation and random vector functional link networks are larger than those
of the models based on the LSTM network, suggesting that the LSTM network has better
performance in predicting time series data. Among the results of the four models based
on LSTM, it can be seen that ISSA-NSGAII-LSTM predicts [Si] and MIT better than the
others. ISSA-LSTM ranks second, SSA-LSTM is worse, and the unoptimized LSTM is the
worst. This indicates that the proposed algorithm improves the performance of the original
algorithm, especially in predicting time series data. It can be seen that the RMSE of LSTM
for [Si] is 0.0702, and the RMSE of MIT is 5.6069. The RMSE of LSTM for [Si] is 0.0692,
and the RMSE of MIT is 4.5841. The RMSE of ISSA-LSTM for [Si] is 0.0613, and the RMSE
of MIT is 4.5703. The RMSE of ISSA-NSGAII-LSTM for [Si] is 0.0388, and the RMSE of
MIT is 4.3859, both of which are the optimal values. Compared to ISSA-LSTM, SSA-LSTM,
and LSTM, the RMSEs of ISSA-NSGAII-LSTM for [Si] are lower by 44.73%, 43.93%, and
36.70%, and the RMSEs of MIT are lower by 21.78%, 4.324%, and 4.035%, respectively. To
summarize, the above experimental results show that the ISSA-NSGAII-LSTM model is
more stable and has a smaller error than the other models.

Table 6. Prediction errors of the models.

Model RMSE([Si]) RMSE(MIT)

BP 0.0844 8.7118
RVFLNs 0.0701 6.1552

LSTM 0.0702 5.6069
SSA-LSTM 0.0692 4.5841
ISSA-LSTM 0.0613 4.5703

ISSA-NSGAII-LSTM 0.0388 4.3859
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5. Conclusions

The aim of this study was to optimize the hyperparameters of the LSTM model in order
to improve its ability to predict molten iron quality indicators. Aiming at the problems
of the basic SSA easily falling into the local optimum and the imbalance between the
global and local search abilities, this paper examined several strategies to improve the
basic SSA. The tests based on the benchmark functions show that the convergence curve
of the improved algorithm is apparently smoother and converges faster, without obvious
jumps. This indicates that the improved algorithm balances global and local search abilities,
speeds up convergence, and finds the global optimal solution more accurately. The IGD,
which reflects the optimization ability, also indicates that the improved algorithm has
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better comprehensive optimization performance. The ablation experiments show that the
convergence curves of the algorithm improved by a single strategy are better than those of
the basic SSA, proving the effectiveness of each improvement strategy. Finally, the validity
of the model based on the proposed algorithm was verified using real industrial operation
data of the 2# blast furnace of the Liuzhou Steel Group. The results show that the proposed
algorithm has better modeling performance with a lower prediction error. In the future,
aiming to address the problems of a lack of diversity in the initial population and the
premature convergence of SSA, the algorithm should be improved by chaotic mapping and
the Tabu search strategy.
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