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Abstract: The development of low-cost structural and environmental sensors has sparked a trans-
formation across numerous fields, offering cost-effective solutions for monitoring infrastructures
and buildings. However, the affordability of these solutions often comes at the expense of accuracy.
To enhance precision, the LARA (Low-cost Adaptable Reliable Anglemeter) system averaged the
measurements of a set of five different accelerometers working as inclinometers. However, it is worth
noting that LARA’s sensitivity still falls considerably short of that achieved by other high-accuracy
commercial solutions. There are no works presented in the literature to enhance the accuracy, preci-
sion, and resolution of low-cost inclinometers using artificial intelligence (AI) tools for measuring
structural deformation. To fill these gaps, artificial intelligence (AI) techniques are used to elevate
the precision of the LARA system working as an inclinometer. The proposed AI-driven tool uses
Multilayer Perceptron (MLP) to glean insight from high-accuracy devices’ responses. The efficacy
and practicality of the proposed tools are substantiated through the structural and environmental
monitoring of a real steel frame located in Cuenca, Spain.

Keywords: low-cost sensor; low-cost adaptable reliable anglemeter (LARA); inclinometer; artificial
intelligence (AI); multilayer perceptron (MLP); accuracy enhancement

1. Introduction

Civil engineering and architecture are undergoing a significant transformation in
the era of the fourth industrial revolution, also known as Industry 4.0 [1]. This digital
revolution is fundamentally changing how professionals in these fields approach the
planning, design, construction, and maintenance of both infrastructures and buildings.
Cutting-edge methodologies and technologies, such as Building Information Modeling
(BIM) [2], which allows for the digital and interdisciplinary representation of physical assets,
and artificial intelligence (AI) tools capable of performing tasks traditionally requiring
human intelligence, are at the forefront of this transformation [3].

AI tools encompass a wide range of applications and capabilities, including, but
not limited to, machine learning [4,5], optimization algorithms [6], computer vision [7],
and deep learning [8,9]. Thanks to their ability to improve decision-making processes
offering innovative solutions even to complex problems, AI tools are reshaping both
civil engineering and architecture [10]. In fact, the growing interest in the utilization of
AI tools within these fields is well documented in the existing literature. For example,
Huang et al. [11], Lagaros and Plevris [12], Manzoor et al. [13], Dede et al. [14], Pan and
Zhang [15], and Lu et al. [16] reviewed the application of AI tools in civil engineering,
while Momade et al. [17] and Bölek et al. [18] documented the recent applications of these
tools in architecture.
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One of the most promising research areas in the fields of civil engineering and archi-
tecture is structural health monitoring (SHM), as this technology aims to ensure both the
safety and reliability of structures [19]. Historically, SHM relied on conventional sensors
and manual inspection methods to assess the condition of infrastructure, such as bridges,
buildings, and pipelines. However, with the integration of AI technologies, SHM is evolv-
ing into a highly efficient and proactive discipline. In fact, AI-based solutions are able to
process vast amounts of sensor data in real-time, enabling the early detection of structural
anomalies, defects, and potential failures. The applications of AI tools in structural and
health monitoring were reviewed by Sun et al. [20] and Salehi and Burgueño [21]. These
works also analyze the challenges and future trends associated with the application of AI
tools in these fields.

Sensors play a key role in SHM applications by enabling the collection of real-time data
on-site. Among the most common sensor types employed in SHM are structural sensors
like accelerometers and inclinometers, as well as environmental sensors for measuring
ambient temperature. A critical consideration when selecting a monitoring system is its
costs. Historically, cutting-edge sensors often came with substantial price tags, limiting their
deployment to well-funded research projects or industrial applications. However, over the
past decade, there has been a remarkable surge of interest within the academic and research
community in the adoption of low-cost sensors. The cost-effectiveness of these devices
allows for the deployment of larger monitoring solutions, facilitating comprehensive
monitoring across multiple locations within a reduced budget. This scalability proves
especially advantageous in scenarios requiring dense sensor networks. Additionally, the
versatility and adaptability of low-cost solutions make them suitable for customization and
integration with existing systems. This fosters innovation and opens up endless possibilities
for customized monitoring strategies.

Some of the fields benefiting from the application of low-cost sensors include en-
vironmental monitoring (for assessing air [22], water quality [23], and measuring noise
levels [24]), healthcare (for monitoring vital signs [25]), agriculture (for soil monitoring [26]),
building management (for monitoring indoor air quality [27], occupancy [28], and energy
usage [29]), building monitoring (for ambient temperature and transmittance monitor-
ing [30]), and structural monitoring (for measuring distances [31] and accelerations [32]).
Comprehensive reviews of the application of low-cost solutions for building, mining, and
corrosion monitoring are presented in [33,34], respectively. Among the wide array of
monitoring devices, inclinometers, commonly referred to as tilt sensors, deserve special
attention for their widespread application across SHM [35]. For instance, in the context
of bridge health assessment, researchers such as Huseynov et al. [36] employed rotation
measurements from inclinometers to detect structural damage, while in building structural
analysis, Jun et al. [37] demonstrated the efficiency of inclinometer-derived rotation data to
efficiently identify damage in building beams.

1.1. Low-Cost Inclinometers

When considering cost-effective approaches to measure inclinations, one efficient
strategy in the literature involves the application of Micro-Electro-Mechanical System
(MEMS) accelerometers [38,39]. Noteworthy examples of the successful development of
this technology are found in the work of Hoang et al. [40], who designed an orientation
system for industrial applications, Woong Ha et al. [41], who engineered an economical
inclinometer for ground movement estimation, Ruzza et al. [42], who investigated the mea-
surement of landslide inclinations, and Yu et al. [43], who monitored structural oscillations.
It is important to clarify that, similar to any commercial solution, the instrumentation of
a structure with sensors involves additional costs, such as labor, cabling, boxing, and so
forth. LARA, like other solutions, requires these tools. Notably, a significant distinction
between LARA and most commercial inclinometers lies in the fact that LARA does not need
a separate data acquisition system. Therefore, from a logical standpoint, it is anticipated
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that the instrumentation of a structure using LARA would be faster and more cost-effective
and efficient than other commercial alternatives.

Despite the advantages of low-cost MEMS accelerometers working as inclinometers,
this monitoring solution also comes with certain inherent challenges. Firstly, these devices
may require frequent calibration to maintain accuracy and can experience drift over time,
making their readings less reliable if not regularly recalibrated. Secondly, these sensors
can be sensitive to environmental conditions such as temperature and humidity, further
impacting their accuracy. Lastly, low-cost sensors often have a shorter lifespan compared
to higher-quality sensors, resulting in increased maintenance and replacement costs over
time. In the current literature, there is a growing trend of employing various research
approaches to enhance tilt measurement resolution using MEMS sensors [39]. Among
these methods, two commonly utilized techniques include the complementary filter and
the Kalman filter [44]. The complementary filter functions by averaging the computed
angles from both the accelerometer and gyroscope, assigning distinct weights to each
sensor. It should be noted that scholars frequently note that the Kalman filter requires
substantial computational resources [45,46]. As a result, inclinometers implementing the
Kalman filter typically exhibit a lower sampling frequency compared to those utilizing
the complementary filter [47]. To further enhance measurement resolution, there are also
AI applications discussed in the literature. For instance, Podder [48] provides a literature
review of AI applications for MEMS accelerometers, primarily focusing on fault detection
and sensor diagnosis. Other works, such as Gou et al. [49], Qi [50], Pan [51], and Wang [52],
employed AI to mitigate temperature-related issues in low-cost MEMS accelerometers.

Another major concern of low-cost sensors is their potentially lower accuracy com-
pared to more expensive commercial alternatives. This limitation may restrict their utility
in those applications demanding high precision. For example, in the MEMS accelerometers,
factors such as noise, non-linearity, and cross-axis sensitivity can introduce inaccuracies
in the measured acceleration data. To address the accuracy issues associated with MEMS
accelerometers working as inclinometers, Komarizadehasl et al. [44] developed the moni-
toring system LARA (Low-cost Adaptable Reliable Anglemeter). This device is capable
of measuring either accelerations or inclinations, in addition to monitoring temperature
and humidity. In contrast to other low-cost solutions in the literature, LARA employs a
strategy to enhance its performance by averaging measurements from five distinct low-cost
MEMS accelerometers, all operating together with a multiplexer. This approach effectively
reduces the sensitivity of the reference low-cost sensor MPU9250 from 0.055◦ to 0.002◦.
However, it is worth noting that the advantages derived from averaging data from different
accelerometers have certain limitations, and LARA’s sensitivity still falls considerably short
of that achieved by other high-accuracy commercial solutions, such as EL Tiltmeter SC [53]
or ACA 2200 [54], which reach resolutions of 30 × 10−5◦ and 10 × 10−5◦, respectively. In
the literature, AI tools have been used to increase the precision of low-cost sensors. This
is exemplified by the work of Hoang et al. [55], who highlighted the advantages of these
techniques in enhancing accuracy orientation tracking using MEMS inclinometers. No
prior studies have explored the benefits of employing low-cost MEMS inclinometers with
an AI tool in the literature for estimating structural deformations.

1.2. Low-Cost Inclinometers in Smart Homes

Smart homes refer to residences equipped with a range of connected devices and
systems that leverage automation, communication, and intelligent control to enhance the
overall living experience [56]. These structures are based on advanced technologies to
manage and optimize various aspects of daily life, including security, energy efficiency,
entertainment, and convenience. Sensors play a crucial role in the functionality of smart
homes by providing the necessary input for intelligent decision-making and automation. In
particular, inclinometers contribute significantly by identifying changes in the orientation
or inclination and finding integration into various smart home devices, offering unique
features and automation possibilities. Examples of the application of inclinometers in smart
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homes encompass smart window coverings capable of dynamic adjustments based on the
sun’s position, door and window sensors monitoring opening inclinations, pet care devices
facilitating the monitoring of food or water levels, and smart appliances ensuring optimal
inclination levels.

Unlike more expensive alternatives, low-cost inclinometers offer a cost-effective so-
lution for expanding the array of monitoring elements, thereby supplying valuable data
for home automation [57]. Examples of low-cost inclinometers for smart homes include
the work of Wang et al. [58], who developed a screen-printed flexible radio frequency
identification (RFID) sensor for measuring inclinations in smart home objects.

The workflow for developing an inclinometer-based system for smart home applica-
tions comprises the following steps: (1) data collection: inclinometers measure tilt angles
and microcontrollers process the data; (2) communication: microcontrollers transmit in-
clinometer data to the central processing unit through wireless communication; (3) data
processing: central processing unit interprets inclinometer data, and algorithms are used to
determine if any actions need to be taken based on the tilt information; (4) automation: au-
tomation scripts execute actions such as adjusting devices or triggering alerts; and (5) user
interaction: users can monitor inclinometer data and configure automation settings through
a user interface. A summary of the key hardware and software components for the design
of a smart house system using low-cost inclinometers is presented in Table 1.

Table 1. Hardware and software components for the application of low-cost inclinometers into
smart homes.

Hardware Components Software Components

Inclinometers:

- Low-cost inclinometers to measure the tilt or inclination
of surfaces

Inclinometer Data Processing:

- Software to real and process from inclinometers
- Algorithms to convert tilt angles into usable information

Microcontrollers:

- Microcontrollers to interface with inclinometers and
process data

- Collects and sends inclinometer data to the central
processing unit

Communication Protocol:

- Defines how data are transmitted between inclinometers
and the central hub

- Ensures reliable and secure communication

Wireless Communication Module:

- Allows communication between inclinometers and the
central hub

- Examples include Wi-Fi, Bluetooth, and Zigbee

Centralized Control System:

- Software on the central processing unit to coordinate and
manage the system

- Stores and processes inclinometer data
- Implements control logic for automation

Central Processing Unit (CPU):

- Manages and processes data from inclinometers
- Coordinates communication between

different components
- Executes control algorithms and automation scripts

User Interface:

- Mobile apps or web interfaces for users to monitor
inclinometer data and control automation settings

- Provides a user-friendly experience for managing
the system

Power Supply:

- Batteries or power supply for inclinometers
and microcontrollers

Automation Scripts:

- Custom scripts or programs to automate actions based on
inclinometer data

1.3. Aim of the Paper and Structure

This paper introduces the development of a novel AI tool to improve the accuracy of
low-cost monitoring MEMS accelerometers when employed as inclinometers. The proposed
methodology leverages an AI-driven tool equipped with artificial neural networks to derive
incline estimations from the input data collected by LARA, including rotations, temperature,
and humidity readings. To do so, this AI tool undergoes supervised training using data
from a high-precision inclinometer as a reference. The effectiveness and practicality of the
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developed methodology is demonstrated through an analysis of a real-world case study
involving a steel frame located in Cuenca, Spain.

The remainder of this paper is structured as follows: Section 2 presents the research
methodology followed in this work. Section 3 presents a detailed analysis of the main
characteristics of the low-cost monitoring system LARA, including both its software and
hardware. In Section 4, the AI tool developed to enhance the accuracy of the rotations
acquired by LARA is detailed. In Section 5, the practical application of these tools to the
case study is summarized. Finally, the main conclusions are drawn in Section 6.

2. Research Methodology

The primary objective of this study is to develop an AI-based tool designed to en-
hance the precision of inclination measurements taken using low-cost sensors. The system
developed is tailored to integrate with the LARA low-cost monitoring system and com-
plementary low-cost environmental sensors. To achieve this main goal, the research also
defines the secondary objective of conducting an experimental investigation into the im-
pact of environmental variables, particularly temperature and humidity, on the rotational
behavior of a steel frame. To accomplish these objectives, the Design Science Research
Method (DSRM) proposed by March and Smith [59] was employed.

This methodology was structured on the stages, activities, and deliverables presented
in Figure 1, and it is summarized as follows:

1. Stage (i)—State-of-the-art review: This stage aims to identify gaps in the existing
literature. Initially, this involves a systematic literature review of low-cost MEMS
inclinometers. This is followed by an examination of how artificial intelligence tools
can address the technical limitations of these devices. The literature reviews for
this stage were conducted on Scopus and Web of Science, following the systematic
approach proposed by Navarro et al. [60] and followed by Komary et al. [34]. Finally,
the research methodology to be employed is defined. The outcomes of this stage
encompass a summary of findings, the research objectives, and the customization of
the research methodology. The results derived from this stage are included in both
the Introduction and Section 2: “Research Methodology”.

2. Stage (ii)—Solution design: After defining the hardware and software components of
LARA, this phase articulates the characteristics and design of the AI tools that will be
employed to improve LARA’s measurement precision. The deliverables of this phase
comprise the principal functionalities of LARA and the AI tool. This information is
incorporated into Section 3: “Low-cost Adaptable Reliable Anglemeter (LARA)”, and
4: “Artificial Intelligence Tool”.

3. Stage (iii)—Case study: This phase involves developing an AI tool to improve LARA’s
measurement accuracy within a case study. Initially, a case study is selected for analy-
sis. Long-term monitoring of the structure is then conducted using both commercial
inclinometers and LARA. Following this, the AI tool, designated as Intelligent (I)-
LARA, is tailored to the specific dataset of the case study. The deliverables of this
stage include the AI tool to enhance the accuracy of the monitoring information. These
results are summarized in Section 5: “Case Study”.

4. Stage (iv)—Evaluation: This stage is designed to evaluate the enhancement of the
accuracy obtained by the AI tool in the case study. To achieve this, the outputs of
LARA and I-LARA are statistically analyzed and compared with the readings from
the commercial accelerometer. These results are incorporated into Section 5: “Case
Study” and Section 6: “Conclusions”.
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3. Low-Cost Adaptable Reliable Anglemeter (LARA)

LARA, the acronym for Low-cost Adaptable Reliable Anglemeter, refers to a monitor-
ing device designed to measure structural parameters (accelerations or inclinations). Unlike
most low-cost accelerometers in the literature, LARA possesses a distinctive feature: it can
be remotely configured to operate as either a triaxial accelerometer or inclinometer [44].
When functioning as an inclinometer, LARA utilizes the accelerometers along the X, Y, and
Z axes to determine the orientation with respect to the gravitational force. It is important to
mention that LARA is a calibrated low-cost inclinometer equipped with a complementary
filter integrated into its Arduino code. The decision to employ a complementary filter was
driven by the limitations of the Arduino platform, which lacks the capacity to incorporate
a Kalman filter while maintaining an adequate data read frequency. This choice eliminates
the need for a high-powered computational system typically required for Kalman filter
calculations. As a result, LARA achieves a higher sampling frequency compared to when
a Kalman filter is utilized [44]. The technical specifications of LARA working as an incli-
nometer are detailed in Table 2. The analysis of this table shows that as an inclinometer,
LARA can reach a precision of up to 0.002◦ working in the static mode for a measurement
range between 0 and 4◦.
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Table 2. Technical specifications of LARA working as an inclinometer.

LARA Inclinometer

Measurement range 0–4◦

Static precision Up to 0.002◦

Dynamic precision Up to 0.02◦

Sampling rate 333 Hz
Sensor type Triaxial

The application of LARA has been validated for the dynamic monitoring of bridges [61].
Subsequent sections offer detailed descriptions of LARA’s hardware and software. It should
be noted that, even though LARA exhibits comparable accuracy to certain widely used com-
mercial inclinometers in infrastructure monitoring, such as the HI-INC sensor [61], it falls
short in terms of accuracy when compared to some highly precise commercial inclinometers
like EL Tiltmeter SC [53], which comes with a high price of EUR 15,000 and a resolution
approximately seven times better than that of LARA. To enhance the resolution of LARA be-
yond the already implemented signal processing tools and filters, such as the low-pass filter,
this paper explores the local calibration of a low-cost inclinometer with a high-resolution
one. The primary objective is to locally calibrate a few instrumented low-cost sensors
rather than solely relying on high-resolution expensive sensors. This approach aims to
reduce monitoring budgets, unlock the potential for long-term monitoring applications
using affordable systems, and efficiently utilize the available economic resources.

3.1. LARA Hardware

This subsection provides a comprehensive overview of LARA’s key hardware features.
LARA is presented in Figure 2a, and it consists of five precisely aligned and synchronized
MPU9250 chipsets, complemented by a multiplexer (TCA9548A). Each MPU9250 chipset is
equipped with an accelerometer, gyroscope, and magnetometer, enabling comprehensive
data collection and analysis. LARA relies on a well-established methodology in which the
signal outputs from multiple aligned and synchronized sensors are utilized to enhance
the system’s precision and resolution [61]. This approach is rooted in the Signal-to-Noise
Ratio (SNR) principle. By adopting this strategy, the primary signal of interest remains
unaffected by the process of averaging the outputs from various dynamic sensors. In
contrast, the intrinsic dynamic noises, sometimes referred to as intrinsic noise [62], of
the sensors are mitigated as they are averaged across the combined sensors. As a result,
smaller dynamic fluctuations, such as changes in acceleration or angular speed, become
more discernible as the magnitude of these dynamic disturbances diminishes. To facilitate
the programming and control of LARA, a cost-effective data conditioner, Arduino Due
(Figure 2b), is employed. This device establishes a connection with LARA through the Inter-
Integrated Circuit (I2C) communication port, ensuring a consistent sampling frequency
and functioning as a vital data conditioner.
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In the data acquisition process, a Raspberry Pi is utilized as an additional data condi-
tioner. Its primary role is to capture the streamed data from both LARA and the Arduino
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Due, effectively storing this valuable data for further analysis and processing. Also, it adds
the capability of the remote programming, control, and monitoring of the system (Figure 2c).
It is important to emphasize that, despite the presence of an (I2C) communication port on
the Raspberry Pi, removing the Arduino Due from this system is not feasible. This necessity
arises from the fact that, during the system’s development, the Raspberry Pi was found
to be incapable of maintaining a consistent sampling frequency. In contrast, the Arduino
Due consistently exhibits excellent long-term performance by ensuring a steady sampling
frequency without any fluctuations.

3.2. LARA Software

This subsection outlines the automated software procedures of LARA. This monitoring
solution is designed as a user-friendly IoT-based sensor, simplifying the setup process.
Once the sensor is installed on a structure, it only requires connection to a 5 V, 2.5 A battery
or a power source through the Raspberry Pi adapter. Upon powering up, LARA commences
data acquisition and transmits the collected data to a designated Google Drive account.

The automatic steps that LARA performs immediately upon boot-up are presented in
Figure 3 and summarized as follows:

1. Startup: Upon power-up, LARA is preconfigured to establish an internet connection
via Wi-Fi, LAN, or SIM Card, provided that the Wi-Fi credentials align with LARA’s
preprogrammed settings.

2. Google Drive access: Once internet connectivity is established, LARA gains access to
a predefined Google Drive repository.

3. Instructions: To initiate data acquisition, LARA downloads an open-source Python
code from the designated Google Drive. This code is adaptable, allowing users to
specify settings such as scheduled vibration acquisition and data acquisition duration
without the need for reprogramming the Raspberry Pi directly.

4. Data acquisition: Upon completion of data acquisition, the acquired files are trans-
ferred to a dedicated folder on the connected Google Drive. This design ensures that
LARA’s hard drive remains unburdened as long as an internet connection, via Wi-Fi
or LAN, is maintained. Notably, if there is a loss of internet connectivity, the collected
data will be retained on LARA’s local hard drive until the connection is restored.
Additionally, the option to utilize external hard drives for expanded storage capacity
is available.

5. Data postprocessing: At this stage, the acquired data from LARA undergo post-
processing, primarily aimed at estimating inclination based on the collected data.
Additionally, this phase allows for the implementation of other programs or processes
to enhance estimation resolution or perform specific calculations. This segment is
adaptable and can be customized to meet the specific requirements of the monitor-
ing application.

6. Internet of Things, IoT, update: Following the postprocessing stage, Python code is
employed to transmit the estimated inclination and other computed parameters to
an online IoT platform hosted on the Thingspeak website. It is worth mentioning
that the Thingspeak platform is affiliated with MathWorks, the creators of MATLAB.
Consequently, users can employ this platform to write custom code for further online
processing and analysis of the monitored data of the channel. Notably, the channel on
this platform can be either private or public. A public channel offers access to anyone
with its web address, enabling them to monitor the ongoing monitoring process.

It is important to remain vigilant regarding potential issues or malfunctions related to
the Raspberry Pi and its programmed functions. In such cases, rebooting LARA can often
resolve unforeseen software glitches, including accelerometer unresponsiveness, Arduino
connectivity issues, or restricted access to Google Drive. While LARA is designed for
autonomous operation, manual rebooting or reprogramming can be executed remotely in
emergency situations using the Visual Network Computing, VNC, viewer program.
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It is crucial to emphasize that the utilization of AI tools for locally calibrating LARA is
not intended to replace traditional signal processing tools and filters; rather, it serves as
an additional layer complementing them. LARA has already benefitted from the ongoing
research in novel signal processing tools and filters [32]. Laboratory experiments have
demonstrated that these methods significantly enhance the accuracy and resolution of
LARA [44], surpassing many commercial alternatives. However, recognizing the constant
potential for improvement, this study concentrates on integrating an AI tool as an extra
layer of signal processing, aiming to further unlock the potential and capabilities of LARA.

It should be noted that LARA itself incorporates two different techniques of signal
filtering to enhance its estimation. The first is a low-pass filter [63], which maintains the
inclination estimation from steady acceleration measurements while filtering out noise.
Additionally, LARA benefits from a novel idea, in line with the Signal-to-Noise Ratio (SNR)
law [62], as demonstrated through laboratory experiments by Komarizadeshasl et al. [61].
According to this law, the noise density of the averaged value of aligned and synchronized
sensors is reduced by the square root of the number of synchronized sensors. In the case of
LARA, it utilizes five aligned and synchronized sensors, leveraging this principle to reduce
noise. This paper focuses on further improving the noise density, reducing the standard
deviation of LARA, and enhancing its accuracy by incorporating artificial intelligence on
top of its existing features.

4. Artificial Intelligence Tool

In this section, an artificial intelligence (AI) tool is developed to enhance the accuracy
of LARA working as an inclinometer. Initially, the foundational principles of the Multilayer
Perceptron (MLP) neural network employed are described. Subsequently, the architecture
of the proposed MLP is detailed.

4.1. Multilayer Perceptron

Multilayer Perceptron (MLP) is a type of artificial neural network characterized by
multiple neuron layers arranged in a sequential manner. This tool is characterized by its
robustness and adaptability to learn complex patterns from a supervised learning process.
Recent implementations of the MLP are exemplified by the work of Wang et al. [64], who em-
ployed this tool to predict the compressive strength of geopolymer concrete. Similarly, Ne-
jati et al. [65] utilized an MLP to predict building thermal loads, while Martinez-Comesaña
et al. [66] applied it to estimate the indoor environmental conditions of existing buildings.

The scikit-learn package, a versatile and user-friendly Python library, was used to
develop the MLP. This package offers several significant advantages [67]. Firstly, it provides
a consistent interface for machine learning models, making it easy to switch between algo-
rithms and processes. Secondly, its comprehensive documentation and abundant examples
foster a smooth learning curve for beginners and a quick reference for advanced users.
Thirdly, scikit-learn is highly efficient, as it is based on optimized libraries for numerical
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computations. Additionally, it supports a wide range of supervised and unsupervised
learning algorithms. Lastly, it has a thriving community and commercial support, ensuring
continual improvements and updates to the library. These benefits have motivated the
application of the scikit-learn library in a number of building applications. For example,
Yan et al. [68] used this library to improve the energy consumption prediction models
on buildings, and Buddhahai et al. [69] applied scikit-learn to analyze home energy dis-
aggregation. Similarly, Chen et al. [70] utilized it for forecasting building thermal loads,
while Hareuhansapong et al. [71] employed it for fault detection and diagnosis heating,
ventilation, and air conditioning (HVAC) systems.

4.2. AI Architecture

The MLP model is designed to derive accuracy-enhanced values for the X-axis rotations
of LARA. The main features of the input layer, hidden layers, activation functions, output
layer, and the solver employed in the proposed MLP model are summarized as follows:

• Input layer: The input layer comprises four neurons that represent the normalized
data from low-cost on-site sensors. Specifically, it processes X-axis and Y-axis rotations
measured by LARA, as well as temperature and relative humidity data obtained from
the DHT22 sensor. This latter sensor has been extensively used in the literature for
ambient monitoring, see, e.g., [30].

• Activation functions: The Rectified Linear Activation Function (ReLU), sourced from
the scikit-learn library, was selected for the activation function due to its simplicity
and proven empirical efficacy. Recent examples of the application of this activation
function in the literature include Gong et al. [72].

• Output layer: The output layer comprises a single neuron that yields accuracy-
enhanced measurements of LARA’s inclinations along the X-axis, named Intelligent
(I)-LARA. This neuron undergoes supervised training using data from precise com-
mercial sensors.

• Solver: The “adam” solver from the scikit-learn library was selected for its demon-
strated efficiency in managing datasets of substantial sizes.

A typical architecture of the proposed MLP is summarized in Figure 4. This architec-
ture includes three hidden layers, denoted as i, j, and k, with m, n, and l hidden neurons,
respectively.
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5. Case Study: Steel Gable Frame

In this section, the geometry and key features of the case study are first described. Then,
the monitoring program of the structure, encompassing the utilization of both commercial
inclinometers and LARA, is detailed. Next, the application of the proposed AI tool is
presented together with its enhanced monitored results, referred to as I-LARA. In addition,
the enhanced results are compared with those of the commercial inclinometer. Finally, the
application of the proposed IoT methodology to introduce the monitoring results of LARA
and I-LARA into the BIM model of the structure is detailed.

5.1. Description of the Structure

The monitored case study corresponds with a steel gable frame. This structural element
is located at the building of the Institute of Technology of the University of Castilla-La
Mancha (UCLM) in the city of Cuenca, Spain. It consists of HEB 300 for the columns
(6 m high) and IPE 400 for the beams (11.5 m long). The cloud points of this structure are
presented in Figure 5a. This dataset served as the basis for creating the Building Information
Model (BIM) of the steel gable frame depicted in Figure 5b. The creation of this model
was carried out within Revit, aided by Autodesk ReCap software (Autodesk ReCap Pro
2024), achieving a Level of Development (LOD) of 300. The roof’s live loads are limited to
sporadic maintenance tasks. It is crucial to emphasize that no maintenance activities were
undertaken during the monitoring period, and the structural response of this structure was
primarily driven by environmental parameters, such as temperature and humidity changes.
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5.2. Monitoring Program

In this section, the main details and results of the monitoring program are summarized.
Since its construction in 2008, the structure has been under continuous surveillance, aimed
at examining the influence of environmental factors and foundation settlements. This
extensive, ongoing monitoring initiative encompasses a network of 27 measurement points
dedicated to monitoring soil water content, along with 4 inclinometers, 4 thermometers, a
weather station, and 22 topographical leveling points. For a comprehensive overview of
the sensor specifications, please consult the work by González-Arteaga et al. [73].

Among the installed monitoring solutions in this structure, special attention is given to
those incorporated into the gable frame under study. These monitoring solutions are based
on the uniaxial electrolytic sensor EL Tiltmeter SC [53], which also includes temperature
measurement capabilities. Table 3 presents a summary of the key technical specifications
for this device. The resolution of this device (0.00027◦) is 7.4 times better than that reported
by LARA (0.002◦). Nevertheless, it is important to emphasize that achieving this level of
accuracy in the commercial inclinometer comes at a considerably higher cost, EUR 15,000,
which is 37.5 times higher than the price of LARA, at EUR 400 [49].
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Table 3. Technical features of the commercial inclinometer.

EL Tiltmeter SC

Resolution and range 1 arc second ± 40 arc minutes
Resolution thermometer 30 × 10−5◦

Temperature range [−20◦, 50◦]
Dimensions 124 × 80 × 59 mm

The commercial inclinometer was located at the connection between the beam and
the column on the East façade, and it has captured data since October 2016 with a 15 min
interval. It is worth emphasizing that the readings of this sensor cannot be accessed
wirelessly; instead, they require manual extraction through a USB connection. Additionally,
it should be noted that the sensor was directly powered by the building’s electrical supply.

The alternative monitoring implemented within this structure included the following
two low-cost sensors: (1) LARA, employed to measure rotations across three axes (X, Y, and
Z), and (2) DHT22, used to record environmental temperature and humidity data. These
sensors were positioned at the same location as the commercial inclinometer. Figure 6
provides a visual representation of the low-cost sensors’ installation on-site, highlighting
LARA’s rotational axes. It is important to highlight that the LARA’s X-axis rotations
corresponded with those measured by the commercial inclinometer. The monitoring
system included one Arduino Uno Board and one 4GB Raspberry Pi. This device might be
used to control up to four LARAs.
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Figure 6. Location of LARA in the case study, including the direction of the rotational axes X, Y, and Z.

The low-cost monitoring system collected data with the same measuring interval
as the commercial inclinometer, starting from its installation on 10 January to 17 May
2023, with an interval of 15 min. Over this period, a total of 5790 datasets, including
temperature, humidity, and rotations in the X and Y axes, were recorded and analyzed.
The resulting measurements are visually represented in Figure 7, where Figure 7a denotes
temperature, Figure 7b shows humidity, Figure 7c represents LARA X-axis’s rotations, and
Figure 7d outlines LARA Y-axis’s rotations. The correlation between temperature, humidity,
and Y-axis inclinations in relation to X-axis inclinations was studied using Pearson’s
Correlation Coefficient (PCC). The obtained coefficients indicated a strong linear correlation
for temperature (PCC = 0.86), a negative linear correlation for humidity (PCC = −0.44),
a strong negative linear correlation for Y-axis inclinations (PCC = 0.76), and a moderate
linear relationship with X-axis inclinations (PCC = 0.42).
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Figure 7. Dataset obtained by low-cost monitoring system: (a) DHT22 temperature; (b) DHT22 hu-
midity; (c) LARA X-axis’; (d) LARA Y-axis’ rotations. 

Figure 8 presents a comparison of the inclinations obtained by LARA and the com-
mercial accelerometer from 12 to 22 February 2023. This figure also includes the tempera-
tures measured by the DHT22 sensor. The analysis of Figure 8 illustrates the considerable 
impact of temperature fluctuations on the monitored rotations. For instance, the rotations 
of the EL-Tiltmeter SC on 22 February shifted from 0.019° to −0.002° as the ambient tem-
perature decreased from 21.1 °C to 12.2 °C. Although both sensors demonstrate similar 
trends in capturing the influence of temperature over time, LARA’s results present higher 
variations. 
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Figure 7. Dataset obtained by low-cost monitoring system: (a) DHT22 temperature; (b) DHT22
humidity; (c) LARA X-axis’; (d) LARA Y-axis’ rotations.
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Figure 8 presents a comparison of the inclinations obtained by LARA and the commer-
cial accelerometer from 12 to 22 February 2023. This figure also includes the temperatures
measured by the DHT22 sensor. The analysis of Figure 8 illustrates the considerable impact
of temperature fluctuations on the monitored rotations. For instance, the rotations of the
EL-Tiltmeter SC on 22 February shifted from 0.019◦ to −0.002◦ as the ambient temperature
decreased from 21.1 ◦C to 12.2 ◦C. Although both sensors demonstrate similar trends in
capturing the influence of temperature over time, LARA’s results present higher variations.
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Figure 8. Comparison of the rotations of LARA and EL Tiltmeter SC from 12 to 22 February 2023.

The standard deviation (SD) and the Mean Square Error (MSE) resulting from the
comparative analysis between LARA’s readings and those of the commercial sensor were
0.023495 and 0.000556, respectively.

5.3. Intelligent LARA (I-LARA)

The monitoring data were randomly divided into three distinct sets: the training set,
comprising 60% of the data; the holdout cross-validation data set, which included 20% of
the data; and the test set, representing the remaining 20% of the data. The I-LARA algorithm
was implemented on LARA’s Raspberry Pi to enable the automated computation of the
values from the data monitored by low-cost sensors. The hyperparameters were determined
through an experimental analysis of the model performance using cross-validation datasets.

The selected architecture for the MLP model included four input neurons, which
encompassed X-axis and Y-axis rotation, humidity, and temperature, three hidden layers,
each containing five neurons, and one output neuron, representing the enhanced X-axis
rotation measurements, referred to as “I-LARA”. The network underwent supervised
training using the rotations obtained from the commercial inclinometer. The initial learning
rate and the epoch during the training process were fixed to 0.00001 and 100, respectively.
The model variables for the considered MLP are listed in Table 4.

Table 4. MLP model characteristics.

Characteristics Variables

Input layer 4
Output layer 1
Hidden layer 3

Hidden neurons per layer 5
Learning rate 1 × 10−5

Epochs 100
Activation function ReLU

Solver Adams

The network performance for various architectures is presented in Figure 9, which
includes the Mean Squared Error (MSE) values obtained from the cross-validation dataset
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for different numbers of hidden layers (ranging from 1 to 10) and neurons (ranging from 1
to 6).
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Figure 9. Analysis of the optimal number of hidden layers and neurons (nodes) in the MLP.

Figure 10 depicts a comparison of the X-axis rotations measured by LARA, I-LARA,
and the commercial inclinometer across a set of 700 records randomly selected from the
monitoring period for the test set. This figure is segmented into three parts: Figure 10a
illustrates the comparison between LARA and the commercial inclinometer; Figure 10b
presents the comparison between I-LARA and the commercial inclinometer; and Figure 10c
shows the comparison among LARA, I-LARA, and the commercial inclinometer. For ease
of visualization, the latter figure is arranged in ascending order of the values recorded
by the commercial inclinometer. The analysis of these figures indicates that the imple-
mentation of the AI tool significantly reduces the Mean Squared Error (MSE) for I-LARA
when compared to the commercial inclinometer, with the MSE reducing from 0.000556
to 2.10812 × 10−5. This reduction represents a reduction of 96.21% in the MSE between
LARA and the commercial inclinometer. Furthermore, the comparison between I-LARA
and the commercial inclinometer yielded a Root Mean Squared Error (RMSE) of 0.00459
and a Pearson’s correlation coefficient of 0.89.

Figure 11a illustrates the probability density function of the errors between LARA
and the commercial inclinometer, superimposed with a corresponding normal distribution
curve. Conversely, Figure 11b exhibits analogous results derived from the comparison
between I-LARA and the commercial inclinometer. A comparison of these figures under-
scores the advantageous effects of employing the AI tool, as evidenced by the reduction in
the standard deviation from 0.023495 to 0.004258. These results represent a reduction of
81.88% with respect to the original standard deviation measured between LARA and the
commercial inclinometer. The standard deviation is especially interesting for this study as
it provides a summary statistic that describes the amount of variation or dispersion within
a dataset, and it provides a comparison of the spread of data between different datasets. It
helps in determining which dataset has more variability or dispersion. It shows how tightly
or loosely the data points are clustered around the mean, and I-LARA shows exceptional
performance in terms of standard deviation.
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6. Conclusions

While Micro Electro-Mechanical System (MEMS) accelerometer-based inclinometers
offer cost-effective solutions for civil engineering and architectural applications, their
precision might not reach that of high-cost commercial alternatives, potentially restringing
their scope of use. To address this limitation, this work proposes the use of an artificial
intelligence (AI) tool for calibrating the low-cost inclinometer LARA (Low-cost Adaptable
Reliable Anglemeter). In this approach, a Multilayer Perceptron was trained with long-
term monitoring data to improve the precision of LARA, enabling it to function as a
high-accuracy inclinometer. The calibrated device delivers precise inclinations based solely
on the structural and environmental data, particularly humidity and temperature, acquired
from low-cost sensors.

The application of the proposed AI tool was exemplified through a real case study
involving the long-term monitoring of a steel gable frame. The results of the analysis of
this structure highlighted the effectiveness of the proposed tool, demonstrating its capacity
to improve the accuracy of the rotations estimated by LARA under real environmental
conditions, matching the precision of the commercial inclinometer used during the training.
To enhance its applicability in the digital maintenance and operation of buildings, the
proposed methodology will be further developed in future works, with the objective of
establishing a seamless connection with smart homes and digital twins.
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