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Abstract: The three-axis parallel motion platform (TAPMP) with a common stator has low motion
inertia, enabling highly precise and high-speed motion over a large range of strokes. The primary
challenge faced by the TAPMP lies in the mutual pulling exerted between the common stator
motors during motion. The driving forces generated by the motors are closely associated with
their synchronization motion, a connection often overlooked in the design of existing controllers. To
address this issue, this paper presents a novel synchronization controller with dynamics compensation
(SC–DC) to achieve motion synchronization between the three motors, ultimately enhancing the
platform’s tracking accuracy in task space. In this SC–DC method, the synchronization error of the
common stator motors is introduced to represent the synchronized motion relationship between
adjacent motors, and a dynamic feedforward control is adopted to compensate for the motor’s driving
force. The stability of the proposed controller is analyzed using Lyapunov theory, demonstrating the
convergence of both the tracking error and synchronization error. Trajectory tracking simulations
and experimental studies are conducted on the TAPMP. The results show that, compared to the
augmented proportional-derivative controller with dynamic compensation, the proposed controller
significantly reduces both the MAE of the tracking error and synchronization error on the q1 motor
by 71.88% and 73.02%, respectively, demonstrating its performance advantages in trajectory tracking
and synchronization.

Keywords: three-axis parallel motion platform; synchronization control; dynamics compensation;
trajectory tracking

1. Introduction

For a three-axis parallel motion platform, precision motion control can be achieved
through the coordinated operation of joint motors. This type of platform features lower mo-
tion inertia and higher control precision, flexibility, and dynamic performance, enabling the
realization of complex three-degrees-of-freedom motion trajectories [1,2]. Therefore, it finds
wide applications in high-end equipment fields such as microelectronics manufacturing,
high-speed machine tools, new energy equipment, and robotic operations [3–6].

Despite the parallel platform offering numerous advantages, it presents certain chal-
lenges concerning the mutual pulling and control difficulties among joint motors during
motion [7,8]. To overcome these issues, advanced modeling theories and control strate-
gies need to be researched and developed continuously to enhance the system’s motion
performance. Currently, many scholars focus on controller design for platform motion
control, primarily in both task space [9] and joint space [10]. Considering that the planned
motion trajectory is established in task space, the motion error of the platform in task space
more accurately reflects the processing accuracy of the workpiece compared to the track-
ing error in joint space [11]. Therefore, designing a controller in task space can facilitate
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the development process to be more convenient and flexible. For this reason, Khalilpour
et al. [12] analyzed and implemented a cascade control method in task space. This approach
employed a force sensor-based sliding mode control for inner-loop regulation and achieved
precise measurement of the motion platform position through outer-loop control based on
visual sensors. Zi et al. [13] proposed a fuzzy control strategy integrating end-effector pose
information to achieve rapid and adaptable trajectory tracking for parallel mechanisms.
The proposed method achieved real-time measurement of the end-effector pose by using
three automatic target rangefinders. Zhu et al. [14] introduced a disturbance-resistant
control method combining a sliding mode control and a disturbance observer. This method
measured the angular velocity of the spatial robot base using a gyroscope, improving the
robot’s motion accuracy while ensuring positioning overshoot and stability time. Fonseca
et al. [15] presented a dual-loop controller considering position and attitude impedance cou-
pling. This method utilized a force sensor to measure the torque information of the motion
platform, adjusting the mechanism’s motion trajectory through inner-loop position control
and outer-loop admittance control to ensure accuracy and stability in the machining process.
Altan et al. [16] proposed a model predictive control method that utilized visual sensor
measurements of input–output data to establish linear and nonlinear dynamic models, and
employed these models for closed-loop control to achieve precise target tracking. However,
the implementation of the aforementioned task space control methods often requires the
use of external measuring instruments, such as force sensors [17], gyroscopes [18], and
visual sensors [19], to obtain essential motion information for each drive axis. Employing
external sensors for measurement will increase the system’s complexity and cost. Addi-
tionally, if the data bandwidth of external sensors does not match the system’s control
bandwidth, it may lead to data processing delays, subsequently affecting the system’s
tracking performance [20,21]. Therefore, despite the issue of motion coupling among the
drive chains of parallel platforms, designing control strategies in joint space still presents
significant challenges [22–24]. Fang et al. [25] thus suggested intensified research to design
decoupling controllers suitable for parallel platforms in joint space, aiming to meet the
demands of high-speed and high-precision control for such systems.

Hosseini et al. [26] proposed a robust model-free decoupling control method. The
proposed method employed time-delay estimation technology to estimate the dynamic
inertia parameters of the mechanism, achieving high-speed decoupling and precise track-
ing of mechanism motion through robust nonlinear proportional-derivative controllers.
Feng et al. [27] designed a composite controller to ameliorate the tracking accuracy of
motion joints. The controller used an adaptive fuzzy control scheme to suppress exter-
nal disturbances during motion, achieving model-free decoupling control by calculating
torque control to compensate for joint drive forces. Yang et al. [28] developed an adaptive
controller combining fuzzy neural networks and approximation functions. The controller
utilized fuzzy neural networks to estimate the nonlinear dynamics, including friction
models, and suppressed estimation errors occurring during the estimation of dynamic
parameters by using a sliding mode-based approximation function. Ultimately, it achieved
a stable operation of the mechanism under load variations. Escorcia-Hernandez et al. [29]
designed an adaptive robust integral control strategy. This method used B-spline functions
to assist neural networks in feedforward compensation for nonlinear dynamics, combining
robust integral feedback control considering the filtered tracking error for each joint to
achieve high-speed positioning operation of parallel mechanisms with minimal tracking
error. Zhang et al. [30] and Yun et al. [31] employed inverse dynamics for compensation to
improve trajectory tracking accuracy while maintaining the high dynamic performance
of robots. Xie et al. [32] proposed a composite control method that combined dynamic
feedforward compensation and input signal velocity planning for a five-degrees-of-freedom
parallel mechanism to reduce the tracking errors of driving joints induced by multi-axis
coupling and complex input signals. Makarem et al. [33] introduced a dynamic tuning
control method based on data-driven techniques. This strategy involved adjusting con-
troller parameters using feedback data from grating encoders to address hysteresis and
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nonlinearities in ultrasonic motors, achieving precise positioning and model-free control
of the system. For the control strategies in joint space, precise control can be achieved
by fully utilizing real-time information provided by the encoder feedback. Consequently,
decoupling control methods can be effectively employed in real-world scenarios to meet
the high-speed motion control of the platform [34,35]. However, the drawbacks of the
aforementioned controllers in joint space are apparent. Although the grating encoders
of each joint possess high resolution and measurement accuracy, the pulling between the
drive joints can significantly affect the control accuracy of each motor. This pulling arises
from the interaction of the joint drive forces and the poor synchronous motion performance
of each motor, and existing control methods in joint space often overlook the coordination
of motion between motors [36,37].

Therefore, the implementation of decoupling controllers in joint space, as well as
control strategies based on external sensors in task space, exhibit certain deficiencies,
making it challenging for existing control methods to ensure the simultaneous fulfillment
of tracking performance and synchronization performance for the three-axis parallel motion
platform (TAPMP). Currently, synchronization control methods include parallel control,
master–slave control, cross-coupling control, and control methods based on specific control
theories. For instance, Zhong et al. [38] proposed a fractional-order feedforward control
method based on frequency characteristic adjustment theory to enhance the synchronization
performance of a gantry platform. However, most of the existing synchronization control
methods are primarily applicable to dual-motor platforms. Considering the three-motor
co-axis structure of the TAPMP, this paper proposes a novel synchronization controller
with dynamic compensation (SC–DC) in joint space to achieve motion synchronization
between the three motors, ultimately enhancing the platform’s tracking accuracy in task
space. The proposed controller primarily possesses two significant advantages. Firstly, it
is established using information from the platform joint space, eliminating the need for
external sensors to enhance the control performance of the TAPMP, thereby reducing cost
and demonstrating high applicability. Secondly, compared to the traditional decoupling
controllers, the proposed controller introduces a synchronization error of the common stator
motors, which accurately represents the synchronization relationship between adjacent
motors. Thus, the proposed method can achieve better tracking and synchronization
accuracy. Finally, the effectiveness and advancement of the proposed controller are verified
through simulation analysis and practical experiments.

To ensure the high accuracy and effective implementation of the proposed SC–DC
method, a comprehensive dynamic model is developed, which encompasses the dynamics
of the moving platform and auxiliary blocks. Subsequently, according to the motion
characteristics of the common stator motors, a synchronization error of the common stator
motors is introduced to represent the synchronized motion relationship between adjacent
motors. Moreover, the coupling error is defined in an adjacent sequence based on the
tracking error and the synchronization error. The proposed SC–DC is formulated to
eliminate both coupling and synchronization errors, while compensating for the dynamics
of the auxiliary blocks and the driving force of each motor. Utilizing Lyapunov theory, it
is verified that the proposed controller can ensure convergence of both the tracking error
and synchronization error. Trajectory tracking simulations and experimental studies are
conducted on the TAPMP. The results show that, compared to the augmented proportional-
derivative controllers with dynamic compensation, the proposed controller significantly
reduces the synchronization error and tracking error for each motor, demonstrating its
performance advantages in trajectory tracking and synchronization.

The remaining sections of this paper are organized as follows. The structure and
kinematic model of the TAPMP are introduced in Section 2. The dynamic modeling of the
TAPMP is elaborated in Section 3. The implementation process and stability analysis of the
proposed SC–DC are described in Section 4. Simulation results are discussed in Section 5.
Experimental validation is conducted in Section 6. Finally, the main research of this paper
is summarized in Section 7.
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2. Kinematic Modeling of the TAPMP
2.1. Structural Description

The integration of the TAPMP with a parallel platform and direct-drive linear motors
enables precise control of the motion trajectory in three degrees of freedom. To ensure the
rigidity and reliability of the platform, a symmetrical architectural design is implemented,
as illustrated in Figure 1. The TAPMP mainly consists of a guide rail, a left auxiliary block,
a moving platform, a middle auxiliary block, a right auxiliary block, three linear motors
with a common stator, and a grating ruler. The left, middle, and right auxiliary blocks
are concurrently driven by three linear motors with a common stator, enabling accurate
position control. The grating ruler possesses a resolution of 100 nm, meeting the precision
measurement requirements for the platform’s accurate motion.
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Figure 1. Overall structure of the designed TAPMP.

2.2. Kinematic Modeling

Based on the structural configuration of the designed TAPMP, a kinematic model is
formulated, as illustrated in Figure 2. In this representation, the dashed lines (M1, M2,
M3) and solid lines (M1

′, M2
′, M3

′) correspondingly denote the initial and final positions
of the three motor-driven components. Endpoints A1 and C1 are linked to the left and
right auxiliary blocks, respectively, while B1 serves as the central point of the moving
platform. The variables q1, q2, and q3 represent the displacement of the three motor-driven
components as they move from their initial to final positions. L1 signifies the width of the
moving platform. Coordinate systems O-XYZ and o-xyz are established, with O and o
denoting the midpoints of the moving platform at its initial and final positions, respectively.
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According to Figure 2 and utilizing the loop vector method [39], the forward kinematic
equations are expressed as follows:

X = q2

Z =
√

3
2 (q1 − q3 − 2L1 + 2L1 cos B)

B = −arcsin
( √

3
2L1

(2q2 − q1 − q3)
) (1)

where X, Z, and B represent the displacement and angular displacement of the moving
platform along the X-, Z-, and B-axes, respectively. Considering the motion process of the
moving platform and the previously mentioned kinematic model, the inverse kinematic
equations are formulated as follows:

q1 = X +
√

3
3 Z + L1(1 − cos B +

√
3

3 sin B)
q2 = X
q3 = X −

√
3

3 Z − L1(1 − cos B −
√

3
3 sin B)

(2)

The derivative of Equation (2) yields the velocity of the common stator motor, which
is described as follows:

.
q = J(x) · .

x (3)

where
.
q =

( .
q1,

.
q2,

.
q3
)T denotes the velocity vector of the common stator motor,

.
x =

(
.

X,
.
Z,

.
B)T represents the velocity vector of the moving platform, and J(x) signifies the

velocity Jacobian matrix, which is expressed as follows:

J(x) =

1
√

3
3

√
3

3 L1 cos B + L1 sin B
1 0 0
1 −

√
3

3

√
3

3 L1 cos B − L1 sin B

 (4)

3. Dynamic Modeling of the TAPMP

The multi-drive branched closed-loop structure of the TAPMP introduces complexity
into its dynamic modeling. To formulate an accurate dynamic model, the system is decom-
posed into two sub-modules: the moving platform and the auxiliary blocks. Lagrangian
theory is employed to calculate the corresponding dynamic equations [40,41]. Subsequently,
the overall dynamic model of the system is derived.

3.1. Moving Platform Dynamics

The kinetic energy, E1, of the moving platform comprises the kinetic energy associated
with translational motion along the X- and Z-axes, as well as rotational motion around the
Y-axis. The calculation results are presented as follows:

E1 =
1
2

mp

(
.

X
2
+

.
Z

2
)
+

1
2

Iy
.
B

2
(5)

where mp and Iy are the mass and rotational inertia of the moving platform, respectively.
By defining the plane of the stationary coordinate system as the position with zero

potential energy, the potential energy, P1, of the moving platform is expressed as follows:

P1 = mpgZ (6)

where Z is the displacement of the moving platform along the Z-axis.
Substituting Equations (5) and (6) into the Lagrangian equation results in the following:

d
dt

(
∂E1

∂
.
x

)
− ∂E1

∂x
+

∂P1

∂x
= up (7)
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Simplification of Equation (7) yields the following dynamic equation for the mov-
ing platform:

Mp
..
x + Cp

.
x + Gp = up (8)

where Mp, Cp, Gp, and up represent the generalized mass matrix, Coriolis force coefficient ma-
trix, gravitational term, and equivalent generalized force of the moving platform, respectively.

3.2. Auxiliary Block Dynamics

Considering that the auxiliary blocks undergo translational motion exclusively along
the X-axis, the kinetic energy, E2, of the three auxiliary blocks is calculated as follows:

E2 =
1
2

(
m1

.
q1

2
+ m2

.
q2

2
+ m3

.
q3

2
)

(9)

where m1, m2, and m3 represent the masses of the left auxiliary block, middle auxiliary
block, and right auxiliary block, respectively. Given that the three auxiliary blocks lack
motion along the Z-axis, the potential energy of the auxiliary blocks is zero.

Substituting Equation (9) into the Lagrangian equation and simplifying results in the
following dynamic equation for the auxiliary block:

Mb
..
x + Cb

.
x = ub (10)

where Mb, Cb, and ub represent the generalized mass matrix, Coriolis force coefficient
matrix, and equivalent generalized force of the auxiliary block, respectively.

3.3. Overall Dynamics of the TAPMP

By combining Equations (8) and (10), the overall dynamics of the TAPMP in the task
space are presented as follows:

M(x)
..
x + C(x,

.
x)

.
x + G(x) = u (11)

in which 
M(x) = Mp + Mb
C(x,

.
x) = Cp + Cb

G(x) = Gp

u = up + ub =
[

uX uZ uB
]T

(12)

where M(x) is the generalized mass matrix, C(x,
.
x) is the Coriolis force coefficient ma-

trix, G(x) is the gravitational term, uX and uZ are the generalized forces corresponding to
the motion displacements along the X- and Z-axes, respectively, and uB is the generalized
torque corresponding to the angular displacement around the B-axis. Meanwhile, the
corresponding dynamic parameters are denoted as follows:

M(x) =


mp + m1 + m2 + m3 0 2

√
3m1L1 cos B

3

0 mp +
2
3 m1

2
√

3m1L1 sin B
3

2
√

3m1L1 cos B
3

2
√

3m1L1 sin B
3 Iy + 2m1

(
L1

2 cos2 B
3 + L1

2 sin2 B
)
,

C(x,
.
x) =


0 0 − 2

√
3m1L1

.
B sin B

3

0 0 2
√

3m1L1
.
B cos B

3

0 0 4m1L2
1

.
B cos B sin B

3

, G(x) =
[
0 mpg 0

]T .

(13)

Based on the principle of virtual work, the relationship between the joint driving
forces and the generalized forces is described as follows:

u1 = J−T(x)u (14)
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where u1 =
[
uq1 uq2 uq3

]T is the joint driving force vector, and J−T(x) is the inverse
matrix of JT(x).

4. Synchronization Controller with Dynamics Compensation
4.1. Definitions of Synchronization Error and Coupling Error

Synchronization error serves as a crucial metric for quantifying the level of syn-
chronization among motion joints, thereby facilitating the design of high-performance
synchronization control strategies. In the design of a precision motion control system, the
synchronization error ensures that all moving components operate collaboratively with
accuracy and consistency. Therefore, analyzing the synchronization error can enhance the
system’s stability and motion precision. In this section, our goal is to achieve synchro-
nized coordination control for the TAPMP by defining the deviation in the tracking error
between the current motor and its adjacent motor as the motor’s synchronization error.
This metric incorporates the tracking error of both the motor itself and its neighboring
motor, thereby providing a comprehensive assessment of synchronization. Through the
significant reduction of this synchronization error, we facilitate all motors to operate more
cohesively, ultimately enhancing the system’s tracking performance. Consequently, in
designing complex motion control systems, thorough consideration of the impact of the
synchronization error leads to superior synergy and stability performance compared to
systems devoid of synchronization control.

Considering the developed TAPMP, the tracking error, ei(t), of the common stator
motor is expressed as follows:

ei(t) = qdi(t)− qi(t) (15)

where qdi(t)(i = 1, 2, 3) denotes the desired motion trajectory of the common stator motor,
and the vector representation of the tracking error is as follows:

e(t) =
[
e1(t) e2(t) e3(t)

]T (16)

To ensure that the common stator motor maintains synchronization throughout the
motion process, it is crucial for the tracking error, ei(t), to gradually diminish and approach
zero, ensuring the following:

e1(t) = e2(t) = e3(t) (17)

The synchronization error, esi(t), of the common stator motor is defined by the criterion
of adjacent order, as follows: 

es1(t) = e1(t)− e2(t)
es2(t) = e2(t)− e3(t)
es3(t) = e3(t)− e1(t)

(18)

The vector form of the synchronization error is expressed as follows:

es(t) =
[
es1(t) es2(t) es3(t)

]T (19)

If the vector of the synchronization error for the common stator motor satisfies the
condition es(t) = 0, then the control performance indices described in Equation (17) can
be achieved.

Due to the mutual pulling among the three auxiliary blocks for their motion, in order to
rapidly reduce both the synchronization and tracking errors to a certain level, the coupling
error, eci(t), of the common stator motor is defined as follows:

ec1(t) = e1(t) + b
∫ t

0 (es1(ω)− es3(ω))dω

ec2(t) = e2(t) + b
∫ t

0 (es2(ω)− es1(ω))dω

ec3(t) = e3(t) + b
∫ t

0 (es3(ω)− es2(ω))dω

(20)
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where b is a positive constant, and the deviation vector, c(t), of the synchronization error is
defined as follows:

c(t) =
[
es1(t)− es3(t) es2(t)− es1(t) es3(t)− es2(t)

]T (21)

Substituting Equation (21) into Equation (20), the coupling error vector, ec(t), is repre-
sented as follows:

ec(t) = e(t) + B
∫ t

0
c(ω)dω (22)

where B = diag(b, b, b) is a positive diagonal matrix representing the coupling coefficients.
Taking the derivative of Equation (22) yields the coupling velocity error vector as follows:

.
ec(t) =

.
e(t) + B · c(t) (23)

Based on the coupling error and coupling velocity error, the following expression
is obtained:

n(t) =
.
ec(t) + D · ec(t) (24)

where D is a positive diagonal matrix employed to balance the synchronization and tracking
performance.

4.2. Formulation of Synchronization Controller with Dynamics Compensation

Based on the defined coupling error and synchronization error, along with the analysis
of the overall dynamic model, we propose a synchronization controller with dynamics
compensation (SC–DC) in the joint space. The control law of the proposed SC–DC can be
formulated as follows:

usc = KTud + Λvn(t) + Λpc(t) (25)

in which
ud = J−T(x)

(
M(x)

..
xd + C(x,

.
x)

.
xd + g(x)

)
(26)

where ud is the compensatory command for the motor driving force based on the de-
sired trajectory and dynamic model, KT is the feedforward gain matrix for dynamic com-
pensation, Λv and Λp are third-order positive diagonal matrices, and

..
xd and

.
xd are the

acceleration and velocity vectors of the desired trajectory, respectively.
By analyzing Equations (25) and (26), the control block diagram of the SC–DC method

can be illustrated, as depicted in Figure 3. In the implementation of this control process, the
tracking error (e(t)), synchronization error (es(t)), and coupling error (ec(t)) constitute the
three core elements. These error vectors can be computed using a series of mathematical for-
mulas, including Equations (15)–(22). Simultaneously, the inverse kinematic equations can
be solved through Equation (2), while the overall inverse dynamics can be calculated using
Equation (11). Furthermore, the value of J(x) is obtained by solving Equation (4). Several
measures are implemented to ensure the stable operation and synchronized execution of
the TAPMP. Firstly, the inverse dynamics are introduced for feedforward compensation.
Secondly, the coupling error and synchronization error are eliminated. Finally, control
commands (usc) are output to the TAPMP using Equation (25). These steps and formu-
las collectively constitute the overall control process of the SC–DC method, ensuring the
precise motion control of the platform.



Actuators 2024, 13, 166 9 of 20

Actuators 2024, 13, x FOR PEER REVIEW 9 of 21 
 

 

in which 

( )( ) ( ) ( , ) ( )T
d d du J x M x x C x x x g x−= + +    (26)

where du  is the compensatory command for the motor driving force based on the de-
sired trajectory and dynamic model, TK   is the feedforward gain matrix for dynamic 
compensation, vΛ and pΛ  are third-order positive diagonal matrices, and dx  and dx  
are the acceleration and velocity vectors of the desired trajectory, respectively.  

By analyzing Equations (25) and (26), the control block diagram of the SC–DC 
method can be illustrated, as depicted in Figure 3. In the implementation of this control 
process, the tracking error ( ( ))e t , synchronization error ( ( ))se t , and coupling error ( ( ))ce t  
constitute the three core elements. These error vectors can be computed using a series of 
mathematical formulas, including Equations (15)–(22). Simultaneously, the inverse kine-
matic equations can be solved through Equation (2), while the overall inverse dynamics 
can be calculated using Equation (11). Furthermore, the value of ( )J x  is obtained by solv-
ing Equation (4). Several measures are implemented to ensure the stable operation and 
synchronized execution of the TAPMP. Firstly, the inverse dynamics are introduced for 
feedforward compensation. Secondly, the coupling error and synchronization error are 
eliminated. Finally, control commands ( )scu  are output to the TAPMP using Equation 
(25). These steps and formulas collectively constitute the overall control process of the SC–
DC method, ensuring the precise motion control of the platform. 

 
Figure 3. Block diagram illustrating the control structure of the proposed SC–DC scheme. 

4.3. Stability Analysis 
After conducting a theoretical analysis of the proposed SC–DC method, the control 

law specified by Equation (25) is implemented in the TAPMP, and the stability of the 
closed-loop system is assessed through the application of the Lyapunov stability theorem. 

Theorem 1: The proposed SC–DC method can achieve uniform convergence of the tracking error 
and synchronization error of the TAPMP towards zero. Specifically, it is established that ( ) 0ie t →
, and ( ) 0sie t → , as t → ∞ , for i = 1, 2, 3. 

Proof: By integrating Equations (14) and (25) with the setting of 1T scK u u= , the dynamic 
model of the closed-loop system can be reformulated as follows: 

1( ) ( ) ( ) 0T d v pK u u n t c t− + Λ + Λ =  (27)

According to Lyapunov theory, the selection of V  is as follows:  

Figure 3. Block diagram illustrating the control structure of the proposed SC–DC scheme.

4.3. Stability Analysis

After conducting a theoretical analysis of the proposed SC–DC method, the control law
specified by Equation (25) is implemented in the TAPMP, and the stability of the closed-loop
system is assessed through the application of the Lyapunov stability theorem.

Theorem 1. The proposed SC–DC method can achieve uniform convergence of the tracking error
and synchronization error of the TAPMP towards zero. Specifically, it is established that ei(t) → 0 ,
and esi(t) → 0 , as t → ∞ , for i = 1, 2, 3.

Proof. By integrating Equations (14) and (25) with the setting of KTu1 = usc, the dynamic
model of the closed-loop system can be reformulated as follows:

KT(ud − u1) + Λvn(t) + Λpc(t) = 0 (27)

According to Lyapunov theory, the selection of V is as follows:

V =
1
2

es
T(t)Λpes(t) +

1
2

∫ t

0
cT(ω)dω · BΛpD

∫ t

0
c(ω)dω (28)

Differentiating Equation (28), we obtain the following:

.
V = es

T(t)Λp
.
es(t) + cT(t) · BΛpD ·

∫ t

0
c(ω)dω (29)

Multiplying Equation (27) by −nT(t) and subsequently inserting the result into
Equation (29) leads to the following:

.
V = es

T(t)Λp
.
es(t) + cT(t)BΛpD

∫ t

0
c(ω)dω − nT(t)KT(ud − u1)− nT(t)Λvn(t)− nT(t)Λpc(t) (30)

Based on Equations (22) and (24), the expression nT(t)Λpc(t) can be reformulated
as follows:

nT(t)Λpc(t) =
.
es

T
(t)Λpes(t) + cT BΛpc(t) + es

T(t)DΛpes(t) + cT(t)BΛpD
∫ t

0
c(ω)dω (31)

Substituting the expression from Equation (31) into Equation (30) results in the following:

.
V = −nT(t)KT(ud − u1)− nT(t)Λvn(t)− cT(t)BΛpc(t)− es

T(t)DΛpes(t) (32)
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According to the fundamental theory of the mean value theorem, if kt ≥
∥∥∥ ∂u(q)

∂q

∥∥∥,
then ∥u(x)− u(y)∥ ≤ kt∥x − y∥. Consequently, the elements in Equation (32) can be
expressed as follows:

−nT(t)KT(ud − u1) ≤ −λmin(KT)kt∥n(t)∥∥e(t)∥
−nT(t)Λvn(t) ≤ −λmin(Λv)∥n(t)∥2

−cT(t)BΛpc(t) ≤ −λmin(BΛp)∥c(t)∥2

−es
T(t)DΛpes(t) ≤ −λmin(DΛp)∥es(t)∥2

(33)

where λmin(KT), λmin(Λv), λmin(BΛp), and λmin(DΛp) are all positive eigenvalues.
Substituting Equation (33) into Equation (32), we obtain the following:

.
V ≤ −λmin(KT)kt∥n(t)∥∥e(t)∥ − λmin(Λv)∥n(t)∥2 − λmin(BΛp)∥c(t)∥2 − λmin(DΛp)∥es(t)∥2 (34)

Considering the value of −λmin(KT)kt∥n(t)∥∥e(t)∥ as non-positive, according to
Equation (34), it is implied that

.
V ≤ 0, and the vectors es(t), n(t), and c(t) all converge to 0

as t → ∞ .
From Equation (24), it is established that if the vector n(t) is bounded, the coupling

error vector also remains bounded. Consequently, the convergence of ec(t) to 0 is affirmed
as t → ∞ . Referring to Equation (18) and considering c(t) → 0 , it can be deduced that,
as t → ∞ , the following relationship holds:

3

∑
i=1

eci(t) =
3

∑
i=1

ei(t) → 0 (35)

According to the representational form of the synchronization error, and consider-
ing es(t) → 0 , the following obtains:

e1(t) = e2(t) = e3(t) (36)

Substituting Equation (36) into Equation (35), we obtain:

e1(t) = e2(t) = e3(t) → 0 (37)

From Equation (37), it is evident that e(t) converges to 0 as t → ∞ .
In summary, the tracking error e(t) and synchronization error es(t) both converge to 0

as t → ∞ , indicating the stability of the proposed controller. □

5. Simulation Analysis of the SC–DC
5.1. Simulation Setup

To investigate the control effect of the proposed controller on trajectory tracking,
we conducted a comparative analysis using the APD–DC method, which is based on
augmented proportional-derivative (APD) control and dynamics compensation (DC). The
control law for the APD–DC method can be represented as follows:

uapd = KT1ud + kv
.
e(t) + kpe(t) (38)

in which
ud = J−T(MD(x)

..
xd + CD(x,

.
x)

.
xd + gD(x)

)
(39)

where kv and kp are third-order positive diagonal coefficient matrices, KT1 is the feedfor-
ward gain matrix for dynamic compensation, and ud is the motor drive force compensation
command similar to that of the proposed controller.
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After analyzing the control laws of both the SC–DC and APD–DC methods, it was
determined that both are grounded in the dynamic model. Subsequently, the dynamic pa-
rameters were identified using the least squares methods, yielding the following parameter
values: mp = 1.835 kg, m1 = 4.776 kg, m2 = 1.946 kg, m3 = 4.775 kg, Iy = 77.68 kg · cm2,
L1 = 90 mm, and g = 9.8 m/s2.

To ensure a fair comparison between the algorithms, optimal control parameters were
customized for both methods. The parameters specific to the proposed controller are
outlined as follows:

Λp = diag[8000, 8000, 8850], Λv = diag[150, 158.5, 108.5], B = diag[0.0005, 8.1, 1.5],

D = diag[200, 200, 200], KT = diag[0.000041, 0.000041, 0.000041]
(40)

Analogously, the parameters for the APD–DC method are enumerated as follows:

kp = Λp, ke = Λv, KT1 = KT . (41)

5.2. Simulation Results

The circular trajectories, centered at [0, −0.01]T, with a radius of 0.01 m and a frequency
of 0.4 Hz, as well as sinusoidal trajectories with an amplitude of 5◦ and a frequency of
0.4 Hz, served as reference inputs for the XZ plane and the B-axis, respectively, as shown
in Figure 4. The tracking error and synchronization error of each motor, along with the
tracking error of each drive axis, are depicted in Figures 5–7, respectively.

From these figures, it is evident that the proposed controller can significantly reduce
both the tracking error and synchronization error of the motor compared to the APD–DC
method, thereby enhancing the tracking accuracy of each drive axis. Additionally, the
proposed controller exhibits smaller trajectory errors throughout the entire motion process,
exhibiting better control effects in terms of velocity, stability, and control precision. Hence,
the proposed controller provides us with an effective control approach to improve the
tracking performance for multi-axis parallel machine tools.

To quantitatively evaluate the performance of the proposed controller, a comprehen-
sive assessment is conducted using standard deviation (STD) and mean absolute error
(MAE). Tables 1–3 present the tracking error and synchronization error of each motor, as
well as the tracking error of each drive axis, respectively.

Actuators 2024, 13, x FOR PEER REVIEW 12 of 21 
 

 

  
(a) (b) 

Figure 4. Desired trajectory of the TAPMP in the task space. (a) X- and Z-axis, (b) B-axis. 

(a) (b) 

 
(c) 

Figure 5. Tracking error of each motor with APD–DC and the proposed controller. (a) Motor q1, (b) 
motor q2, (c) motor q3. 

  

Figure 4. Desired trajectory of the TAPMP in the task space. (a) X- and Z-axis, (b) B-axis.



Actuators 2024, 13, 166 12 of 20

Actuators 2024, 13, x FOR PEER REVIEW 12 of 21 
 

 

  
(a) (b) 

Figure 4. Desired trajectory of the TAPMP in the task space. (a) X- and Z-axis, (b) B-axis. 

(a) (b) 

 
(c) 

Figure 5. Tracking error of each motor with APD–DC and the proposed controller. (a) Motor q1, (b) 
motor q2, (c) motor q3. 

  

Figure 5. Tracking error of each motor with APD–DC and the proposed controller. (a) Motor q1,
(b) motor q2, (c) motor q3.

Actuators 2024, 13, x FOR PEER REVIEW 13 of 21 
 

 

 

  
(a) (b) 

(c) 

Figure 6. Synchronization error of each motor with APD–DC and the proposed controller. (a) Motor 
q1, (b) motor q2, (c) motor q3. 

  
(a) (b) 

 
(c) 

Figure 6. Synchronization error of each motor with APD–DC and the proposed controller. (a) Motor
q1, (b) motor q2, (c) motor q3.



Actuators 2024, 13, 166 13 of 20

Actuators 2024, 13, x FOR PEER REVIEW 13 of 21 
 

 

 

  
(a) (b) 

(c) 

Figure 6. Synchronization error of each motor with APD–DC and the proposed controller. (a) Motor 
q1, (b) motor q2, (c) motor q3. 

  
(a) (b) 

 
(c) 

Figure 7. Tracking error of each drive axis with APD–DC and the proposed controller. (a) X-axis,
(b) Z-axis, (c) B-axis.

Table 1. Comparison of the tracking error for each motor with APD–DC and the proposed controller.

Control Strategy

Tracking Error (µm)

STD MAE

q1 q2 q3 q1 q2 q3

APD–DC 7.83 14.21 6.69 6.87 12.53 5.87
Proposed 3.16 3.28 3.29 2.74 2.85 2.89

Reduction (%) (proposed compared with APD–DC) 59.64 76.92 50.82 60.12 77.25 50.77

Table 2. Comparison of the synchronization error for each motor with APD–DC and the proposed controller.

Control Strategy

Synchronization Error (µm)

STD MAE

q1 q2 q3 q1 q2 q3

APD–DC 7.89 8.20 5.49 6.98 7.26 4.92
Proposed 0.48 0.52 0.95 0.40 0.46 0.83

Reduction (%) (proposed compared with APD–DC) 93.92 93.66 82.7 94.27 93.66 83.13

The simulation results indicate that the proposed controller demonstrates superior
tracking accuracy and synchronization performance compared to the APD–DC method.
Specifically, upon the application of the proposed controller, the MAE for the tracking
error and synchronization error of motor q1 is reduced from 6.87 µm and 6.98 µm to
2.74 µm and 0.4 µm, respectively, representing reductions of 60.12% and 94.27% compared
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to the APD–DC method. Additionally, the MAE tracking error for the X- and Z-axes also
decreases from 12.53 µm and 4.26 µm to 2.85 µm and 0.72 µm, respectively, constituting
reductions of 77.25% and 83.1% compared to the APD–DC method.

Table 3. Comparison of the tracking error for each drive axis with APD–DC and the proposed controller.

Control Strategy

Tracking Error

STD MAE

X (µm) Z (µm) B (µrad) X (µm) Z (µm) B (µrad)

APD–DC 14.21 4.75 75.95 12.53 4.26 67.16
Proposed 3.28 0.82 3.18 2.85 0.72 1.62

Reduction (%) (proposed compared with APD–DC) 76.92 82.74 95.81 77.25 83.1 97.59

6. Experimental Verification of the SC–DC
6.1. Experimental Setup

To validate the proposed controller and ensure its stable operation in practical appli-
cations, we established an experimental system based on the Programmable Multi-Axes
Controller (PMAC), as depicted in Figure 8. The system comprises a PMAC controller, servo
driver, upper machine, precision grating ruler, and three linear motors with a common
stator. For the experimentation, we utilized a linear motor of the AUM5-S3 type, a servo
driver of the ASD240 model, and a precision grating ruler of the RGH22S30D61 variety.
The grating ruler possesses a resolution of 100 nm, with a sampling period of 0.0001 s.
Furthermore, Figure 9 presents the hardware relationship diagram. The PMAC controller
accurately regulates the servo driver by outputting analog voltage commands, ultimately
achieving precise control of the motor. This design improves the overall efficiency and
stability of the system, thereby ensuring high precision and reliable operation.
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6.2. Experimental Results

In the experimental process, the circular trajectories with a center at [0, −0.01]T and a
radius of 0.01 m, as well as sinusoidal trajectories with an amplitude of 5◦ and a frequency
of 0.18 Hz, were designated as the desired motion trajectories for the XZ plane and the
B-axis, respectively. We utilized both the proposed controller and the APD–DC to achieve
precise control of the motion trajectories.

To optimize the controller parameters, the following parameter tuning steps were
implemented. Considering that the APD–DC method served as the basis for designing
the proposed SC–DC method, optimal parameters were selected for the APD–DC method
to determine its optimal control gains. Subsequently, since the proposed SC–DC method
introduces additional auxiliary terms based on the APD–DC method, a trial-and-error
method was employed to optimize these auxiliary term parameters. Furthermore, dynamic
identification methods were used to determine the dynamic parameters of mass and
moment of inertia for both algorithms, similar to the simulation analysis. Consequently,
optimal parameters were determined for both algorithms. Thus, the parameters of the
proposed SC–DC method are expressed as follows:

Λp = diag[3.8, 3, 4], Λv = diag[30, 30, 28], B = diag[0.00059, 0.00051, 0.00059],

D = diag[50, 50, 50], KT = diag[0.00003, 0.00003, 0.00003]
(42)

The control parameters for the APD–DC method are represented as follows:

kp = diag[3.8, 3, 4], ke = diag[30, 30, 28], KT1 = diag[0.00003, 0.00003, 0.00003]. (43)

The experimental results obtained by applying the proposed controller and APD–DC
method are illustrated in Figures 10–12. Figures 10 and 11 depict the tracking error and
synchronization error of each motor, respectively. It can be observed from these figures that
both control methods offer satisfactory tracking and synchronization performance, with
the maximum tracking error and maximum synchronization error for all motors being less
than 0.2 mm and 0.1 mm, respectively. Furthermore, our controller demonstrates superior
effectiveness in oscillation suppression, tracking accuracy, and motion synchronization.
Figure 12 shows the tracking error of each driving axis, indicating that the proposed
controller exhibits a smaller maximum tracking error throughout the motion process and
can rapidly reduce the motion error during constant velocity motion.
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To comprehensively evaluate the motion performance of the proposed controller,
Tables 4–6 present experimental results of the performance indicators for the tracking error
and synchronization error of the common stator motor, as well as the tracking error of each
drive axis.

Table 4. Experimental comparison of the tracking error for each motor with APD–DC and the
proposed controller.

Control Strategy

Tracking Error (µm)

STD MAE

q1 q2 q3 q1 q2 q3

APD–DC 4.93 5.98 4.27 4.16 5.00 3.62
Proposed 1.59 2.02 1.54 1.17 1.43 1.21

Reduction (%) (proposed compared with APD–DC) 67.75 66.22 63.93 71.88 71.4 66.57

Table 5. Experimental comparison of the synchronization error for each motor with APD–DC and the
proposed controller.

Control Strategy

Synchronization Error (µm)

STD MAE

q1 q2 q3 q1 q2 q3

APD–DC 2.17 1.86 2.16 1.89 1.47 1.89
Proposed 0.65 0.88 0.46 0.51 0.62 0.37

Reduction (%) (proposed compared with APD–DC) 70.01 52.69 78.7 73.02 57.82 80.42
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Table 6. Experimental comparison of the tracking error for each axis with APD–DC and the pro-
posed controller.

Control Strategy

Tracking Error

STD MAE

X (µm) Z (µm) B (µrad) X (µm) Z (µm) B (µrad)

APD–DC 5.98 1.87 33.01 5.00 1.63 26.55
Proposed 2.02 0.39 14.21 1.43 0.32 10.17

Reduction (%) (proposed compared with APD–DC) 66.22 79.14 56.95 71.4 80.37 61.69

Based on these performance indicators, it is evident that the proposed controller
significantly outperforms the APD–DC method in terms of tracking and synchronization
performance. Specifically, the proposed controller demonstrates higher accuracy for the
trajectory tracking process, confirming its exceptional performance in precise tracking and
maintaining stable synchronization. Moreover, it exhibits improved coordination of motion
between motors, thereby enhancing the motion accuracy of the TAPMP in both joint and
task spaces. Notably, after applying the proposed controller, the MAE of the tracking error
and synchronization error on motor q1 is reduced from 4.16 µm and 1.89 µm to 1.17 µm
and 0.51 µm, respectively, representing only 71.88% and 73.02% of the APD–DC method.
Simultaneously, the MAE tracking error for the X- and Z-axes decreases from 5 µm and
1.63 µm to 1.43 µm and 0.32 µm, respectively, accounting for only 71.4% and 80.37% of the
APD–DC method. Furthermore, by comparing the simulation and experimental results
in Tables 1–6, it can be observed that there are certain discrepancies in the extent of error
reduction between them. These disparities primarily arise from the inconsistency between
the error dynamics of the simulation model and those of the actual system, as well as the
limitations imposed by the servo cycle. Nevertheless, the trend of error reduction remains
consistent in both scenarios. This mutual validation further corroborates the feasibility and
effectiveness of the proposed strategy.

7. Conclusions

In this paper, a synchronization controller in joint space was proposed to enhance the
motion coordination of the common stator motor in the TAPMP. The synchronization error
of the common stator motor was employed to represent the synchronization relationship
between the adjacent motors. The stability of the proposed controller was analyzed using
Lyapunov theory. Through simulation analysis and experimental studies, the trajectory
tracking effectiveness and synchronization stability performance of the proposed controller
were validated. The experimental results demonstrate that, compared to the APD–DC
method, the proposed controller significantly reduces both the MAE of the tracking error
and synchronization error on the q1 motor by 71.88% and 73.02%, respectively. Additionally,
the proposed controller decreases the MAE of the end-effector’s tracking error on the X-
and Z-axes by 71.4% and 80.37%, respectively. This paper thus offers a novel strategy for
the trajectory tracking and synchronization control of multi-axis parallel platforms. In
future research, we aim to further refine the proposed synchronization control strategy
by incorporating model-free decoupling control based on time-delay estimation for the
application to a five-axis hybrid motion platform.
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