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Abstract: Enterovirus (EV) infections are widespread and associated with a range of clinical con-
ditions, from encephalitis to meningitis, gastroenteritis, and acute flaccid paralysis. Knowledge
about the circulation of EVs in neonatal age and early infancy is scarce, especially in Africa. This
study aimed to unveil the frequency and diversity of EVs circulating in apparently healthy newborns
from the Free State Province, South Africa (SA). For this purpose, longitudinally collected faecal
specimens (May 2021–February 2022) from a cohort of 17 asymptomatic infants were analysed using
metagenomic next-generation sequencing. Overall, seven different non-polio EV (NPEV) subtypes
belonging to EV-B and EV-C species were identified, while viruses classified under EV-A and EV-D
species could not be characterised at the sub-species level. Additionally, under EV-C species, two
vaccine-related poliovirus subtypes (PV1 and PV3) were identified. The most prevalent NPEV species
was EV-B (16/17, 94.1%), followed by EV-A (3/17, 17.6%), and EV-D (4/17, 23.5%). Within EV-B, the
commonly identified NPEV types included echoviruses 6, 13, 15, and 19 (E6, E13, E15, and E19), and
coxsackievirus B2 (CVB2), whereas enterovirus C99 (EV-C99) and coxsackievirus A19 (CVA19) were
the only two NPEVs identified under EV-C species. Sabin PV1 and PV3 strains were predominantly
detected during the first week of birth and 6–8 week time points, respectively, corresponding with
the OPV vaccination schedule in South Africa. A total of 11 complete/near-complete genomes were
identified from seven NPEV subtypes, and phylogenetic analysis of the three EV-C99 identified
revealed that our strains were closely related to other strains from Cameroon and Brazil, suggesting
global distribution of these strains. This study provides an insight into the frequency and diversity
of EVs circulating in asymptomatic infants from the Free State Province, with the predominance of
subtypes from EV-B and EV-C species. This data will be helpful to researchers looking into strategies
for the control and treatment of EV infection.

Keywords: enteroviruses; NPEV; poliovirus; echoviruses; coxsackievirus; infants; South Africa

1. Introduction

Enteroviruses (EVs) are among the most common agents infecting humans worldwide,
classified under the genus Enterovirus in the family Picornaviridae [1–3]. The EV capsid
encloses a positive sense, single-stranded (+ss)RNA genome of approximately 7.5 kb in
length, with a single open reading frame (ORF) encoding a polyprotein that is further
cleaved to yield four structural proteins (VP1-VP4) and seven non-structural proteins (2A
to 2C and 3A to 3D) [4]. The classification of EVs is largely based on the nucleotide (nt)
sequence of the viral capsid protein VP1 coding region [5], and according to the latest
International Committee on Classification of Viruses (ICTV) report, the genus Enterovirus
comprises twelve EV species (EV-A to EV-L) and three human rhinovirus (HRV) species
(HRV-A, HRV-B, and HRV-C), and over 300 serotypes have been identified [6]. EV-A to EV-D
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species predominantly infect humans, while other species infect a range of mammalian
hosts, including livestock and non-human primates [5,7–14].

Infections due to EVs in newborns usually result in asymptomatic infections to severe,
life-threatening diseases with manifestations such as aseptic meningitis, myocarditis, hep-
atitis, encephalitis, acute flaccid paralysis (AFP), and neonatal enteroviral sepsis [15–17].
Newborns are more vulnerable to EV infections, with an incidence of seven cases per
1000 newborns [18–20].

The enterovirus species B (EV-B) members include echoviruses and coxsackievirus
B, which are the most common causes of EV infections in humans and responsible for the
majority of the severe EV infections in neonates [19,21,22]. Poliovirus (PV), the most exten-
sively studied subtype of EV-C species and the aetiologic agent of poliomyelitis, consists
of three serotypes, i.e., PV1, PV2, and PV3 [23,24]. PV infection can be asymptomatic or
may result in conditions such as AFP [3]. To date, humans remain the only known host and
reservoir of PV, and it is the only EV for which a vaccine is available.

In 1988, the World Health Assembly (WHA) resolved to eradicate poliomyelitis by the
year 2000, leading to the establishment of the Global Polio Eradication Initiative (GPEI) [25].
Prior to the polio eradication era, polio had high endemicity in many African countries,
with over 1590 cases recorded on the continent in 1995 [26]. As a result of effective im-
munisation and intensive surveillance, by 2015, there were zero cases of wild-type po-
lioviruses. Currently, wild poliovirus (WPV) type 1 remains endemic only in Afghanistan
and Pakistan [27].

Vaccination has been the main approach to polio across the globe, and in South Africa,
the primary vaccination schedule for poliovirus consisted of a trivalent live-attenuated
oral polio vaccine (tOPV), which comprised all three serotypes 1, 2, and 3, and a trivalent
inactivated polio vaccine (tIPV) [28]. However, in 2016, as part of the global eradication
of poliovirus type 2, South Africa participated in the global switch from tOPV to bivalent
oral polio vaccine (bOPV), comprising only type 1 and type 3 [29]. OPV is administered
at birth and 6 weeks, and IPV is administered as part of a hexavalent vaccine at 6, 10, and
14 weeks [30].

By September 2019, PV3 was eradicated [30]; thus, PV1 is the only wild-type PV
circulation. The last wild PV case in South Africa was reported in 1989 [31]. A recent study
examined over two thousand cases of AFP in South Africa for the period from 2016 to 2019
and reported zero detection of wild-type polioviruses, with only Sabin vaccine strains type
1 or 3 detected in less than 1% of the samples tested [29].

Nevertheless, in South Africa, the focus has been more on AFP cases [29]. The current
study, therefore, aimed to describe the prevalence and diversity of human enteroviruses
in a cohort of asymptomatic infants from the Free State Province, South Africa, using
viral metagenomics.

2. Materials and Methods
2.1. Ethical Approval

This study was conducted with the approval of the Free State Department of Health
and the University of the Free State Health Sciences Research Ethics Committee (HSREC),
with ethics number UFS-HSD2020/0327/2710.

2.2. Participant Description and Sample Collection

In May 2021, newborns were recruited at three public hospitals around Mangaung in
the Free State province of South Africa. Faecal samples were collected longitudinally at
four-time intervals from the first week of birth until the age of six months. Demographic
and clinical information were obtained along with sample collection. Faecal samples
were sent, in an icebox, to the University of the Free State-Next Generation Sequencing
(UFS-NGS) Unit, Bloemfontein, South Africa, for viral metagenomic analysis.
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2.3. Inclusion and Exclusion Criteria

The inclusion criteria considered newborns at the age of zero during recruitment, new-
borns who will be residing within the Mangaung metropolitan region during the study, and
newborns with or without clinical symptoms. Regarding the exclusion criteria, the study
excluded newborns with congenital abnormalities that required lengthy hospitalisation.

2.4. Sample Processing and Nucleic Acid Extraction

Stool samples were enriched for virus particles using the NetoVIR protocol [32], with
modifications. Briefly, 10% faecal suspension was prepared in phosphate-buffered saline
(PBS) (Sigma-Aldrich, St. Louis, MO, USA) and homogenised at 3000 rpm for 1 min using
a Beadbug homogeniser (Benchmark Scientific, Sayreville, NJ, USA). The homogenate was
clarified by centrifugation at 13500 rpm for 3 min, followed by filtration through a 0.45 µm
filter (GVS, Bologna, Italy) to remove bacterial and eukaryotic cells. The filtrate was treated
with benzonase (Merck, Burlington, MA, USA) and micrococcal nucleases (New England
Biolabs, Ipswich, MA, USA) for 2 h at 37 ◦C to digest non-protected nucleic acids. Nuclease
digestion was terminated with 0.5 M EDTA. Viral nucleic acid extraction was carried out
using the QIAamp Viral RNA Mini kit (Qiagen, Hilden, Germany) without carrier RNA.

2.5. Reverse Transcription and Random Amplification

Complementary DNA and random amplification were performed with the QIAseq
FX Single Cell RNA Library Preparation Kit (Qiagen, Hilden, Germany), followed by
measurement of DNA concentrations on a Qubit 3.0 fluorometer using the Qubit dsDNA
High Sensitivity Assay kit (Thermo Fischer Scientific, Waltham, MA, USA).

2.6. DNA Library Preparations and Next Generation Sequencing

DNA libraries were constructed from the amplified cDNA and uniquely barcoded
using the QIAseq FX Single Cell RNA Library Preparation Kit (Qiagen, Hilden, Germany),
following the manufacturer’s instructions. Purified and size selection was carried out
by using Ampure XP beads (Beckman Coulter, Brea, CA, USA). Library fragments were
assessed for quality on an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA) using the dsDNA High Sensitivity Assay kit (Agilent Technologies, Santa Clara, CA,
USA). Final libraries were normalised, multiplexed, and sequenced on an Illumina MiSeq
platform (Illumina, San Diego, CA, USA) using a v3 Reagent Kit to generate 2 × 150 bp
paired-end reads.

2.7. Genome Assembly and Virus Identification

Metagenomic sequences generated from the Illumina MiSeq platform were analysed
in Genome Detective [33], a streamlined automated web-based bioinformatic pipeline for
sequence assembly and pathogen identification. Briefly, low-quality raw reads in fastq
format were filtered and trimmed using Trimmomatic, and FastQC is used to visualise the
quality of the processed reads. De novo assembly is performed with metaSPAdes, followed
by virus identification and assignment of serotypes/genotypes using the enterovirus
genotyping tool embedded in Genome Detective [33].

2.8. Phylogenetic Analysis

Multiple sequence alignments of our study strains and selected reference sequences
were performed using the MUSCLE program implemented in the Molecular Evolutionary
Genetics Analysis version 6 (MEGA 6) [34]. Phylogenetic trees, based on the VP1 nucleotide
sequences, were constructed using the maximum-likelihood method in MEGA 6, and the
reliability of the generated trees was evaluated by bootstrapping 1000 replicates.
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3. Results
3.1. Particpant Characteristics

A total of 17 infants were enrolled in the study, with four samples collected per
infant (a total of n = 68 samples were obtained) over a period of six months. Participant
demographic information, including age, gender, birth weight, and clinical characteristics
including HIV status and vaccination status, was collected as summarised in Table 1.

Table 1. Clinical and demographic information of study participants.

Total number of infants 17

Males 5 (29.4%)
Females 12 (70.6%)
Average gestational period 38.5 weeks
Average birth weight 2875 g
Vaginal delivery 14 (82.4%)
Caesarean section 3 (17.6%)
Breastfeeding 15 (88.2%)
Mixed feeding 2 (11.8%)
HIV exposed 5 (29.4%)
HIV non-exposed 11 (64.7%)
Unknown HIV status 1 (5.9%)
OPV vaccination status All were vaccinated at birth and at six weeks
Symptomatic diarrhoea None
Other illnesses None

3.2. Enterovirus Species Detected

Based on the results from Genome Detective, which assembles viral reads into contigs
by the de novo method and aligns the sequences against a viral reference database for virus
identification, four human enterovirus (EV) species were identified, including EV-A, EV-B,
EV-C, and EV-D. All 17 infants shed at least a single enterovirus species in their stools at
one or more sampling time points specified, and EV-B and EV-C were the most frequently
detected species. The virus detection rates for each of the four species, per individual infant,
were as follows: EV-A [3/17 (17.6%)], EV-B [16/17 (94.1%)], EV-C [(17/17 (100%)], EV-D
[4/17 (23.5%)] (Figure 1; Table 2).
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Table 2. Summary of enterovirus species and subtypes detected in infants at different time points.
Enteroviruses A to D and their respective subtypes were reported.

Species Subspecies/Subtype
Number of

Infants with the
Detected Virus

Total Number of
Samples with the

Detected Virus
Number of Samples with the Detected Virus per Time Point (TP)

TP1
(0–7 Days)

TP2
(6–8 Weeks)

TP3
(16–20 Weeks)

TP4
(24–26 Weeks)

Enterovirus
A (EV-A) 3/17 (17.6%) 5 2 1 2

Unassigned EV-A 5 2 1 2

Enterovirus
B (EV-B) 16/17 (94.1%) 31 2 4 8 17

Echovirus 6 (E6) 1 1
Echovirus 13 (E13) 2 1 1
Echovirus 15 (E15) 2 1 1
Echovirus 19 (E19) 3 3
Coxsackievirus B2 (CVB2) 1 1
Unassigned EV-B 22 2 3 6 11

Enterovirus
C (EV-C) 17/17 (100%) 55 17 13 11 14

Poliovirus 1 (PV1), Sabin 13 11 1 1
Poliovirus 3 (PV3), Sabin 10 2 6 2
Enterovirus C99 (EV-C99) 3 1 2
Coxsackievirus A19 (CVA19) 1 1
Unassigned EV-C 28 4 6 7 11

Enterovirus
D (EV-D) 4/17 (23.5%) 4 1 1 1 1

Unassigned EV-D 4 1 1 1 1

Regarding the detection rate based on the overall number of samples (n = 68), as
expected, EV-C exhibited higher detection frequencies of 55/68 (80.9%), followed by
EV-B with 31/68 (45.6%) detections (Table 2). Except for EV-A, all enteroviruses were
detected from the first week of birth and throughout the four sampling time points (TPs)
(Figure 1; Table 2). Only two species showed 100% detection frequency at a single time
point, i.e., EV-B at TP4 and EV-C at TP1 (Figure 1; Table 2).

3.3. Identified Enterovirus Serotypes/Genotypes

Using the Enterovirus Genotyping Tool embedded in Genome Detective, detected
viruses with sufficient genome coverage of the VP1 protein-coding region, following
de novo assembly, could be classified at a lower taxonomic level, and different sub-
types/genotypes/serotypes were identified. Overall, nine different EV subtypes were
identified in this study. Of the five EV-A species detected, none could be assigned
a subtype (Table 2). EV-B species were detected in 31 samples, and five different subtypes
were assigned across nine samples. These included echovirus 6 (E6) (n = 1), echovirus 13
(E13) (n = 2), echovirus 15 (E15) (n = 2), echovirus 19 (E19) (n = 3), and coxsackievirus
B2 (CVB2) (n = 1). The remaining EV-B species detected (n = 22) could not be assigned
subtypes (Table 2).

Enterovirus C was the most frequently detected species (n = 55), and nearly half (n = 27)
of these viruses were assigned subtypes. This included poliovirus 1 (PV1) strain Sabin
(n = 13), poliovirus 3 (PV3) strain Sabin (n = 10), enterovirus C99 (EV-C99) (n = 3), and cox-
sackievirus A19 (CVA19) (n = 1), the remaining 28 were unassigned (Table 2). Enterovirus
D was only detected in four samples, and as with EV-A, our analysis pipeline was unable
to classify them into subtypes (Table 2).

3.4. Detection Frequency of Vaccine-Associated Polioviruses

As described above, the shedding of OPV vaccine-related strains [Sabin poliovirus 1
(PV1) and Sabin poliovirus 3 (PV3)] was observed in this study, and as a result, the rate of
viral shedding in these infants’ stools was investigated. The analysis indicates that PV1
strains were predominantly shed in stools from the first week of birth (TP1), with samples
from 11 of the 17 infants positive for the virus (Figure 2). The detections dramatically
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declined to two samples at TP2 (6 weeks). This continued to decline until the virus was
completely cleared from the stools at TP4 (24–26 weeks). PV3 was only detected in two
samples in the first week of birth before the number of shedders increased to six at TP2.
From this point onward, the detection trend is downward, with zero detections at TP4
(24–26 weeks) (Figure 2).
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3.5. Detection of Near-Complete Genomes of Non-Polio Enteroviruses

A total of 11 complete/near-complete genomes of NPEV subtypes were identified.
These included members of enterovirus B: CVB2 (n = 1), E6 (n = 1), E13 (n = 2), E15 (n = 2),
and E19 (n = 1), and members of enterovirus C: CVA19 (n = 1), EV-C99 (n = 3). Descriptions
of these genomes are provided in Table 3. The nucleotide sequences determined have been
submitted to GenBank.

Table 3. Information on coverage and sequence length of the 11 NPEV complete and near-complete
genomes recovered in the study, as well as GenBank accession numbers.

Species Subtype
Coding

Sequence
Coverage

Sequence
Length (NT) Sample ID Time Point

(Age Range)
GenBank
Accession
Numbers

Enterovirus B

Coxsackievirus B2 CVB2 99.4% 7120 VRM2C TP3 (16–20 weeks) PP711772

Echovirus 6 E6 99.4% 7546 VRM10D TP4 (24–26 weeks) PP711773

Echovirus 13 E13 93.4% 7281 VRM15B TP2 (6–8 weeks) PP711774
E13 100% 7261 VRM17D TP4 (24–26 weeks) PP711775

Echovirus 15 E15 100% 7362 VRM15C TP3 (16–20 weeks) PP711776
E15 100% 7394 VRM15D TP4 (24–26 weeks) PP711777

Echovirus 19 E19 100% 7389 VRM4D TP4 (24–26 weeks) PP711778

Enterovirus C

Coxsackievirus A19 CVA19 100% 7049 VRM1D TP4 (24–26 weeks) PP711771

Enterovirus C99 EV-C99 100% 7426 VRM17C TP3 (16–20 weeks) PP711781
EV-C99 100% 7456 VRM9D TP4 (24–26 weeks) PP711779
EV-C99 100% 7448 VRM17D TP4 (24–26 weeks) PP711780
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The complete/near-complete genomes were detected at various time points, but the
majority (7/11) were recovered from samples collected between TP4 (24–26 weeks), while
three were identified at TP3 (16–20 weeks), and one was detected at TP2 (6–8 weeks) (Table 3).

Regarding the complete genomes, echoviruses had an average sequence length of
7351.5 nucleotide (nt) bases, ranging from 7261 to 7394 nt. Enterovirus C99 had an average
length of 7443.3 nt, ranging from 7426 to 7456 nt. Coxsackievirus A19 had a length of 7049 nt.
The coverage maps of all 11 genomes mentioned are shown in Supplementary Material S1.

3.6. Phylogenetic Analysis of Enterovirus C99 Subtypes

To assess the phylogenetic relationships among the three study strains, VRM17C,
VRM9D, and VRM17D, and other EV-C99 strains, a phylogenetic tree was generated based
on the complete nucleotide sequence of viral capsid VP1 (Figure 3). Based on the generated
tree, two strains, i.e., VRM17C and VRM17D, were grouped together and clustered together
with a strain from Cameroon isolated in 2014. This was two study strains grouping together,
which was not unexpected as these were detected in samples from the same infant, collected
at 16–20 weeks and 24–26 weeks, respectively (Figure 3). The third EV-C99 strain from
our study (VRM9D) clustered distantly from the other two, alongside strains previously
reported in Brazil between 2010 and 2013 (Figure 3).
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Figure 3. Maximum-likelihood phylogenetic tree based on the complete VP1 nucleotide sequence
of enterovirus C99 strains (EV-C99). The evolutionary history was inferred by using the Maximum
Likelihood method on MEGA version 6 [34], based on the General Time Reversible (GTR) model [35].
Values on the nodes represent the bootstrap support of the node (1000 bootstrap replicates). A discrete
Gamma distribution was used to model evolutionary rate differences among sites (five categories
(+G, parameter = 1.1867)). The rate variation model allowed for some sites to be evolutionarily
invariable ([+I], 49.4359% sites).
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4. Discussion

Enteroviruses (EVs) are important causative agents of a wide spectrum of illnesses
in neonatal age and early infancy. Although efforts to eradicate polioviruses have been
successful, infections due to NPEV still contribute to outbreaks of serious diseases such
as acute flaccid paralysis and meningitis [36]. This study provides a description of the
EVs present in the faeces of infants in their first six months of life. Moreover, this research
has proven that metagenomic next-generation sequencing (mNGS) is a promising tool
for deciphering the predominant serotypes responsible for EV infections during early
childhood. Our findings highlighted that neonates and young infants harbour a diverse
population of EVs in their guts, and despite EVs being associated with a range of clinical
manifestations, these results further add to the narrative that asymptomatic carriage of EVs
is common among the paediatric populations.

Using viral metagenomics, four human EV species (EV-A to EV-D) were detected in
faecal specimens of infants who were longitudinally followed from birth until six months
of age. Our analysis further revealed the identification of a variety of EV subtypes, mainly
from EV-B and EV-C species, whereas none of the viruses from EV-A and EV-D species
could be assigned subtypes due to their low genome coverage of the viral capsid protein
VP1 coding region. Among the classified subtypes were E6, E13, E15, E19, CVB2, CVA19,
PV1, PV3, and EV-C99.

Echoviruses and CVB, which were more common in this cohort, are the most fre-
quent EV subtypes previously reported in other African countries, including Nigeria and
Ghana [37,38]. Outside the African continent, they have been reported in China and India,
signifying their worldwide distribution [39,40]. Specifically, E6 and E13 are among the
most frequently detected EVs worldwide and have been often reported in association with
serious diseases in children such as aseptic meningitis and AFP [41–43]. E13 has been
among the most prevalent types in the Democratic Republic of the Congo and the Central
African Republic, while E6 has been found to be prevalent in AFP cases in Nigeria and
Cameroon [44–46]. In Malawi, E6 and E15 were reported to be the most frequently detected
types in Malawian infants at 3.5% and 4.2% detection rates, respectively [47].

Like other EVs, infections due to CVBs are usually moderate; however, they have also
been associated with central nervous system diseases, including aseptic meningitis, AFP,
and acute encephalitis [48]. There are six types of CVBs (CVB1 to CVB6), and CVB2, which
was detected in the current study, accounts for up to 6% of the annual reported cases of EV
infections [49]. In serious cases, CVB2 can cause myocarditis, meningoencephalitis, and
hand, foot, and mouth disease (HFMD) [50,51].

Coxsackievirus A19, identified in this study, is a rare EV type belonging to the species
EV-C [52], and it has been associated with illnesses such as gastroenteritis and acute
enteritis [53,54]. Consistent with our study, a previous faecal virome study from the
Amazon detected CVA19 in stool samples of healthy children [55]. Recently, CVA19 was
identified in a stool sample of a patient with HFMD in China [56]. Taken together, these
findings highlight the abundance of CVA19 in the human gastrointestinal tract, and in
support of this, evidence from the literature showed that more than 50% of the sequences
of CVA19 in the GenBank database were isolated from human faecal samples [56].

Poliovirus Sabin vaccine strains were the most predominantly detected serotypes in
this study, belonging to EV-C species. Sabin PV1 was more prevalent during the first week
of birth, corresponding with the first dose of OPV, and steadily declined until it was cleared
by 24 weeks of age. Similarly, PV3 peaked at six weeks, corresponding to the second dose
of OPV, and was also cleared by 24 weeks. The high rate of Sabin PVs is attributable to the
shedding of oral vaccines administered at birth and six weeks against PV infection.

Enterovirus C99 (EV-C99) is a relatively new EV subtype within the species Enterovirus
C. It was first identified in Bangladesh in 2000 [57] and subsequently reported world-
wide, including in non-human primates [58–60]. In Africa, EV-C99 was previously iden-
tified in individuals with AFP and healthy children from Cameroon, Ivory Coast, and
Nigeria [46,61,62]. A cross-sectional study involving a cohort of Malawian infants revealed
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that EV-C99 was the second most frequently detected subtype (~10%) within EV-C species,
after CVA13 [47].

As of 2019, only 15 complete genomes of EV-C99 were available in GenBank [63]. In
the current study, three complete genomes of EV-C99 were detected in two infants, adding
to the collection of EV sequences in current genome databases. Phylogenetic analysis of
these strains based on the VP1 gene showed that two of the strains, i.e., VRM17C and
VRM17D, detected in stool samples from the same infant, were closely related to strains
isolated in Cameroon using viral metagenomics [64]. The third EV-C99 clustered together
with strains from Brazil, the closest being strain BRA/TO-16 detected in a sample collected
in 2013 from a female child having symptoms of gastroenteritis such as diarrhoea and
vomiting [63]. Together with our findings, this demonstrates the global distribution of
EV-C99 as well as its role both in gastroenteritis and in asymptomatic infections.

Although EVs primarily spread from person to person via the faecal-oral and respira-
tory routes, numerous other modes of transmission have been well documented. Previous
studies have reported that EV infections can be acquired vertically during delivery, often
through contact with maternal blood, faeces, or genital secretions [65]. Recent data also
highlighted the possibility of horizontal transmission of EVs through contact with family
members after delivery. Specifically, a study conducted in Japan on neonates and young
infants identified EVs in more than 90% of siblings, many of whom were asymptomatic [66].

On the other hand, there have been conflicting reports on the potential role of breast-
feeding in the transmission of EVs. While an earlier study by Sadeharju and colleagues
(2007) demonstrated that the duration of breastfeeding may play a protective role against
EV infection [67], other authors suggested that breastfeeding could be a source of EV
transmission [68,69]. In a study where a total of 150 infants were prospectively followed
from birth up to one year of age, maternal breastmilk and blood samples were screened for
the presence of EV antibodies and RNA [67]. Fewer EV infections were observed in infants
who were exclusively breastfed for more than two weeks, compared to those breastfed for
two weeks or less. Subsequently, an indirect correlation was seen between the levels of
maternal antibodies in breast milk and infection rates, associating high antibody levels with
a decrease in infection frequencies. In this study, no EVs were reported in breastmilk [67].

Conversely, EVs were detected in the breast milk of two symptomatic mothers of
neonates diagnosed with severe hepatitis and meningitis [68], while in another study,
EVs were present in breastmilk obtained from a parent of an infant with sepsis [69]. It
was, however, not known whether breastmilk, as a potential source of EV transmission,
contributed to the disease severity. It would therefore be of great significance for future
research to consider case-control approaches when investigating EV infections in neonatal
health conditions such as these.

In our study, the comparison between different breastfeeding durations was not
practical as all infants were breastfeeding for the entire duration of the study, i.e., six months
or more, and none of the infants presented with any EV-associated disease. However, how
EVs in the current cohort were acquired as early as less than seven days old remains to
be interrogated.

Given the extreme variability of predominant EV subtypes across geographical loca-
tions and the demonstrated utility of mNGS, intensified genomic surveillance is necessary
to elucidate the diversity of EVs in early childhood. This would improve our understanding
of their potential contributions to disease burden and enable a prompt response in cases
of outbreaks. Establishing such an effective NPEV pathogen surveillance system on the
African continent, where there is a high burden of infectious diseases, would provide
crucial information on the circulation of known and rare EV subtypes locally and globally.

Although samples from our study were collected more recently, providing more
relevant information on the currently circulating EV types, the major limitation is the shorter
sampling period. Samples collected over longer periods will provide a more comprehensive
image of the diversity and persistence of EVs circulating in paediatric populations.
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5. Conclusions

The genus Enterovirus in the family Picornaviridae encompasses a large group of NPEVs
that have been reported in a wide spectrum of illnesses. The current study adds to our
understanding of the types of EVs that healthy South African infants are constantly exposed
to. Research on such viruses, which have the potential to cause severe life-threatening
health complications, has laid important foundations for studies seeking to characterise
viral pathogens colonising the gut of newborn babies. Although poliovirus is on the verge
of complete eradication, more efforts must be intensified to understand the role of NPEV as
a non-polio aetiologic agent of neonatal diseases. In conclusion, the current data underlines
the importance of developing long-term measures to monitor NPEV infections in early life.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12050920/s1, Figure S1: Genome coverage maps
of the seven enterovirus B subtypes identified (coxsackievirus B2, echovirus 6, 13, 15, and 19);
Figure S2: Genome coverage maps of the seven enterovirus C subtypes identified (coxsackievirus
A19, Enterovirus C99).
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