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Abstract: The performance of both non-spliced and spliced steel bars significantly affects the overall
performance of structural reinforced concrete elements. In this context, the mechanical properties of
reinforcement bars (i.e., their ultimate strength and strain) should be determined in order to evaluate
their reliability prior to the construction procedure. In this study, the application of Tree-Based
machine learning techniques is implemented to analyze the ultimate strain of non-spliced and spliced
steel reinforcements. In this regard, a database containing the results of 225 experimental tests was
collected based on the research investigations available in peer-reviewed international publications.
The database included the mechanical properties of both non-spliced and mechanically spliced bars.
For better accuracy, the databases of other splicing methods such as lap and welded-spliced methods
were excluded from this research. The database was categorized as two sub-databases: training (85%)
and testing (15%) of the developed models. Various effective parameters such as splice technique,
steel grade of the bar, diameter of the steel bar, coupler geometry—including length and outer
diameter along with the testing temperatures—were defined as the input variables for analyzing
the ultimate strain using tree-based approaches including Decision Trees and Random Forest. The
predicted outcomes were compared to the actual values and the precision of the prediction models
was assessed via performance metrics, along with a Taylor diagram. Based on the reported results,
the reliability of the proposed ML-based methods was acceptable (with an R2 ≥ 85%) and they
were time-saving and cost-effective compared to more complicated, time-consuming, and expensive
experimental examinations. More importantly, the models proposed in this study can be further
considered as a part of a comprehensive prediction model for estimating the stress-strain behavior of
steel bars.

Keywords: machine learning; reinforcement system; spliced bar; ultimate strain; Decision Tree;
Random Forest

1. Introduction

Reinforced steel bars are generally fabricated with limited lengths due to the lim-
itations of the transportation and production processes. Splicing bars, therefore, is an
inevitable issue which could influence the behavior of reinforced concrete (RC) elements
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and structures [1]. Splice methods and their effect on RC structures’ behavior has been exten-
sively researched experimentally and numerically [2–7], considering their
remarkable importance.

Regarding splice methods, they can be generally categorized into three main classifica-
tions: lap, mechanical, and welded splices. Lap splices are recognized as the most common
and inexpensive method applied for connecting rebars due to its simplicity [8]. However,
its shortcomings (e.g., bar congestion), which lead to poor performance of structures, have
motivated researchers to propose alternative splice approaches [9–11]. The application
of welded splices is also scarce as it requires specific operation skills to achieve a reliable
splice. Moreover, the lack of investigations for conclusions and code provisions on welded
splices prevents them from being widely used in construction [9,12].

Mechanical splices, therefore, are claimed to be an appropriate splice method because
their implementation (i) is quick and easy, (ii) does not require special skills, (iii) reduces
bar congestion, and (iv) leads to better performance compared to other methods [9,10].
Mechanical splices could be categorized into five main groups, namely, threaded (the most
common type), grouted, swaged, bolted, and headed bar couplers [6,13]. A combination of
the above-mentioned methods (e.g., threaded-screw couplers) has also been proposed by
researchers [14–18]. The stress transformation is different in each method. As an example,
in the threaded, swaged, bolted, and headed bar couplers, force is transferred through
thread locks, grout, interlocks between the bar rips and swaged sleeve, friction between
bolts and bar rips, and the male–female elements, respectively [9]. In all the mechanical
methods, the rebars are connected by a sleeve and, therefore, the length and diameter (or
thickness) of the sleeve affects the splice performance greatly. It is claimed that longer
couplers could decrease RC element ductility and deformation capacity [12,18,19] and
cause earlier failure due to a larger concrete-bar slip [19]. The coupler rigidity is increased
by increasing its outer diameter (or thickness), which might decrease ductility [13,19].

The other remarkable parameter which can affect the performance of either non-spliced
or spliced bars is temperature [20,21]. Bompa and Elghazouli concluded that increasing
temperature up to 400 ◦C does not notably affect stiffness and strength, whereas yield
plateau becomes less visible for temperatures higher than 300 ◦C. Furthermore, the ultimate
strains of both spliced and non-spliced bars are reduced with increasing temperatures by
more than 7.5% of the ultimate strain at ambient temperature [20].

Due to the significant influence of the above-mentioned parameters on the mechanical
properties ofnon-spliced and spliced bars, their stress-strain behavior is determined under
tensile testing according to design codes (e.g., ASTM [22]). The test is time-consuming and
expensive, particularly when an appropriate coupler geometry with a reliable performance
needs to be achieved. As a result, machine learning (ML)-based techniques have been
developed by researchers as a reliable, quick, and inexpensive alternative approach for
experimental tests [23–27]. The limited ML-based models presented for predicting the
mechanical properties of non-spliced and spliced bars [28,29] have proven the accuracy
of these ML-based techniques. As an example, Dabiri et al., predicted the ultimate ten-
sile strength of both non-spliced and spliced bars using nonlinear regression and ridge
regression, as well as incorporating an Artificial Neural Network (ANN). In their study, the
proposed nonlinear regression method resulted in more accurate values compared to other
techniques [28].

It is worth mentioning that the mechanical properties (specifically ultimate strength
and ultimate strain) of reinforcement bars must be accurately determined and reported
before commencing the construction procedure. The above-mentioned parameters are
generally determined through experimental tests that can be time-consuming and costly.
ML-based methods have thus attracted researchers’ attention for determining the properties
and performance of steel bars [30–33]. According to the authors’ best knowledge, the
ultimate strain of bars is only investigated experimentally in many studies [10,20]; no
ML-based models have been proposed for determining this significant parameter. In this
context, the prime goal of this study was to evaluate tree-based ML-based approaches,
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namely Decision Tree (DT) and Random Forest (RF), for predicting the ultimate strain of
non-spliced and spliced bars. It should be explained that DT and RF models are considered
in this study since they return more reliable estimated values in comparison to other
prediction approaches. The developed models could be used as a part of a larger prediction
model for obtaining the stress-strain behavior of steel bars without the need to perform
experimental tests.

2. Methodology and Data Collection

The main objective of this study was to present and evaluate models using machine
learning for determining the ultimate strain of non-spliced and spliced steel reinforcement
bars. To achieve this research objective, 225 data sets were collected from the literature
available in peer-reviewed publications [18,20,34–40]. The collected database was then ran-
domly divided into two sub-databases: (a) a training database for training the relationship
between inputs and output, and (b) a testing database for assessing the accuracy of the
models. In this study, 85% of the database was incorporated into the training database while
15% was used for testing. As reviewed and discussed in the first section, the parameters
with the highest impact on ultimate strain—namely, the bar diameter (mm), steel grade,
coupler geometry (length and outer diameter, mm), and temperature (◦C)—were consid-
ered as input parameters to estimate the only output, ultimate strain. To determine the
degree to which the input data affected the target output, Pearson correlation coefficients
were determined and are given in Table 1. It is worth explaining that Pearson Coefficients
are defined as the ratio of covariance of two parameters to the products of their standard
deviation; ρ = Cov(X, Y)/σxσy, and denotes a linear relationship between two variables.
Unless otherwise mentioned, ρ ≈ 1 refers to a high linear relationship while ρ ≈ 0 stands
for independence between factors; negative coefficients show a reverse relationship be-
tween two parameters. To compare the effect of input variables on ultimate strain more
precisely, the Pearson coefficients are illustrated in a bar chart shown in Figure 1.

Table 1. Pearson coefficients determined for the input and output parameters.

Splice Type Steel Grade
Bar

Diameter
(mm)

Length of
Coupler

(mm)

Outer
Diameter of

Coupler (mm)
Temperature Ultimate

Strain (%)

Splice type 1

Steel grade −0.2903 1

Bar diameter
(mm) 0.1202 −0.6783 1

Length of
Coupler

(mm)
0.5919 −0.5424 0.3494 1

Outer
diameter of

Coupler
(mm)

0.7556 −0.6306 0.3811 0.818 1

Temperature 0.2882 0.2681 −0.2307 −0.0025 0.0257 1

Ultimate
strain (%) −0.541 0.2281 −0.2471 −0.4698 −0.4781 −0.5092 1

The values given in Table 1 and the bar chart demonstrated in Figure 1 reveal that
coupler geometry and temperature had a higher effect on the ultimate strain of non-spliced
and spliced bars compared to the other input variables. Additionally, all the quantitative
inputs (i.e., bar diameter, length of coupler, and outer diameter, along with the temperature)
had an inverse relationship with ultimate strain.
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Figure 1. Pearson coefficients of the input variables.

Regarding data collection, a comprehensive database was collected including various
splice methods used for different bar sizes with different steel grades over a large range
of temperature variation. A total of 134 out of 225 datasets are outcomes of a tensile
test on non-spliced steel bars while the other 91 datasets are the mechanical properties
of spliced bars with different methods. In terms of splice techniques, five mechanical
techniques—namely, headed bars, shear-screw, grouted, taper threaded, swaged and
threaded couplers (as displayed in Figure 2)—with different lengths and thicknesses were
taken into consideration. It should be clarified that according to the design code (i.e.,
ACI 318-19: 18.2.7.1 [41]), regardless of the splice method, bars spliced by mechanical
approaches should provide 1.25f y of a non-spliced bar in both tension and compression.
Although the mechanical splices in the database are different, they all meet the above-
mentioned provision and therefore could be utilized in the database for the prediction
models. It is noteworthy that this study focused on mechanical couplers and that neither lap
nor welded splices (e.g., gas pressure welding, head-to-head) are included in the collected
database. Table 2 provides the statistical properties of the other quantitative input and
output parameters. Bars with diameters of 12–32 mm were included in the database since
they are considered by designers and researchers in typical structures more than other
sizes. Coupler geometry (i.e., length and outer diameter), as depicted in Figure 3, were in
the range of 45.00–490.34 mm and 7.29–64.00 mm, respectively, which are the dimensions
leading to the acceptable performance of couplers. Eventually, temperatures in the range of
20–600 ◦C, which were studied in the literature, were also considered in the database. It
should be clarified that one out of the six inputs (splice methods) is not quantitative, and
therefore, its statistical properties are not given in Table 2. The distribution of each input is
also depicted in the histograms provided in Figure 4.

Figure 2. Cont.
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Figure 2. Splice types considered in the database: (a) headed bars, (b) grouted splice, (c) shear-screw,
(d) swaged couplers, (e) taper threaded, and (f) threaded [9].

Table 2. Statistical properties of the input and output parameters.

Minimum Maximum Mean Median Variance Standard
Deviation

Steel grade 60.00 500.00 310.73 500.00 46,272.79 215.11

Bar diameter (mm) 12.00 32.26 24.16 25.00 55.25 7.43

Coupler length (mm) 45.00 490.54 88.80 0.00 20,316.91 142.54

Coupler outer
diameter (mm) 7.29 64.00 17.23 0.00 519.34 22.79

Temperature (◦C) 20.00 600.00 61.82 25.00 15,448.67 124.29

Ultimate strain (%) 1.08 17.90 9.93 11.00 15.33 3.92

Figure 3. Schematic illustration of length and outer diameter of a mechanical splice.
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Figure 4. Histograms illustrating the distribution of the input and output variables.

3. Prediction Models

In this study, two ML-based models, DT and RF—which are recognized as the sim-
plest prediction models with high accuracy results—were proposed using the Python
programming language.

3.1. Decision Tree (DT)

The Decision Tree (DT) approach is a supervised machine learning technique with the
ability of being used for classifications (for non-continuous output values) and regression
(for continuous output value) problems. The name of this method is inspired from the
shape of a tree, where the class labels are the leaves and the features (or conditions) are the
branches. The most notable asset of the DT approach is its being simple to understand,
interpret, and visualize. Moreover, it has the possibility of incorporating decision techniques
into the Decision Tree. Modeling the datasets with a high degree of nonlinearity in the
relationship between the output and the input variables can also be performed through
this method. Its drawbacks which should be taken into account are its being prone to
overfitting and its difficulty in classifying multiple output classes [42–44].

3.2. Random Forest (RF)

Simply stated, RF consists of many Decision Trees, and the target output is predicted by
considering either the average of the DTs’ predicted values or the most voted value [45,46].
To be more precise, RF is basically the combination of Bagging and the Random selection of
features via the creation of various Decision Trees. Ho primarily developed this method
in 1995 by presenting an algorithm for random decision forests. In another research work,
Breiman introduced an algorithm using Breiman’s bagging idea and the random selection
of features, which was proposed by Ho and Amit and Geman [47–50]. The RF method has
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many advantages compared to other ML-based methods; the most remarkable one is its
highly accurate results when a large database is used for training. Furthermore, it is simple
and fast to implement [43].

The most important parameter that should be chosen efficiently in an RF model is the
number of trees. Figure 5 demonstrates the number of trees against the R2-score values for
the predicted values. As can be observed in Figure 5, by increasing the number of trees up
to approximately 35, the accuracy of the model increased considerably. The accuracy of the
models with 35–250 trees increased insignificantly. The R2-score of the models with more
than 250 trees remained almost unchanged. The optimal number of trees was 367, which is
shown by a red point in Figure 5.

Figure 5. Choosing the optimal number of trees for the RF model.

4. Results

The proposed DT and RF models were trained using 85% of the collected database.
The other 15%, on the other hand, was used for evaluating the reliability of the prediction
models. It is worth explaining that specific optimal percentages have not been suggested
for training and testing divisions thus far. It should be clarified that the larger the training
database, the better the prediction models can learn the relationship between inputs and
output. The testing database, on the other hand, should be sufficient for assessing the
accuracy of the proposed models. Additionally, similar percentages have generally been
used in similar studies of ML-based models, as they return acceptable results.

The correlation between the predicted and actual values of ultimate strain is depicted
in Figure 6 for both the models. The ideal line (predicted values = actual values) and the
lines with 20% lower and higher values are shown by solid red and dashed blue lines,
respectively. Figure 7 compares the predicted values to the corresponding real ultimate
strains obtained in the results of experimental investigations.

Figure 6. Cont.
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Figure 6. Correlation between estimated and actual values: (a) DT: training, (b) DT: testing, (c) RF:
training, and (d) RF: testing.

Figure 7. Actual and estimated values: (a) DT: training, (b) DT: testing, (c) RF: training, and
(d) RF: testing.

The graphical comparison between the predicted and actual values illustrated in
Figures 6 and 7 reflects the high ability of the DT and RF models for learning the relationship
between the input variables and ultimate strain. The DT model exhibited slightly better
accuracy compared to the RF model. The prediction models are evaluated deeper in the
next section.
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5. Accuracy Evaluation

The accuracy of the proposed tree-based models is deeper assessed in this section
through performance metrics and Taylor diagrams.

The most common performance metrics utilized for assessing the reliability prediction
models are the R2-score, R, RMSE, MSE, MAPE, and MAE [51]. As could be seen in
Equations (1)–(6), the mentioned parameters are all based on the difference between the
predicted value and corresponding actual value.

R2 =

∑
i
(ŷi − 1

n

n
∑
1

yi)
2

∑
i
(yi − 1

n

n
∑
1

yi)2
(1)

R =

√√√√√√√
∑
i
(ŷi − 1

n

n
∑
1

yi)2

∑
i
(yi − 1

n

n
∑
1

yi)2
(2)

RMSE =

√
1
n

n

∑
1
(ŷi − yi)

2 (3)

MSE =
1
n

n

∑
1
(ŷi − yi)

2 (4)

MAE =
1
n

n

∑
1
|ŷi − yi| (5)

MAPE =
1
n

n

∑
1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (6)

Table 3 reports the performance metrics of the developed prediction models. As noted
previously, the ultimate strain values predicted by the DT model (R2 = 0.89) were slightly
more accurate than those of the RF model (R2 = 0.85). It should be explained that the RF
method is claimed to lead to more reliable results compared to the DT model. However,
this statement was concluded for when the same database is used for training and testing,
whereas in this study, the training and testing databases were selected randomly. In other
words, the training and testing datasets used for the DT and RF models were not the same
and therefore caused the insignificant accuracy difference [52]. Briefly noted, both the DT
and RF models demonstrated acceptable accuracy, with R2 scores higher than 85%.

Table 3. Performance metrics for the prediction models.

R2 R RMSE MSE MAE MAPE

DT 0.89 0.94 1.38 1.90 1.04 23.25

RF 0.85 0.92 1.68 2.82 1.29 19.72

In order to compare the R2 scores and RMSE of the proposed prediction models more
easily, they are shown in the Taylor diagram in Figure 8. It is worth stating that a Taylor
diagram is a two-dimensional space in which predicted and actual values are positioned
based on their coordination. The horizontal and vertical axes, circular lines, and radial lines
reflect the standard deviation, RMSE, and R2-score, respectively. The distance of each mode
to the actual value represents the model’s accuracy [30]; the closer to the actual database
a prediction model is, the more reliable it will be. According to the schematic illustration
made in Figure 8, the DT model with the higher R2-score and standard deviation and lower
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RMSE was positioned closer to the actual values (blue star) and thus was slightly more
reliable than the RF model.
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6. Summary and Conclusions

The mechanical properties (e.g., ultimate strength and stain) of reinforcement bars
(either spliced or non-spliced) must be determined before they are implemented in construc-
tion. These tests are sometime time-consuming and costly, particularly when an appropriate
splice geometry needs to be obtained. As a result, this study aimed at developing ML-based
models—namely Random Forest and Decision Trees—for the estimation of the ultimate
strain of reinforcement steel bars. To this end, a database containing 225 datasets was
collected and divided into training (85%) and testing (15%) databases. The parameters—
namely, bar diameter, steel grade, splice method, length and outer diameter of the coupler,
and temperature—which are claimed as the most effective factors on ultimate strain were
defined as input variables for predicting ultimate strain. The predicted values were com-
pared to the actual values and the accuracy of the proposed DT and RF models were
assessed using performance metrics and a Taylor diagram.

• The results proved the high ability of both DT and RF models for learning the rela-
tionship between input variables and the output. The quick and simple ML-based
models proposed in this study, therefore, could be considered as a reliable alternative
approach for time-consuming and costly experimental tests.

• Both the DT and RF model exhibited highly reliable results, with R2 scores higher than
85%. The DT model, however, illustrated higher accuracy (R2 = 89%) compared to
the RF model (R2 = 85%). It should be explained that although RF generally leads to
more reliable results, in this study, the predicted values obtained by the DT model
were more accurate, because the training and testing datasets for each model were
selected randomly in order to avoid any human effect on the prediction process. In
other words, the training and testing databases were not the same, which caused
the slight difference between the models’ accuracy. In order to compare RF and DT
more precisely, the same training and testing datasets should be chosen. This study,
however, focused on the reliability assessment of Decision Tree and Random Forest
models for estimating the ultimate strain of spliced and non-spliced steel bars, and the
results proved their acceptable accuracy.

• It is also noteworthy that comparing the accuracy of the models, which estimates the
ultimate strain of bars, for each splice method could be conducted in further studies.
To this end, (a) an extensive database including the results of tests on each splice type
should be collected; (b) input variables for each method should be specified—as an
example, the strength of grout could be considered as one of the inputs for models
estimating the mechanical properties of grouted spliced bars; and (c) the databases
should be large enough for training the relationships between inputs (which may be
different for each splice technique) and output appropriately.
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• The proposed models in this research could be used in a more generalized model for
predicting the stress-strain behavior of spliced and non-spliced bars. More clearly,
by combining models which predict other parameters (e.g., yield strength and strain)
with the models proposed in this study, the stress-strain curve could be estimated
without doing experimental tests.
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Nomenclature

ANN Artificial Neural Network
DT Decision Tree
MAE Mean of Absolute Error
MAPE Mean of Percentage Error
ML Machine Learning
MSE Mean of Square Error
n Number of datasets
RC Reinforced Concrete
RF Random Forest
RMSE Root of Mean Square Error
yi Actual value
ŷi Predicted value
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