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Abstract: Communities are confronted with the rapidly growing impact of disasters, due to many
factors that cause an increase in the vulnerability of society combined with an increase in hazardous
events such as earthquakes and floods. The possible impacts of such events are large, also in
developed countries, and governments and stakeholders must adopt risk reduction strategies at
different levels of management stages of the communities. This study is aimed at proposing a sound
qualitative multi-hazard risk analysis methodology for the assessment of combined seismic and
hydraulic risk at the regional scale, which can assist governments and stakeholders in decision
making and prioritization of interventions. The method is based on the use of machine learning
techniques to aggregate large datasets made of many variables different in nature each of which
carries information related to specific risk components and clusterize observations. The framework is
applied to the case study of the Emilia Romagna region, for which the different municipalities are
grouped into four homogeneous clusters ranked in terms of relative levels of combined risk. The
proposed approach proves to be robust and delivers a very useful tool for hazard management and
disaster mitigation, particularly for multi-hazard modeling at the regional scale.

Keywords: risk assessment; multi hazard; seismic risk; hydraulic risk; machine learning; principal

Component analysis

1. Introduction

The frequency of natural extreme events is increasing worldwide [1-9], and human
activities often interact with devastating effects, affecting people and natural environments,
and producing great economic losses, especially in developing countries. On the other
hand, in some developed countries, disasters have been decreasing since the beginning
of the 20th century [3,4]. Understanding risk involving vast inhabited areas is, therefore,
paramount, particularly when assessing potential losses produced by a combination of
multiple hazards, which are defined as the probability of occurrence in a specified period of
a potentially damaging event of a given magnitude on a given area [5]. In fact, total risk is a
measure of the expected human (casualties and injuries) and economic (damage to property
and activity disruption) losses due to a particular adverse natural phenomenon. Such a
measure is conceptually assumed as the product of hazard, vulnerability, and exposure
instances [6]. Exposure of people to the consequences of extreme natural phenomena
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could be reduced if predictive models based on new approaches and deeper knowledge of
effective factors were employed [7].

Many areas on Earth are subjected to the effects of coexisting multiple hazards, among
which floods and earthquakes are some of the most widespread [8,9] and even if it is well
established that inhabited environments are affected by multiple hazardous processes, most
studies focus on a single hazard [10]. However, hazards usually interact with each other and
contribute to the overall risk in a complex way. For this reason, the development of multi-
hazard risk assessment approaches is of first importance [11] and multi-hazard mapping is
receiving increasing attention [12,13]. In particular, Schmidt et al. proposed a multi-hazard
risk assessment methodology in New Zealand, devising an adaptable computational tool
allowing its users to input the natural phenomena of interest [11]. Still, relatively scarce
are the studies exploiting machine learning techniques to assess multi-hazard risks [14-16],
albeit machine learning is especially useful when dealing with the huge amount of data
encountered in risk analysis, particularly at the regional scale.

In this study, machine learning is used to construct a risk assessment framework in
which the combined effects of two major natural events (flood and earthquakes) are ana-
lyzed for the Emilia Romagna test region (Italy). A large input dataset containing, for each
municipality of the test region, a wide number of quantitative variables related to hazard,
exposure, and vulnerability instances for both flood and earthquake hazards is adopted.
Then, the number of variables is suitably reduced by means of Principal Component Analy-
sis (PCA) [17-19], and the municipalities are subsequently grouped into four approximately
risk-wise homogeneous clusters using a K-means clustering algorithm [20,21]. Finally, a
qualitative overall risk level is assigned to each cluster. The proposed methodology repre-
sents a robust tool for the qualitative multi-hazard risk assessment at the regional scale,
which enables suitable extraction of risk-related information from a large input dataset
and provides a useful instrument that assists stakeholders in decision-making processes,
especially with respect to intervention prioritization.

2. Materials and Methods

The proposed multi-hazard risk assessment approach is based on the analysis of
available data using logical, mathematical, and statistical tools. It was applied to the Emilia
Romagna region, which is located in the Northern part of Italy. Our analysis focused on
seismic and hydraulic risks associated with this territory. A map of the seismic classification
of municipalities in Emilia is shown in Figure 1. A hot-spot of hydraulic risk in Emilia
Romagna, Ferrara possesses an altimetry below the sea level over a large part of its territory,
as illustrated in Figure 2.
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Figure 1. Seismic classification of municipalities in Emilia (https://ambiente.regione.emilia-romagna.
it/en/geologia/seismic-risk/seismic-classification, accessed on 15 October 2021).
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CONSORZIO DELLA BONIFICADI BURANA

CONSORZIO DI BONIFICA PIANURA DI FERRARA

BACINO IDROGRAFICO BURANA - VOLANO
CARTA ALTIMETRICA - EQUIDISTANZA 1 METRO

- 8. MARE ADRIATICO

ROMAGNA CENTRALE

Figure 2. Ferrara territory altimetry (The map can be downloaded from https:/ /www.bonificaferrara.
it and has been released from “Consorzio di Bonifica Pianura di Ferrara”; accessed on
15 October 2021).

To evaluate the overall combined risk for the different municipalities in the test region,
several intermediate steps were necessary. At first, the reliability of the method was tested
on a smaller data sample given by the municipalities in the Province of Ferrara (Italy), then
on a slightly larger one, considering municipalities from other provinces in the test region,
and then, finally, expanding the data sample to each municipality of the Emilia Romagna
region. This type of approach improved control on both the algorithm and its calibration, as
well as the initial dataset, leading to a significant reduction in terms of computational time.
In what follows, we omit the description of the intermediate steps and directly present the
analysis for the whole test region.

2.1. Dataset

Choosing the correct amount of data is paramount. The data employed for our analysis
have been obtained from the Italian National Institute of Statistics (ISTAT) database, which
was used in 2018 by the Italian Superior Institute for Environmental Protection and Research
(ISPRA) to produce seismic, hydrogeological, volcanic, and social vulnerability hazard
maps for the entire Italian peninsula as shown in the report by Trigila et al. [22]. These
maps constitute a fundamental tool of support to national risk mitigation policies, allowing
the identification of intervention priorities, the allocation of funds, and the planning of soil
protection interventions.

The input dataset was organized as a matrix in which the rows corresponded to each
of the 331 municipalities of the Emilia-Romagna region and the columns corresponded to
quantitative variables associated with different aspects of seismic and flood risk. Hence,
we had 331 rows or observations and hundreds of columns or variables. For instance, we
adopted as variables the number of buildings sharing certain features (such as building
material, the period of construction, or the state of conservation), superficial extension,
number of inhabitants, population density, seismic peak ground acceleration, etc. Overall,
all the variables can be grouped into three macro-categories: variables related to vulner-
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ability instances, variables related to exposure instances, and variables related to hazard
instances for both seismic and hydraulic risks.

Since hydraulic risk, as a combination of hydraulic vulnerability, exposure, and hazard,
has previously been evaluated for each observation by the Italian National Institute of
Geophysics and Vulcanology (INGV), it was represented in the proposed analysis as a
unique variable, which condensed all the variables related to hydraulic risk.

The relative importance between some variables and the relation among them is
quantified by means of the PCA method, which will be described in the next subsections.

For instance, some of the crucial variables were identified as follows:

- agMAX_50: maximum value of the peak ground acceleration about the grid data point;

- DENSPOP: Population density (n. of inhabitants/kmgq);

- E1-E31: Type of Buildings (e.g., residential, masonry, and state of conservation);

- IDR_AreaP1/P2/P3: Hydraulic risk surface, respectively, low /medium /high;

- IDR_PopP1/P2/P3: Population living in, respectively, low /medium/high hydraulic
risk surface.

An extensive table reporting the explanations of all acronyms associated with the
relevant variables is reported in Appendix A.

2.2. Initial Exploratory Analysis

Exploratory analysis is a typical analytical approach in statistics that is suitable for
defining and synthesizing the main characteristics of a group of data. This type of approach
enables preliminarily evaluating, searching, and finally, analyzing possible notable patterns
within the data, in a phase where possible interactions among variables are not known yet.
Again, graphics techniques for data visualization are quite useful in this step, producing
diagrams such as box plots, scatter plots, histograms, etc. More analytical techniques,
such as PCA, are very useful. The whole proposed analysis has been implemented and
performed in a MATLAB computing environment [23].

2.2.1. Standardization

The first step of the exploratory analysis is data standardization. As usual [15,16], the
metric of standard deviation was adopted to test the machine learning model’s accuracy
and to measure confidence in the obtained statistical conclusions. This allows us to compare
variable data with different units of measure, scaling all the variables such that each scaled
variable will have mean value equal to 0 and standard deviation equal to 1, referred to the
data distribution for each variable. To attain this outcome, for each variable x of the dataset,
mean y and the standard deviation ¢ have been calculated. Then the z-score formula has
been applied:

=K 1)

2.2.2.PCA

Once the entire dataset was standardized, PCA was applied. One of the main targets
of PCA is to reduce the dimensionality of the initial dataset without losing the amount
of information belonging to it. A dimensionality reduction technique is a process that
takes advantage of linear algebraic operations to convert an n-dimensional dataset to an
n-k dimensional one. Clearly, this transformation comes at the cost of a certain loss of
information, but it also gives the benefit of being able to graphically visualize the data,
while keeping good accuracy.

The idea behind PCA is to find the best subspace, which explicates the highest possible
variance in the dataset. Using linear transformations, starting from an initial standardized
matrix in the n-dimensional space, changes in variables are carried out that makes possible
to identify observations in the space generated from the principal components, which
have the particularity to catch the maximum possible variance of the initial dataset, thus
reducing the loss of information.
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Given p random standardized variables Xl, 5{2, el 55,,, collected into the matrix X, the
analysis allows determining k < p variables Y7,Y5, ..., Y}, each of them a linear combina-
tion of the p starting variables, having maximum variance. To find Y;, also known as the
i-th principal component, we need to find the vector V; such that

Y, = XV, @)

by maximizing the variance relative to the first principal component. In other words,
vectors V; are the eigenvectors of the covariance matrix C of X, i.e., the n x p matrix whose
generic element Cy is equal to COV (Xj,, Xy).

The j-th element of Y; represents the score of the i-th principal component for j-th
statistical unit. The j-th element of V; represents the weight that the j-th variable }~(j has in
the definition of the i-th principal component. Vectors V; can be collected as columns in the
matrix of weights V.

Lastly, axis rotations are applied, which mean a change of position of the dimensions
obtained during the factor’s extraction phase, keeping the initial variance fixed as much
as possible. The axis can be rigidly rotated (orthogonal rotation) or interrelated (oblique
rotation). The result is a new matrix of rotated factors.

Once the dimension of the dataset has been reduced, it is possible to plot the observa-
tions in the new space generated by the principal components, space where the coordinates
of the observations have undergone linear transformation, in accordance with the variables
as mentioned before.

The scatter plot represented in Figure 3, depicts the observations after variable reduc-
tion. One can notice the presence of elements defined as outliers, i.e., abnormal values,
far from the average observations. These disturbing elements could generate unbalanced
compensations inside the analytical model, and that is why they will be handled with
care, modifying the algorithm’s settings whenever possible or, in extreme cases, removed
from the dataset. In this case, the outliers were almost all the administrative centers of
Emilia-Romagna region, far away, in terms of the quantitative variables, from the rest of
the observations.
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Figure 3. Observations scatter plot which depicts the observations after variable reduction.
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It is a good rule to consider the principal components that catch at least 80% of the
variance of the starting dataset. The more the considered variables, the higher the number
of principal components necessary to reach that quote. Whenever the amount of variance
reached is not sufficient, an additional reduction in variables is performed by iterating
the process.

One of PCA’s main purposes is to delete the noise due to non-useful data, which is
evaluated in terms of how much information and how much variance they carry inside
the dataset. Figure 4 represents variance for each principal component before variable
reduction. Loading plots have been generated as histograms representing the weight of
the variables transformed after the PCA and are reported in Figures 5 and 6. The variables
reported along the abscissa have been selected among all the available data for being
the most meaningful as per the multi-risk evaluation. For instance, AGMAX_50 denotes
the maximum ground acceleration (fiftieth percentile) calculated on a grid with a 0.02°
step, with the maximum and minimum of the values of the grid points falling within the
municipal area. IDR_POPP3 indicates the resident population at risk in areas with high
hydraulic hazard (P3). From Figures 5 and 6, the variables with the highest coefficients have
been extrapolated, the higher the coefficient of the variable, the higher the weight of the
variable on the principal component. Along the first principal component, the difference
between observations will be led by the different values referred to the variables with
highest coefficient in the histogram depicted in Figure 5.

90 | — {90%
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Principal Component

Figure 4. Variance for each principal component before variable reduction.

We chose to assess the weight of the coefficient of the variables referring to the first
two principal components only, because they explicated more than 70% of the variance
and are the most significant of the combined risk assessment. Figure 7 depicts the variance
explicated by the first 10 principal components after the PCA.
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Figure 5. Loading plot of the variable coefficients along the first principal component (see Appendix A
for an explanation of the acronyms).
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Figure 6. Loading plot of the variables coefficients along the second principal component (see
Appendix A for an explanation of the acronyms).

Fundamental to the visualization of both observations and the relation between the
variables is the biplot in Figure 8.
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Figure 7. Variance of the first 10 principal components after variable reduction.
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Figure 8. Biplot along the first two principal components.

This plot allows catching at an early stage any pattern within the dataset, such as the
separation between observations and deep relation among variables. In general:
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e the projection of the values on each principal component shows how much weight
those values have on that principal component;

e  when two vectors are close, in terms of angle, the two represented variables have a
positive correlation;
if two vectors create a 90 angle, the respective variables are not correlated;
when they diverge and create an angle of almost 180, they are negatively correlated.

Outliers differ from the other observations in terms of vulnerability and the population
at hydraulic risk. It is reasonable because, remembering the outliers are the provincial
administrative centers, they present higher values in terms of population and built environ-
ment. Moreover, along the vertical axis the observations differ in terms of seismic hazard
and exposition.

Moreover, vulnerability and exposure to hydraulic risk variables are quite correlated
and differentiate the observations along the horizontal axis, whereas seismic hazard and
exposition variables are not correlated with the variables representing surfaces at hydraulic
risk. These remarks will come in handy later, at a post-clustering stage, a level of multi-risk
will be attributed to each cluster.

2.3. K-Means Clustering Algorithm

The PCA allowed us to reduce the dimensionality of the dataset and plot the observa-
tions, i.e., the municipalities of the Emilia Romagna region, in the new sub-space identified
by the principal components, while retaining the majority of information, which identified
the observations in the initial n-dimensional space before the linear transformations.

To suitably group the observations according to homogeneous levels of overall risk,
we used an unsupervised machine learning algorithm, known as k-means clustering.

In general, cluster analysis is a technique to group data where the main purpose
is to gather observations according to the features selected by the user. The analysis
allows splitting a set of observations into clusters according to similar or non-similar
features. Cluster analysis does not require knowing the classes in advance, as in the case of
supervised algorithms.

In the k-means clustering algorithm, we assumed N observations x1, X, ..., x; and
partitioned them into k clusters, each defined by a centroid cy, ¢y, . . ., cx. We assigned the
x; observation to the cluster, such that the distance among the observation and the cluster
center was minimum.

The algorithm began by randomly choosing k centroids. After measuring the distance
of each observation to each centroid, the observation was assigned to the closest cluster.
Then, centroids were updated, as the average of the observations in each centroid. The
procedure was repeated iteratively, each time minimizing the distance between observation
and centroid.

Different choices for such distance function are possible and readily available in many
scientific computing software packages such as MATLAB: the squared Euclidean distance,
one minus the cosine of the included angle between points (treated as vectors), or one
minus the sample correlation between points (treated as sequences of values).

In particular, the squared Euclidean metric does not allow keeping the outlier in the
dataset because of the square of the distance. By doing so, the algorithm will place a specific
cluster just for the outlier, influenced by its distance from the other observations. Later, we
will propose a comparison among the distances in terms of the quality of clustering.

To legitimate the clusterization carried out with the k-means algorithm, the silhouette
method was employed. The technique provided a succinct graphical representation of
how well each observation has been classified. The silhouette value is a measure of how
similar an object is to its own cluster (cohesion) compared to other clusters (separation).
The silhouette ranges from —1 to +1, where a high value indicates that the object is well
matched to its own cluster and poorly matched to neighboring clusters. If most objects
have a high value, then the clustering configuration is appropriate. If many points have
a low or negative value, then the clustering configuration may have too many or too few
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clusters. The silhouette can be calculated with any distance metric, such as the Euclidean
distance or the so-called Manhattan distance.

To decide which metrics to adopt, a comparison based on the silhouette of each method
was performed (see Figure 9). Correlation metrics appear to be the most reliable, whereas
the squared Euclidean would be as good if it were not for the outliers.

-1 L
T .|
- 2
=
[
3 -
N el
0.5 0 0.5 1
Silhouette Value
(a)
1 L
2 L
i
i:,“ 3
]
4
0 0.2 0.4 0.6 0.8 1
Silhouette Value
(b)
.1 -
i
‘_:,"’ 2
(]
3 -
4 -

0 0.2 0.4 0.6 0.8 1
Silhouette Value
(c)

Figure 9. Silhouette for different metrics: squared Eculidean (a), cosine (b), and correlation (c).
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A four clusters grouping was chosen for the proposed analysis. Figure 10 repre-
sents the final clusterization of Emilia-Romagna municipalities. Cluster evaluation was
conducted considering the weight and the distribution of the variables. All the outliers
belonged to cluster 4, which was developed both on the horizontal axis, led by seismic
vulnerability and hydraulic risk variables, and slightly on the vertical one, led by seismic
hazard and by hydraulic risk variables. The great majority of the municipalities presented
similar quantitative values of variables, in particular, those belonging to clusters 2 and 3.
Silhouette values relative to this clusterization were good, reinforcing the reliability of the
method proposed.

8 T T T T T
° * 1
[ ]
2
6— Y PY 3_
o & ° 4
4r N 7
o’ ~. ® ¢
) @ ( J [}
= L )
c_>ﬁ 2 'f ® o -
E N .
g aeets . |
8 Y '... .. ®
= PY [ J
o ‘g‘ ° ) °
227 .'o ° T
AN ([} [}
°
4 F °. ° i
°
6 F |
-8 1 I 1 I L ®
-5 0 5 10 15 20 25

1st principal value
Figure 10. Grouping of the Emilia Romagna municipalities into four clusters.

3. Results

In this section, we show how to assign to each observation and, more generally, to
each cluster, a label which identifies the associated level of overall risk.

3.1. Variables Label Assignment

First, we set intervals in an objective way, in order to suitably define labels for the
variables. To this aim, we set interval extremals in correspondence of quartile percentages
Q1, Q2, and Q3 as indicated in Table 1.

Table 1. Labels and intervals for cluster definition.

Intervals Label

first element: Q1 Low

Q1: Q2 Medium-to-low
Q2: Q3 Medium-to-high

Q3: last element High
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The chosen labels referred, respectively, to the presence of low, medium-to-low,
medium-to-high and high amounts regarding that specific variable. Such subdivision
was allowed because the variables were quantitative types and sorted by normal distribu-
tion. Furthermore, sorting out variables, the information within them was unaffected.

We analyzed the variable with the greater value from the previous analysis, as a
component that defined a risk, with the risk as the combined result of three factors, hazard,
exposure, and vulnerability. We illustrate how to assign a label to each cluster for each
variable considered, among the most relevant ones.

We first considered the variable ag 4y, i.e., the peak ground acceleration for the site,
with a return period of 475 years. The first step was the extrapolation of observables
in the initial dataset. Subsequently, we associated each observation with the respective
cluster indexes and the respective values of ag max. Then, we rearranged the observables
in ascending order of ag max, and defined the quartile as the extreme point of the interval.
The cluster composition in terms of ag,max is reported in Table 2, together with the resulting
assigned labels.

Table 2. Quartile distribution of the ag mqx variable in the four clusters.

%Q1 %Q2 %Q3 %Q4 Label
CL1 74 20 6 0 Low
CL2 0 25 25 50 Medium-to-high
CL3 3 18 68 11 Medium-to-low
CL4 7 16 13 64 High

The labels were assigned based on the percentage prevalence of the cluster for each
quartile. A prevalence allocated in the fourth quartile for one of the clusters indicated that
the selected cluster gathered the most dangerous municipalities in terms of ag ;,x On the
other hand, a prevalence in the first quartile indicated that the cluster gathered the less
dangerous municipalities in terms of seismic hazard.

The same operation was carried out for the hydraulic risk component IDR_POPP2,
the prevailing seismic vulnerability variable, i.e., the percentage of buildings under poor
maintenance conditions E_30, and the main exposure variable, i.e., density population
DENS_POP (see Tables 3-5).

Table 3. Quartile distribution of the IDR_POPP2 variable in the four clusters.

%Q1 %Q2 %Q3 %Q4 Label
CL1 17 20 54 9 Medium-to-low
CL2 46 41 12 1 Low
CL3 3 5 18 74 Medium-to-high
CL4 4 5 9 82 High

Table 4. Quartile distribution of the E_30 variable in the four clusters.

%Q1 %Q2 %Q3 % Q4 Label
CL1 41 27 22 9 Low
CL2 25 30 29 15 Medium-to-low

CL3 18 29 37 16 Medium-to-high
CL4 0 4 11 86 High
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Table 5. Quartile distribution of the ag¢,max variable in the four clusters.

%Q1 %Q2 %Q3 %Q4 Label
CL1 16 29 40 14 Medium-to-low
CL2 46 28 19 7 Low
CL3 0 0 3 97 High
CL4 5 25 27 43 Medium-to-high

3.2. Overall Risk Definition

Once the variables were rearranged, the incidence of clusters for each variable were
calculated and a label for each variable and cluster was assigned (based on the distribution
of the cluster indexes within the variable); each cluster was assigned an overall risk label
based on their score for each rearranged variable (Table 6).

Table 6. Overall risk quantification for each cluster of municipalities.

Hydraulic Risk Efsz)ssllrtl:(c)n Vulsxfij::ll)ii(iity Seismic Hazard Label
CL1 Medium-to-low Low Medium-to-low Low Low
CL2 Low Medium-to-low Low Medium-to-high Low-to-medium
CL3 Medium-to-high Medium-to-high High Medium-to-low Medium-to-high
CL4 High High Medium-to high High High

The significance of the assigned risk labels was strictly dependent on the starting
population, i.e., from the region under study and do not have absolute value.

This means that the obtained labels cannot be extrapolated to a larger scale without
losing their significance. As shown in Figure 11, it is also possible to represent the popula-
tion of each risk cluster by the main administrative province in the Emilia Romagna region.
Obviously, frequency values for each province depend on the number of municipalities,
which constitute each province. Therefore, this plot allows analyzing risk clusters from the
same province, but comparing clusters from different provinces may be inappropriate. It is
worth noting that the proposed methodology has recognized Piacenza as the province with
most low-risk municipalities, while the main cluster featuring Parma, Modena, Bologna,
Forli-Cesena, and Rimini is the low-to-medium risk cluster. Most municipalities of the
Reggio-Emilia province are associated with low and low-to-medium clusters. Finally, each
of the provinces of Ferrara and Ravenna result being equally split in two main clusters,
namely the low and the high-risk clusters in the former case, and the low-to-medium and
high-risk clusters in the latter case.
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Figure 11. Population of each risk cluster by province in the Emilia Romagna region. In the y-axis,
the number of municipalities has been reported.

4. Discussion

Ensuring ethical, inclusive, and unbiased machine learning tools is one of the new
epistemic frontiers in the application of artificial intelligence technologies to disaster risk
management. We recall that this paper discusses an individual application of machine
learning tools to a multi-risk assessment of a Northern Italy case study. For this purpose, we
had at our disposal a massive amount of data from the ISTAT database containing indicators
and data on seismic, hydrogeological, and volcanic risk as well as demographic, housing,
territorial and geographical information, obtained through the integration of various
institutional sources such as Istat, INGV, ISPRA, Italian Ministry for Cultural Heritage. Like
all big data technologies, the adopted machine learning model proved effective in reducing
CPU time and model-development costs, owing to its ability to process quantities and
sources of data that could not have been otherwise simply elaborated [24,25]. We expect
that the model can be used to devise mitigation measures, prepare emergency response,
and plan flood recovery measures. The proposed tool has, indeed, the potential for being
an operational instrument for land use managers and planners. However, misuse should be
avoided, and, for this purpose, crucial issues such as applicability, bias, and ethics should be
carefully considered [24-26]. The ethical issues pertaining to a possible misuse of Artificial
Intelligence technologies are several [25], including the loss of human decision making,
the potential for criminal and malicious use, the emergence of problems of control and
use of data and systems, the dependence of the outcomes on users’ bias, and the possible
prioritization of the “wrong” problems with respect to stakeholder expectations.

Prioritization in disaster multi-risk management, additionally, is markedly affected
by needs and expectations of private users, public agencies, and final stakeholders. For
instance, a water level management company will be expectedly more inclined to consider
flood risk as the most important risk to cope with, while any public agency that is called to
reduce the seismic vulnerability of a certain region will tend to consider seismic risk as a
priority. Thus, the labeling of the clusterization will be intrinsically permeated with the
end-user’s intentions. A further aspect is that one should understand that publicizing the
results of a multi-risk algorithm might inadvertently touch sensitive aspects from a privacy
point of view [27].

In many cases, criticalities rely upon an inherent disconnect between the algorithm’s
designers and the communities where the research is conducted [26], while users may
complain about a lack of transparency and accountability. Furthermore, immature machine
learning tools might be used in safety-critical situations for which they are not yet ready.
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As suggested by Gevaert et al. [26], disaster-risk-management specialists constantly seek
expertise on how to clearly communicate the results and uncertainties of machine learning
algorithms to reduce inflated expectations. Furthermore, sensitive groups should be
identified and audited for overcoming bias. Therefore, we suggest that, before being
systematically applied, the present machine learning methodology is validated against
established computational modeling tools. We also believe that the obtained results are
very promising, but further efforts are necessary to assess the proneness of the proposed
machine learning tool to the aforementioned ethical and bias issues.

5. Conclusions

The purpose of this work is to illustrate a sound methodology for the qualitative
multi-risk analysis at the regional scale by means of machine learning techniques that
allow dealing with large and heterogeneous amounts of data. The initial dataset, made of
variables carrying information about hazard, exposure, and vulnerability for both seismic
and hydraulic risk for each municipality of the Emilia Romagna region, has been suitably
normalized and reduced through the PCA, whereas observations have been clustered
through a machine-learning algorithm.

Then, risk labels were individually assigned to clusters for each variable. Finally, based
on the score of each variable an overall risk label was assigned to each cluster. Results
confirmed previous risk classifications for the case study analyzed. Both provinces with
a moderate risk level and high-risk level have been correctly detected by the proposed
approach. The reliability of the obtained results is dependent on the existence of valid
quantitative initial data for the region under study. In fact, the proposed methodology does
not allow qualitative data, whether they are fundamental or not.

In conclusion, the proposed analysis delivers useful information: municipalities with
major priority of intervention are identified so that stakeholders can take advantage of
this tool to prioritize any preventive measures. Moreover, the procedure also allows
identifying the most important variables to consider in a combined seismic and hydraulic
multi-risk analysis. In other words, this tool allows evaluating the variables most suited to
categorize the observations in terms of combined risk. Indeed, from the analysis, variables
have emerged relative to different types of risks, which better communicate with each
other and carry most information. By contrast, the methodology also allows identifying
variables, which do not collaborate with variables of different nature and, therefore, cannot
be usefully employed.
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Appendix A

We provide hereafter a table with the acronyms of the variables used for Figures 5-7:

Table A1. Description of the variables used in Figures 5-7.

DENSPOP Population Density
Maximum ground acceleration (50th percentile) calculated on a grid
AGMAX_50 with a 0.02° step, maximum (MAX) and minimum (MIN) of the values
of the grid points falling within the municipal area.
IDR_POPP3 Resident population at risk in areas with high hydraulic hazard-P3
IDR_POPP2 Resident population at risk in areas with medium hydraulic hazard-P2
IDR_POPP Resident population at risk in areas with low hydraulic hazard-P1

Areas with low hydraulic hazard P1 (low probability of floods or

IDR_AREAP1 extreme event scenarios))-D.Lgs. 49/2010 (km?)
DRk A iy L £ o i et
DR_AREAP3 B and 30 years)-D L go. 49/2010 Gty
E5 Residential buildings in load-bearing masonry
E6 Residential buildings in load-bearing reinforced concrete
E7 Residential buildings in other load-bearing materials (steel, wood, ... )
E8 Residential buildings made before 1919
E9 Residential buildings made between 1919 and 1945
E10 Residential buildings made between 1946 and 1960
El11 Residential buildings made between 1961 and 1970
‘E19 Residential buildings with three floors
E20 Residential buildings with more than three floors
E30 Residential buildings with a poor state of conservation
‘E31 Residential buildings with a very poor state of conservation
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