friried applied
e sciences

Article

LTransformer: A Transformer-Based Framework for Task
Offloading in Vehicular Edge Computing

Yichi Yang *, Ruibin Yan * and Yijun Gu *

check for
updates

Citation: Yang, Y; Yan, R.; Gu, Y.
LTransformer: A Transformer-Based
Framework for Task Offloading in
Vehicular Edge Computing. Appl. Sci.
2023, 13,10232. https://doi.org/
10.3390/app131810232

Academic Editor: Andreas Sumper

Received: 9 August 2023
Revised: 8 September 2023
Accepted: 11 September 2023
Published: 12 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Information and Cyber Security, People’s Public Security University of China, Beijing 102600, China;
202021220043@stu.ppsuc.edu.cn (Y.Y.); yanruibin@stu.ppsuc.edu.cn (R.Y.)

* Correspondence: guyijun@ppsuc.edu.cn

 These authors contributed equally to this work.

Abstract: Vehicular edge computing (VEC) is essential in vehicle applications such as traffic control
and in-vehicle services. In the task offloading process of VEC, predictive-mode transmission based
on deep learning is constrained by limited computational resources. Furthermore, the accuracy of
deep learning algorithms in VEC is compromised due to the lack of edge computing features in
algorithms. To solve these problems, this paper proposes a task offloading optimization approach that
enables edge servers to store deep learning models. Moreover, this paper proposes the LTransformer,
a transformer-based framework that incorporates edge computing features. The framework consists
of pre-training, an input module, an encoding-decoding module, and an output module. Compared
with four sequential deep learning methods, namely a Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM), a Gated Recurrent Unit (GRU), and the Transformer, the LTransformer
achieves the highest accuracy, reaching 80.1% on the real dataset. In addition, the LTransformer
achieves 0.008 s when predicting a single trajectory, fully satisfying the fundamental requirements of
real-time prediction and enabling task offloading optimization.

Keywords: edge computing; task offloading; trajectory prediction; deep learning

1. Introduction

In recent years, research related to edge computing has gradually received extensive
attention from researchers [1,2]. Vehicular edge computing (VEC), as a part of edge com-
puting, provides real-time service to vehicular users. It has excellent prospects in the fields
of intelligent transportation systems, smart city applications, and vehicular applications.

As the infrastructure becomes well established, edge servers extend their service cov-
erage to a wider scope. In traffic control, edge computing servers can acquire and regulate
real-time traffic. In in-vehicle tasks, edge computing servers can provide high-quality
services to users. However, the quality of service (QoS) in VEC still cannot be significantly
improved, and one of its bottlenecks is the inefficient task offloading. Traditional task
offloading methods are plagued by issues such as significant latency, high time and space
complexity, and low transmission quality.

To solve the problems of task offloading, trajectory prediction methods are used in the
task offloading scheme. For example, tasks which take up a lot of computational resources
can be offloaded to other edge servers using predictive-mode multi-hop transmission. Once
the vehicle enters the transmission range of the edge server, it obtains the computation
results directly [3,4].

The current task offloading schemes mainly focus on resource allocation. Few studies
discuss the deployment of advanced trajectory prediction method. Nowadays, deep
learning is often utilized for trajectory prediction. However, the computational resources in
edge servers make it difficult to deploy common deep learning algorithms. Furthermore,
trajectory prediction schemes have relatively poor accuracy in VEC.

Appl. Sci. 2023, 13, 10232. https:/ /doi.org/10.3390/app131810232

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810232
https://doi.org/10.3390/app131810232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app131810232
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810232?type=check_update&version=1

Appl. Sci. 2023,13, 10232

20f18

Therefore, the current task offloading scheme with predictive-mode transmission
encounters two issues: (1) Existing edge servers have limited resources to deploy deep
learning models, which consume massive storage and computational resources. (2) Neither
the short trajectory prediction based on a Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and a Gated Recurrent Unit (GRU) nor the long trajectory prediction
based on the Transformer takes into account the features of VEC.

In order to solve the above problems, we propose the LTransformer, a transformer-
based prediction framework in VEC. Meanwhile, a task offloading scheme applied in VEC
is proposed. Specifically, the contributions of this paper can be summarized as follows:

(1) We propose a task offloading approach, in which the deep learning model can be
deployed for predictive-mode transmission. On the cloud server, the predictive
model is trained based on historical trajectory data. On the edge server, real-time
trajectory prediction and task offloading optimization are achieved based on the
predictive model.

(2) We propose the LTransformer, which has a four-module structure. In the pre-training
stage, stationary latitude and longitude data are embedded. In the pre-training
stage, stationary latitude and longitude data are embedded. In the input module,
multidimensional information such as geography, sequence, and time are integrated.
In the encoding—-decoding module, encoders and decoders are used to train the
trajectory data. In the output module, problematic results are removed using an error
correction method.

(3) Experiments are carried out in a real dataset. The proposed method is compared with
other deep learning models to analyze its accuracy and applicability in VEC.

The composition of our manuscript is as follows. In Section 2, we describe existing
vehicular edge computing schemes and machine learning algorithms related to trajectory
prediction. In Section 3, we introduce the task offloading optimization method and the
LTransformer. In Section 4, we conduct experiments to analyze the accuracy and efficiency
of the LTransformer. Section 5 summarizes the accomplishments and provides an overview
of potential avenues for future research.

2. Related Work
2.1. Vehicular Edge Computing

Task offloading in VEC is the process of transmitting the computing task and related
parameters from the service requestor to the service providers through Vehicle-To-Vehicle
(V2V) and Vehicle-To-Infrastructure (V2I) communications [1]. Saeik et al. [5] summarized
the communication issues in task offloading and proposed a novel task offloading scheme
that combines edge and cloud resources. An example of vehicular edge computing is
shown in Figure 1 below.

Cloud layer
VBl (EER i ERS
Edge layer
@Q * @Q » 00 -
User layer

Figure 1. An example of vehicular edge computing.

Appl. Sci. 2023,13, 10232

30f18

The resources of edge servers can be fully utilized to provide better QoS to users via
optimizing the task offloading scheme. Zhang et al. [4] presented an efficient predictive
combination-mode relegation scheme wherein the tasks are adaptively offloaded to the edge
servers through direct uploading or predictive relay transmissions. Zhan et al. [3] converted
global task offloading optimization problem into multiple local optimization problems with
a heuristic mobility-aware offloading algorithm (HMAQOA) to approximate the optimal
offloading scheme. Yang et al. [6] proposed a low-complexity semiparametric predictive
model that takes into account the periodic characteristics and spatial /temporal correlations
of dynamic road events. Although these methods have shown some improvements, they
still fail to achieve an optimal balance between efficiency and accuracy in VEC. Therefore,
how to predict vehicle trajectories more accurately while ensuring efficiency is a pressing
issue in task offloading at this stage.

2.2. Trajectory Prediction

Trajectory prediction problems can be categorized into two types based on different
data types, namely continuous trajectory prediction problems and discrete trajectory pre-
diction problems. The continuous trajectory prediction problem is a regression problem.
Alahi et al. [7] developed an LSTM model which can learn general human movement and
predict their future trajectories. Han et al. [8] proposed a short-term real-time trajectory
coordinate point prediction method based on a GRU (Gated Recurrent Unit) cyclic neural
network. This method improves the accuracy of real-time forecasting by updating the
model parameters in real time. Huang et al. [9] discussed a new traffic network modeling
algorithm based on the context of traffic intersections that maps vehicle trajectory nodes
into a high-dimensional space vector, so that Bi-GRU can be used to bidirectionally model
the trajectory matrix for the purpose of prediction. Amichi et al. [10] designed a two-step
predictive framework solely based on personal location data. This framework aims to
address the prediction of visits to new places and adjust prediction resolution to account
for probable explorations of new locations.

Monreale et al. [11] proposed a T-pattern tree for trajectory prediction. The tree is
constructed using trajectory patterns that represent specific areas, and it can serve as a
predictor for the next location of a new trajectory by identifying the best-matching path
within the tree. Dong et al. [12] put forward a new method named RTMatch to predict
the future location of a moving object using the storage structure, RITPT and HT, which
can be updated dynamically and provide dynamic analysis of trajectory pattern according
to real-time information. Zeng et al. [13] presented a next-location prediction approach
based on an RNN and self-attention mechanism to predict trajectory patterns based on a
sequence of discrete nodes. Feng et al. [14] proposed DeepMove, an attentional recurrent
network for mobility prediction from lengthy and sparse trajectories. DeepMove effectively
utilizes the periodicity nature to augment the RNN for mobility prediction. Liu et al. [15]
created a geographically temporally awareness hierarchical attention network (GT-HAN)
to distinguish different user preferences.

Recent research proves that the Transformer outperforms other deep learning meth-
ods in trajectory prediction. Amirloo et al. [16] proposed LatentFormer, a transformer-
based model able to predict future vehicle trajectories by leveraging a novel technique
to model interactions among dynamic objects in the scene. Accounting for the interac-
tion between vehicles, Yan et al. [17] proposed two spatial attention mechanisms to help
the model understand the surrounding environment better and thus improve its predic-
tion accuracy. Yu et al. [18] introduced the Spatio-Temporal grAph tRansformer (STAR)
framework, a novel framework for spatio-temporal trajectory prediction based purely
on a self-attention mechanism, with TGConv, a Transformer-based graph convolution
mechanism. Dai et al. [19] proposed a novel neural architecture, Transformer-XL, which
enables learning dependency beyond a fixed length without disrupting temporal coherence.
Wang et al. [20] used a low-rank approximation method to approximate a self-attention
mechanism, which maintains high performance while reducing the computational cost.

Appl. Sci. 2023,13, 10232

40f18

Kitaev et al. [21] introduced reversible residual layers that reduce the memory consumption
of the model and give the model the ability to handle larger datasets. Kong et al. [22]
proposed the Spatial-Temporal Graph Attention Network (STGAT) for traffic flow fore-
casting. They demonstrated that STGAT can be generalized directly not only to graphs
with an arbitrary structure, but also to completely unseen graphs. None of the existing
deep-learning-based prediction methods consider the features in VEC. These deep learning
methods need a large amount of storage and computational resources. However, edge
servers have limited resources, which leads to the fact that these methods cannot be directly
applied to VEC.

3. Method

There are two problems with the existing research: (1) in VEC, task offloading methods
based on trajectory prediction encounter limitations in resources, which impedes the
deployment of deep learning; (2) in deep learning, existing deep learning methods cannot
be directly applied to VEC, and do not incorporate the features in VEC.

For (1), a task offloading optimization approach is proposed. It supports the deploy-
ment of deep learning models to optimize task offloading through prediction results. In this
approach, the model is trained on the cloud server and stored in edge servers to provide tra-
jectory prediction services in real time, which consequently optimizes task offloading. For
(2), the LTransformer is proposed and applied to the task offloading in VEC. The proposed
model uses the Transformer as the overall architecture and incorporates the stationary and
adjacent features of edge servers.

3.1. Task Offloading

Existing machine learning methods consume a lot of edge server computational re-
sources. Therefore, we add a portion of cloud computing to VEC, in order to break through
the limitation of edge server resources. In our optimization approach, resource-hungry
computational tasks are implemented in the cloud server. The edge servers only store the
well-trained model and predict the trajectory based on the data given from vehicles.

3.1.1. Task Offloading Optimization Approach

The task offloading optimization approach can be divided into the training process and
the prediction and optimization process. The training process involves gathering historical
trajectory data, training the predictive model, and deploying the model. The input data
of this process are the trajectory data stored by the vehicle, and the output datum of this
process is the trajectory predictive model stored by edge servers. The detailed steps are
shown in Figure 2a. The prediction and optimization process encompasses the collection
of trajectories for prediction, the generation of prediction results, and the optimization of
computational tasks. The input data are the trajectory data stored by the vehicle, and the
output data are the results of the computational task transmitted to the vehicle, the detailed
steps of which are shown in Figure 2b.

The training process can be divided into three steps, each of which corresponds to the
serial number in Figure 2a. The details of the training process are as follows:

Input: the vehicle trajectory set A is stored in the vehicle set V, where A = {T1, T», ..., Tu},
T={s1,82,...,51}, V=»{v1, 00, ..., 04}

Output: the predictive model M is stored in the set edge servers, S, where S = {sy, sy, . . ., i}

1. Historical vehicle trajectories stored in the vehicle are uploaded into the edge server.
Specifically, the vehicle trajectory T}, stored in the vehicle vy, is uploaded to the sur-
rounding edge server s through the roadside units (RSU).

2. Edge servers upload vehicle trajectories to the cloud server. Specifically, the vehicle
trajectories, Ty, ..., T, stored in the edge server s, are uploaded to the cloud server c.

3. The predictive model is trained on the cloud server based on the trajectory data of
vehicles. Once the training process is completed, the predictive model is transmitted
to the edge servers. Specifically, the predictive model M is trained on the cloud

Appl. Sci. 2023,13, 10232

50f18

- e - —————————————————

server ¢ based on the vehicle trajectory set T. After training, the predictive model M is
transmitted to each edge server sj,.

- e e e - — - - - - - - - - ——— - ———

‘. [\
| : :
: I ® I
: i 5j " - Sk :

\? L 3 8 :

! i
S5 a) - {

& § b @ © :
b :
| | |
| [} |
HP--Np-
] | |
] | Vi Vi |
] |]
| |]
] 1 1
// \\ //

Figure 2. (a) Training process; (b) prediction and optimization process.

The prediction and optimization process is similarly divided into three steps, each of

which corresponds to a serial number in Figure 2b. The detailed process of prediction and
optimization is as follows:

Input includes the following three components:

The computational task D).
The vehicle trajectory T; is stored in the vehicle v;.
The model M is stored in the edge server s;.

Output: the completed computational task D, stored in the vehicle v;.

Computational tasks and vehicle trajectories stored in the vehicle are uploaded onto
the edge server. Specifically, the computational task D), and vehicle trajectory T; stored
in the vehicle v; are uploaded into the surrounding edge server s; via the RSU.

The edge server uses the predictive model to predict the vehicle trajectory and opti-
mizes the task offloading according to the prediction result. Specifically, the vehicle
trajectory, Tj, is predicted in the edge server s; using the predictive model M. Assum-
ing the prediction result is the edge server si, the computational task or the result of
the task is transmitted to the edge server s; via V2V or V2I.

The vehicle downloads the results of the computational task as it arrives around the
predicted location. Specifically, the computational task result D, in the edge server s
is transmitted to the vehicle v; when the vehicle v; arrives in its vicinity.

The task offloading optimization approach has many applications. For example, in

smart cities, this approach can be used to deploy deep learning in VEC to predict and
control the overall flow of vehicles, and thus optimize the traffic situation. In in-vehicle
services, this approach also deploys deep learning to improve the QoS of users.

3.1.2. Search Stage and Energy Management

In edge computing, we propose a task offloading strategy that combines the dynamism

of edge computing networks with the hardware environment. Let r; represent the remaining
computational resources of the server. f; represents the computing efficiency. P; is the
server’s computational power. Computational tasks typically consist of several sub-tasks.

Appl. Sci. 2023,13, 10232

6 of 18

Therefore, we define N consecutive sub-tasks as n = {1, 2, ..., N}, and the computational
resource required for task n as r,. After receiving a computational task, there are two
scenarios that need to be considered in each edge server:

1. The current edge server is capable of completing the computational task on its own.
In that case, the energy consumption required for the edge server to complete compu-

tational task n is
71 Ps

fs

2. The remaining computational resources on this edge server cannot meet the minimum
requirements of this computational task. The edge server transfers this computational
task to an edge server in the direction of the vehicle’s movement. In that case, the total
energy consumption required for the edge server to complete computational task n is

E= , Vs > Ty 1)

E:ET+E,7+@,rs§rn (2)
fs

where Et represents the energy consumption for task transmission, and E, represents
the energy consumption for trajectory prediction. Namely, if each edge server completes the
computational task in the first scenario, the energy consumption is minimized. However, if
an edge server handles a lot of computational tasks in the first scenario, it may lead to the
depletion of resources on this edge server. Therefore, this strategy can be used to search
for idle resources on edge servers and reduce the occurrence of denial-of-service incidents
caused by computational task accumulation. The relevant pseudocode is presented in

Algorithm 1 below.

Algorithm 1. LTransformer-based Predictive-mode Task Offloading Algorithm.

1. for server in edge_servers:

2. while data = receive_data():

if data.r;;> server.rs:
trajectory = receive_trajectory(data.vehicle)
next_server = predict(trajectory)
data.send(next_server)

else:
results = exec(data.task)
results.send(data.vehicle)

O PN G W®

It is worth noting that if the predicted edge server still faces resource constraints, it
will continue to follow the second scenario for execution. However, prediction tasks will
update the trajectory as the vehicle moves, thus dynamically altering the prediction results
in real time.

As a result, trajectory prediction becomes a crucial component of this optimization
approach. To enhance prediction accuracy, we introduce the LTransformer.

3.2. LTransformer

In the task offloading optimization process, this paper proposes the LTransformer
framework for trajectory prediction. The input datum of this framework is the set
T ={s1,5p, ..., 51}, wheres; € R¥n,d;, = 2.s; denotes the edge server nodes and d;, denotes
the input dimension. Each edge server node s; includes (1) the timestamp of the vehicle
trajectory when it passes through this node; (2) the serial number of the edge server node.
The output datum of this framework is the prediction result, p, where p € Rout | d,. = 2.
The prediction result p represents the position of the predicted edge server node and doy;
denotes the output dimension. p also contains two dimensions, namely the longitude and

Appl. Sci. 2023,13, 10232

7 of 18

latitude of the edge server node. Therefore, this prediction process is defined as a function
on any vehicle trajectory set, T.

f(T)=p ®)

The optimization objective of the LTransformer framework is

min)3y Pr(p = p1) log(Pr(p = pi)))
st.pi€{p1, p2, - . Pm}

Pr(p = p;) denotes the probabilities that the prediction result p is the edge server node
with the serial number i, and p; belongs to a finite set of edge server nodes.

The LTransformer consists of four modules: the pre-training module, the input module,
the encoding-decoding module, and the output module. The LTransformer uses the
Transformer framework in general, and improves on the original Transformer by improving
the input module and adding the pre-training and the output modules. In the pre-training
module, stationary latitude and longitude data are embedded into the multidimensional
space. There are three aspects considered in the input module, which are location, position,
and time. In the location aspect, we use trainable embedding and local linear embedding
(LLE). In the position aspect, we combine the trajectories with their serial numbers. In the
time aspect, we add temporal information using the method in Informer [23]. In the output
module, this paper proposes an error correction mechanism to remove the faulty results.
The overall framework of the LTransformer is shown in Figure 3.

Result Correction
through Error Correction Mechanism

i

Result Set {Pr(p = p)), Pr(p = p2), =+, Pr(p = py)}

Add & Norm

Feed Forward

Add & Norm

I
I

I
I

I
I

|
I

|
|

I
|

I
I I
+>(_ Multi-Headed Attention) |y TN/
i

|
|

I
|

I
I

I
I

I
I

|
I

|
|

I
|

I

Add & Norm

Feed Forward

Add & Norm

Add & Norm

Masked Multi-Headed
Attention

Leamable Input
I
N,
Location
Matrix ¥, ’ Y
. Capmiiy Trainable »
Location Embedded Time Embedded Position
Embedding matrix Wy Encoding matex W, Encoding
Trainable Trainable !
Embedding Matrix It
A A
Pre-Training
Input T

Figure 3. Overall framework of the LTransformer.

The performance of the prediction is increased. In pre-training, the parameters for
training are reduced to save time. In the input module, multiple aspects are considered
to improve the accuracy. In the output module, faulty results are removed to correct
the output.

Appl. Sci. 2023,13, 10232

8 of 18

3.2.1. Pre-Training

In VEC, the edge servers’ geographic locations are stationary. During pre-training, the
latitude and longitude of each edge server node are incorporated and embedded into a
multidimensional space. Meanwhile, we observed the location of the edge server nodes
in a vehicle trajectory set. There is a local linear relationship between the nodes. In other
words, the latitude and longitude between nodes are roughly linearly distributed in the
same vehicle trajectory set. During the training period, the model’s parameters are adjusted
through backpropagation to capture the location relationship between nodes. Therefore, in
pre-training, we use LLE and trainable embedding methods. The process of pre-training is
depicted in Figure 4.

Geographic Trainable
Embedded matrix Embedded matrix
W, W,
A A
F-———————lf——e————- - et -

: Optimize the output
] matrix

!)

| -

| Generate coefficient
: matrix
[}

|

|

[}

[}

|

|

L}

|

: Randomly initialize vector

1 which follows the

: standard normal distribution
|
|
[}
[}

A

Locate K-nearest neighbor

LLE Trainable Embedding

Longitude and
latitude matrix W;

Figure 4. Pre-training.

In pre-training, according to the node order, a matrix, Wj, is generated as the input to
trainable embedding and LLE. The matrix W; consists of nodes a; which represent the edge
server node and only contains location information.

Trainable Embedding

The trainable embedding maps the a; of the matrix W; from a two-dimensional space
to a multidimensional space, following the standard normal distribution. According to
the results of hyperparameter tuning, 512-dimensional input data are the best hyperpa-
rameters, leading to the best prediction results. Therefore, trainable embedding generates
the trainable matrix W; using the matrix W;, W; € R™*512 where m denotes the total
number of edge server nodes; i.e., each row of the matrix W; corresponds to the latitude
and longitude features of a node and numerically follows a normal distribution. During
the training process, backpropagation updates the parameters of trainable embeddings and
reduces the cross-entropy loss.

LLE

LLE generates the geographic embedded matrix W, through two optimization pro-
cesses. The embedded matrix Wy effectively integrates the positional stationarity and local
linear relationship of edge server nodes.

Optimization Process 1: Generate Weight Coefficients Based on Local Linear Features

Optimization Process 1 aims to calculate the weight coefficient, w;;, which is an inter-
mediate result that preserves the local linear relationship.

Initially, the Euclidean distance is computed between each node and other nodes.
Subsequently, k neighboring nodes are selected with the closest Euclidean distances. Then,

Appl. Sci. 2023,13, 10232

90f18

k weight coefficients w;; corresponding to each node 4; are optimized, where the weight
coefficient w;; denotes the weights between node 4; and its neighboring node a;. Since
the mean square error can reflect a linear relationship, the optimization process involves
calculating the minimum value of the mean square error with the constraint that the sum of
the weight coefficient w;; of each node is 1, i.e., the normalization. The optimization process
is shown as follows:

min ¥ [la; — Sieoq wiaill 5)

S. tz]EQ(l) ZUZ']' =1

where the set Q(i) represents the set of serial numbers corresponding to the neighboring
nodes of node a;. Assuming k = 2 and the 2 neighboring nodes of a; are selected as a; and
az, then Q(1) = {2, 3}.

Optimization Process 2: Generate the Geographic Embedded Matrix Based on the
Weight Coefficients

In order to maintain the local linear relationship between each node after embedding,
LLE generates the geographic embedding matrix W based on the weight coefficient w;;.
Therefore, the optimization process involves computing the minimum of the mean square
error after embedding and the constraints are the normalization of the embedded vectors.
The optimization process is shown as follows:

. 2
min)" [ly; — ZjeQ(i) wz‘jyjHZ (6)
m _n-1 m T _
st Yi =05 L yivio =1

Based on the training results, the LTransformer sets the dimension of y; to 512. All y;
vectors after embedding constitute the geographic embedding matrix Wy, Wy € R™*>12,
where m denotes the quantities of edge server nodes.

3.2.2. Input Module

The input module consists of three components: location embedding, position encod-
ing, and temporal encoding, which encode geographic, sequential, and temporal informa-
tion, respectively. The input datum of this module is a set consisting of a multiple vehicle
trajectory set, T. We use a matrix, M, to represent the input data, i.e.,

Sll PR Slq
M=|: - ?)

Sp1 7 Spyg

where M € RP*71*din, p denotes the quantity of trajectories (batch size) at each train-
ing epoch, g denotes the length of the longest trajectory, and d;,, denotes the dimension
of each node.

In the input module, the matrix M can be divided into two parts according to d;,,, the
matrix M (d;, = 1), containing serial information, and the matrix M; (d;,, = 1), containing
temporal information.

Location Embedding

The input of location embedding process is the matrix M;. It is generated by the
results of pre-training process. Specifically, two embedded matrices, M; and Mg, are
generated by replacing the serial numbers in M; with the corresponding embedded vectors
in the trainable embedded matrix W; and the geographic embedded matrix W,, where
M; € RP*qx512 Mg € RP xqx512 Finally, the matrix M; and the matrix Mg are summed
by weights to obtain the matrix M;, which represents the location information.

My =61 M; + GzMg (8)

Appl. Sci. 2023,13, 10232

10 0of 18

where 6 and 6, are the weights of the matrix M; and the matrix M. The weights will be
updated in the backpropagation process.

Position Encoding

The positional information determines the order of the nodes in the trajectory, so
position encoding is critical. The LTransformer follows the Transformer’s position encoding
method; i.e., position information is represented by trigonometric functions. The encoding
results are computed for each position and dimension, i.e.,

sin(m), if iis even

t . ..
CcOS W P lfllSOdd

PE(t,i) = 9

where t denotes the position number, i denotes the dimension, and d denotes the dimension
after embedding. For each element in M and each of its dimensions, Mp is calculated
according to Equation (7). The calculation is shown in Equation (8).

PE(1,i) --- PE(qg,i)
Mp = : .. :|,i=1,23,...512 (10)

PE(1,i) --- PE(q,i)
The result of position encoding is the matrix Mp, representing the sequential information.

Time Encoding

In VEC, there is a temporal pattern in the vehicle trajectories. For example, traffic
volumes and overall direction of movement in the morning are different from those in
the evening. Therefore, the LTransformer framework uses the time encoding in Informer,
which is able to express the temporal pattern. First, the LTransformer selects five aspects
of temporal pattern expression based on the training results, which are hour, day, week,
month, and year. Then, we calculate each expression of the timestamp in the matrix M;. The
calculation of each aspect has its own characteristic; e.g., in the hour aspect, we calculate
the proportionality of the current minute in an hour. The specific formulation of each aspect

is as follows:
h = minute/60

d = hour/24
w =day/7 (11
m = day/30
y = day /365

After the calculation, the results are concatenated and embedded into a 512-dimensional
space using a linear layer to generate M7, where My € RP*7*>12 The matrix Mt represents
the temporal information.

Mt = LN(Concat(h,d,w,m,y)) (12)

It is demonstrated in the Transformer that if the dimensions are summed directly, the
distinctions and relationships between the dimensions can be captured during the training
process. Therefore, in the input module, the summation of M;, Mp, and Mt represents the
geographic, sequential, and temporal information. It is calculated to generate the output
Mo of the input module, i.e.,

Mo = My + Mp + Mt (13)

3.2.3. Encoding-Decoding Module

The main structure of the encoding—decoding module is similar to that of the Trans-
former, comprising N encoders and N decoders. Each encoder or decoder includes multi-

Appl. Sci. 2023,13, 10232

110f18

head attention with p heads and a fully connected neural network with a g-dimensional
hidden layer, which employs residual concatenation and normalization after each encoding
or decoding. Based on the training performance, the LTransformer sets the hyperparameters
toN =6,p =16, and g = 4096.

The features of the vehicle trajectories and edge server nodes are trained via encoders.
The decoder adjusts the weights to reduce the cross-entropy loss by forcing learning, so
that the prediction results gradually become closer to the real ones during the training
process. In addition, since the input module generates the matrix with geographic, se-
quential, and temporal information, the multidimensional features of vehicle trajectories
and the edge server nodes can be captured by the multi-head attention in the encoding—
decoding module. Thus, the prediction of the vehicle trajectory is generated with multiple
aspects’ information.

3.2.4. Output Module

The output module filters the results using the error correction mechanism, which
takes into account the adjacent relationships of edge servers. Specifically, in VEC, the result
of trajectory prediction must be adjacent to the last node of the vehicle trajectory. If the
prediction is not adjacent to the last node, the result will be detected as an error. Therefore,
this paper proposes the error correction mechanism to prevent erroneous results.

First, we define the concept of the adjacent node; if the binary trajectory sequence T; is
a subsequence of any trajectory Tj, i.e., T;= {sp, sqt, Ti = {s1, 82, . .., s}, satisfying T, CT,
then we refer to the node s, in the trajectory set T; as the adjacent node of s;. Based on
this definition, this paper details the process of the error correction mechanism, as shown
in Figure 5.

Input:
Set {Pr(p =p)), Prp =p2), ..., Pr(p = pn)}

l

Order by Probability +———

l

Take the node p;
corresponding to the
Maximum Probability

{
Y

the Last node p; Adjacent? >——> DTN

N pi
iY

Output:
Result p;

Figure 5. Error correction mechanism.

In the error correction mechanism, first, the prediction results are ranked in order ac-
cording to their probability. Second, the node p; corresponding to the maximum probability
is obtained. Third, it is determined whether the node p; is the adjacent node of the last node
of the vehicle trajectory. If the node p; is not the adjacent node, this node is deleted and the
results are ranked again. Finally, if the node p; is the adjacent node, we consider the output
p; the final prediction result of the LTransformer.

Appl. Sci. 2023,13, 10232

12 0f 18

The LTransformer fully considers the features of edge computing, and this framework
can be applied to in-vehicle edge computing. Specifically, traffic control and in-vehicle
services require efficient task offloading mechanisms, and the LTransformer framework
can optimize the task offloading mechanisms to provide high-quality services.

3.3. LTransformer Complexity

In this subsection, we will analyze the time complexity of the LTransformer in various
stages and use this analysis to assess its feasibility for application in VEC.

Since pre-training will only be performed once, the time complexity of the LTrans-
former primarily lies in the analysis of the encoding—decoding module. During train-
ing, the time complexity of the encoding—decoding module is linked to the computation
of Attention.

Attention(Q, K, V) = SoftMax (QKT) 1% (14)

where Q,K,V €]R"Xd, n refers to the length of the sequence, and d is the dimension.

The main computational step in the above equation involves calculating the similarity
using QKT, which is essentially a matrix multiplication between n x d and d x #, resulting
in an 7 x n matrix with a complexity of O(n?d). The time complexity of the SoftMax
function is O(n); thus, the overall time complexity of the formula is O(1%d).

In the predication process, the time complexity of the LTransformer remains the same
as during training. Similarly, its time complexity is also O(n%d). During prediction, the
sequence length (i.e., n) is generally not long, resulting in fast computation speed, which
can meet the demands of edge computing.

It is worth noting that the LTransformer model is continuously updated and iterated on
the cloud server. Over time, the LTransformer will perform incremental training based on
the latest trajectory data, updating itself to achieve higher accuracy. Due to the pre-training
process, the LTransformer does not need to train the parameters in different dimensions.
Therefore, when updating parameters in the LTransformer, the required training time can
meet the demands of regular version iteration.

4. Experiment and Analysis
4.1. Experimental Environment and Dataset

This section introduces the experimental environment. The experiment analysis was
conducted on a Linux server, and the source code was written in Python. The detailed
platform parameters are shown in Table 1.

Table 1. Parameters of the experimental platform.

Software and Hardware Environment Parameters
CPU Intel(R) Xeon(R) Gold 6326
GPU NVIDIA A40
Operating System Linux 3.10.0
Python python 3.10.10
Pytorch 1.12.1+cul13

The experimental data were real vehicle trajectory data detected using real equipment
in a city in China. Vehicle trajectory data include four fields, namely longitude, latitude,
timestamp, and serial number, as presented in Table 2.

Appl. Sci. 2023,13, 10232 13 0f 18
Table 2. Source and fields of the experimental dataset.
Source Field Name Field Type
Longitude Double-precision floating point
Real trajectory data .Latltude Double-precision floating point
Timestamp Integer
Serial number Integer

4.2. Data Processing

This section primarily discusses the data processing, training process, and prediction
process during the experiment. Each trajectory in the dataset was composed of several
nodes. Each node contained information about latitude and longitude and a timestamp
indicating the time at which the vehicle passed a specific geographical location. Let the
length of the trajectory be n.

Before starting the experiment, each trajectory was split into a sequence of length n-1
and the last node. The sequence of length n-1 served as the input to the model. The latitude
and longitude of the last node served as the ground truth for the model’s predictions. In
other words, the model needed to predict the location of the last node of the trajectory
based on the sequence of the preceding n-1 nodes.

During the training process, we divided the dataset into training and testing sets in
a ratio close to 2:1. All baseline algorithms and the LTransformer were trained using the
teacher forcing mode.

During the prediction process, we put the test dataset into the trained model and
compared the obtained results with the ground truth. Finally, we calculated the accuracy
according to the comparison results.

4.3. Approach Comparing

In order to compare and analyze the performance of the LTransformer, the following
baseline methods were chosen in this experiment.

RNN [24]: the RNN (Recurrent Neural Network) is a deep learning method which is
always used to predict sequential data.

LSTM [25]: LSTM (Long-Short Term Memory) improves the RNN with gated struc-
tures and solves the short-term memory problem of the RNN.

GRU [8]: the GRU (Gated Recurrent Unit) simplifies LSTM with two gating mecha-
nisms (reset gate and update gate) and solves the slow loss descent problem.

Transformer [26]: the Transformer performs attention mechanisms in the encoder
layers and decoder layers to analyze or predict sequential data.

Additionally, the parameters of the model affect the training and prediction perfor-
mance, and the corresponding experimental parameters are shown in Table 3.

Table 3. Models and corresponding parameters.

Model ch!den L.ayer Batch Size Optimizer
Dimension
RNN 512 200 Adam
LSTM 512 200 Adam
GRU 512 200 Adam
Transformer 512 200 SGD
LTransformer 512 200 SGD

The RNN, LSTM, and GRU typically achieve better performance with the Adam
optimizer, while their loss reduction is slower when using the SGD optimizer. Conversely,
the Transformer tends to show a suboptimal performance with the Adam optimizer, while
the SGD optimizer proves to be more suitable and effective.

Appl. Sci. 2023,13, 10232

14 0f 18

4.4. Accuracy Verification

We conducted a comparative analysis by training all of the models for the same epochs
on our dataset. We define accuracy as

Accuracy = (15)

T+F
where T denotes the number of correct predictions and F denotes the number of incorrect
predictions. Following this definition, the experiments compared and analyzed the accuracy
of each model. All models were trained for the same rounds using the same training set
and loss function. To reduce experiment variability, we selected three different samples
from the dataset. Each sample contained the same number of trajectories but was drawn
from different parts of the dataset. The specific results are presented in Tables 4 and 5.

Table 4. Accuracies in different samples of each model.

Sample GRU LSTM RNN Transformer LTransformer
Sample 1 0.783 0.784 0.782 0.780 0.788
Sample 2 0.802 0.801 0.797 0.801 0.803
Sample 3 0.812 0.808 0.809 0.809 0.813

Table 5. Average accuracy and loss of each model.

Model Accuracy Loss
GRU 0.799 0.479388
LSTM 0.798 0.479554
RNN 0.796 0.498660
Transformer 0.797 0.249246
LTransformer 0.801 0.248059

Tables 4 and 5 demonstrate that the LTransformer achieved higher accuracy and a
better fitting performance compared to existing commonly used sequential deep learning
methods. In terms of accuracy, the LTransformer improved the average accuracy to 80.1%.
In terms of loss, the LTransformer reduced the loss to 0.248. This suggests that the LTrans-
former has a superior predictive performance. As the loss value reflects the fitting status,
the correlation between the loss and the number of epochs was recorded during training.
Figure 6 shows the specific results.

Figure 6 records the average loss per round for each model during training. After
extensive experimental validation, we found that after 30 rounds of training, the loss rates
of all models did not change significantly anymore. Therefore, we chose 30 rounds as the
number of training rounds for all models. This suggests that the LTransformer has a slower
rate of loss reduction, which is attributed to the incorporation of multiple dimensions in
the LTransformer, which was required to fit different features across these dimensions.
Simultaneously, the LTransformer was trained to fit multidimensional features, and its final
fitting performance (at the 30th epoch) was better than that of other baseline models.

Appl. Sci. 2023,13, 10232

150f18

3.5

——GRU

LST™M
2.5 RNN
Transformer
Ltransformer

Loss

05 \—‘

Epochs
Figure 6. Comparison of losses of each algorithm.

4.5. Resource Consumption
4.5.1. Time Consumption

This subsection primarily discusses the feasibility of using the LTransformer in real-
time prediction. Relevant experiments were conducted to test the time required for pre-
diction with trajectory data volumes of 1, 10, 100, and 1000 in three different samples. The
specific results are shown in Table 6.

Table 6. Time consumption for different numbers of trajectories.

Trajectory Data Volumes
Sample 1 10 100 1000
Sample 1 0.0125 0.0875 0.8888 8.4802
Sample 2 0.0114 0.0905 0.8552 8.4952
Sample 3 0.0123 0.0878 0.8731 8.4910

It can be observed that as the number of trajectories increases, the rate of time con-
sumption tends towards 0.008 s per trajectory. Compared to processing computational tasks,
the time required for trajectory prediction is almost negligible. Therefore, the LTransformer
essentially meets the requirements for real-time prediction.

4.5.2. Memory Consumption

Memory consumption is one of the key resources for machine learning model training
and inference. Machine learning models deployed on edge servers should make efficient
use of memory to enhance model efficiency and performance. Therefore, we compared
the memory usage of the LTransformer and other baseline algorithms when predicting
80,000 trajectories. It is worth noting that the LTransformer has similar memory usage to
the Transformer. Therefore, no comparison was made in terms of memory between the
LTransformer and the Transformer. In addition, we compared the memory consumption in
three different samples. The specific data are shown in Table 7.

Appl. Sci. 2023,13, 10232 16 of 18

Table 7. Memory consumption in different models.

Memory Consumption in Different Models

Sample GRU LSTM RNN LTransformer
Sample 1 5.5033 5.5063 5.5036 3.7122
Sample 2 5.5069 5.5115 5.5032 3.7133
Sample 3 5.5142 5.5253 5.5015 3.7228

It can be observed that LTransformer also has an advantage in terms of memory
resource consumption. This may be attributed to the more advanced encoding techniques
adopted by the Transformer model when processing trajectory sequence data, which
compresses the data storage space. This allows it to be compatible with a greater number
of edge servers.

4.6. Parameter Adjustment

The hyperparameters of the LTransformer are parameters whose values control the
deep learning process and determine the values of parameters that the algorithm ends
up learning. Different hyperparameters of the LTransformer were analyzed in the experi-
ment. We tested the accuracy of the model by adjusting the value of one parameter, while
keeping the training set and other parameters constant. Figure 7 shows the accuracy of the
LTransformer model with different dimensions.

0.789

0.78842

0.788
0.78735
0.787

0.786 0.78576

256 512 1024

0.78517

0.785
0.784
0.783
128

Figure 7. Comparison of accuracy of the LTransformer with different dimensions.

First, experiments were conducted to compare and analyze the embedded dimensions
of the LTransformer. The results show that the LTransformer had the best prediction
performance with 512 dimensions. This is because the LTransformer goes through pre-
training, which reduces the number of dimensions to be fitted. Meanwhile, all of the
embeddings are summed together instead of going through concatenation, which also
reduces the number of dimensions.

In addition, the experiment also tested the other hyperparameters, and finally set the
other hyperparameters to N = 6, p = 16, and g = 4096, for which the LTransformer had the
best prediction performance.

Furthermore, the experiment tested the prediction time of the LTransformer for a
single trajectory datum, which only requires 0.008 s. Therefore, the experimental results

Appl. Sci. 2023,13, 10232 17 of 18

indicate that the LTransformer achieves a higher accuracy compared to other baseline
algorithms and meets the requirement of real-time prediction, making it more suitable for
deployment in VEC. Meanwhile, the experiments also demonstrated that the LTransformer
can be applied in traffic control, in-vehicle services, and other VEC applications.

5. Conclusions

This paper proposes a task offloading optimization approach in VEC which enables
the edge servers to deploy deep learning methods for predicting vehicle trajectories and
optimizing task offloading strategies.

Considering the trajectory prediction approach, this paper introduces the LIrans-
former, which has four modules. In the pre-training, two-dimensional space containing
latitude-longitude information is embedded into multidimensional space. The input mod-
ule integrates geographic, sequential, and temporal information. The encoding—decoding
module incorporates the encoder and decoder in the Transformer to train features of multi-
dimensional data. In the output module, the error correction mechanism is employed to
remove certain error results. In the experiment, a comparison was made with four com-
monly used sequential deep learning methods. The experimental results demonstrate that
the LTransformer achieves more accurate vehicle trajectories, making it suitable for VEC.
Meanwhile, in VEC, the framework can be applied in traffic control and in-vehicle services.

In the future, we will combine other technologies [27] to further optimize the task
offloading process in VEC. In trajectory prediction, we will incorporate additional dimen-
sions and behavioral features [28] to enhance the deep learning approach, aiming to achieve
higher accuracy and efficiency in VEC. Moreover, privacy and security measures also need
to be taken into further consideration.

Author Contributions: Conceptualization, Y.Y. and R.Y.; methodology, Y.Y. and R.Y.; software, Y.Y.;
validation, Y.Y.,, RY. and Y.G.; formal analysis, Y.Y.; investigation, Y.Y., R.Y. and Y.G; resources,
Y.G.; data curation, Y.Y. and R.Y.; writing—original draft preparation, Y.Y.; writing—review and
editing, Y.Y., R.Y. and Y.G,; visualization, Y.Y. and R.Y.; supervision, R.Y. and Y.G.; project adminis-
tration, Y.Y.; funding acquisition, Y.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Double First-Class Innovation Research Project for People’s
Public Security University of China, grant number (2023SYL07).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author Y.G. upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, L,; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular edge computing and networking: A survey. Mob. Netw. Appl. 2021, 26,
1145-1168. [CrossRef]

2. Luo, Q.; Hu, S; Li, C.; Li, G.; Shi, W. Resource scheduling in edge computing: A survey. IEEE Commun. Surv. Tutor. 2021, 23,
2131-2165. [CrossRef]

3. Zhan, W,; Luo, C.; Min, G.; Wang, C.; Zhu, Q.; Duan, H. Mobility-aware multi-user offloading optimization for mobile edge
computing. IEEE Trans. Veh. Technol. 2020, 69, 3341-3356. [CrossRef]

4. Zhang, K;;Mao, Y.; Leng, S.; He, Y.; Zhang, Y. Mobile-edge computing for vehicular networks: A promising network paradigm
with predictive off-loading. IEEE Veh. Technol. Mag. 2017, 12, 36—44. [CrossRef]

5. Saeik, F; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos,].; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;
Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical. Comput. Netw. 2021, 195, 108177.
[CrossRef]

6. Yang, SR, Su, Y].; Chang, Y.Y.; Hung, H.N. Short-term traffic prediction for edge computing-enhanced autonomous and

connected cars. [EEE Trans. Veh. Technol. 2019, 68, 3140-3153. [CrossRef]

https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1109/COMST.2021.3106401
https://doi.org/10.1109/TVT.2020.2966500
https://doi.org/10.1109/MVT.2017.2668838
https://doi.org/10.1016/j.comnet.2021.108177
https://doi.org/10.1109/TVT.2019.2899125

Appl. Sci. 2023,13, 10232 18 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social Istm: Human trajectory prediction in crowded
spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016;
pp. 961-971.

Han, P; Wang, W.; Shi, Q.; Yang, J. Real-time short-term trajectory prediction based on GRU neural network. In Proceedings of
the 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8-12 September 2019; pp. 1-8.

Huang, M.; Zhu, M.; Xiao, Y.; Liu, Y. Bayonet-corpus: A trajectory prediction method based on bayonet context and bidirectional
GRU. Digit. Commun. Netw. 2021, 7, 72-81. [CrossRef]

Amichi, L.; Viana, A.C.; Crovella, M.; Loureiro, A.A. From movement purpose to perceptive spatial mobility prediction. In Proceed-
ings of the 29th International Conference on Advances in Geographic Information Systems, Beijing, China, 2-5 November 2021;
pp- 500-511.

Monreale, A.; Pinelli, F,; Trasarti, R.; Giannotti, F. Wherenext: A location predictor on trajectory pattern mining. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June-1 July 2009;
pp- 637-646.

Zhenjiang, D.; Jia, D.; Xiaohui, J.; Yongli, W. RTMatch: Real-time location prediction based on trajectory pattern matching. In
Database Systems for Advanced Applications, Proceedings of the DASFAA 2017 International Workshops: BDMS, BDQM, SeCoP, and
DMMOOC, Suzhou, China, 27-30 March 2017; Springer: Cham, Switzerland, 2017; pp. 103-117.

Zeng,].; He, X.; Tang, H.; Wen, J. A next location predicting approach based on a recurrent neural network and self-attention. In
Collaborative Computing: Networking, Applications and Worksharing, Proceedings of the 15th EAI International Conference, London, UK,
19-22 August 2019; Springer: Cham, Switzerland, 2019; pp. 309-322.

Feng, J.; Li, Y.; Zhang, C.; Sun, E; Meng, F.; Guo, A; Jin, D. Deepmove: Predicting human mobility with attentional recurrent
networks. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 2327 April 2018; pp. 1459-1468.

Liu, T; Liao, J.; Wu, Z.; Wang, Y.; Wang,]. A geographical-temporal awareness hierarchical attention network for next point-of-
interest recommendation. In Proceedings of the 2019 on International Conference on Multimedia Retrieval, Ottawa, ON, Canada,
10-13 June 2019; pp. 7-15.

Amirloo, E.; Rasouli, A.; Lakner, P.; Rohani, M.; Luo, J. Latentformer: Multi-agent transformer-based interaction modeling and
trajectory prediction. arXiv 2022, arXiv:2203.01880.

Yan, J.; Peng, Z.; Yin, H.; Wang, J.; Wang, X.; Shen, Y.; Stechele, W.; Cremers, D. Trajectory prediction for intelligent vehicles using
spatial-attention mechanism. IET Intell. Transp. Syst. 2020, 14, 1855-1863. [CrossRef]

Yu, C.; Ma, X; Ren, J.; Zhao, H.; Yi, S. Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In
Proceedings of the Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, 23-28 August 2020; pp. 507-523.
Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-xl: Attentive language models beyond a fixed-
length context. In Proceedings of the 57th Annual Meeting of the Association-for-Computational-Linguistics (ACL), Florence,
Italy, 28 July—2 August 2019; pp. 2978-2988.

Wang, S.; Li, B.Z.; Khabsa, M.; Fang, H.; Ma, H. Linformer: Self-attention with linear complexity. arXiv 2020, arXiv:2006.04768.
Kitaev, N.; Kaiser, L.; Levskaya, A. Reformer: The efficient transformer. arXiv 2020, arXiv:2001.04451.

Kong, X.; Xing, W.; Wei, X.; Bao, P.; Zhang, J.; Lu, W. STGAT: Spatial-temporal graph attention networks for traffic flow forecasting.
IEEE Access 2020, 8, 134363-134372. [CrossRef]

Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence
time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2-9 February
2021; pp. 11106-11115.

Bahra, N.; Pierre, S. RNN-based user trajectory prediction using a preprocessed dataset. In Proceedings of the 2020 16th
International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece,
12-14 October 2020; pp. 1-6.

Xiao, H.; Wang, C.; Li, Z.; Wang, R.; Bo, C.; Sotelo, M.A.; Xu, Y. UB-LSTM: A trajectory prediction method combined with vehicle
behavior recognition. J. Adv. Transp. 2020, 2020, 8859689. [CrossRef]

Zhao, J.; Li, X.; Xue, Q.; Zhang, W. Spatial-channel transformer network for trajectory prediction on the traffic scenes. arXiv 2021,
arXiv:2101.11472.

Zhao, H.; You, J.; Wang, Y.; Zhao, X. Offloading Strategy of Multi-Service and Multi-User Edge Computing in Internet of Vehicles.
Appl. Sci. 2023, 13, 6079. [CrossRef]

Peng, B.; Li, T.; Chen, Y. DRL-Based Dependent Task Offloading Strategies with Multi-Server Collaboration in Multi-Access Edge
Computing. Appl. Sci. 2023, 13, 191. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.dcan.2020.03.002
https://doi.org/10.1049/iet-its.2020.0274
https://doi.org/10.1109/ACCESS.2020.3011186
https://doi.org/10.1155/2020/8859689
https://doi.org/10.3390/app13106079
https://doi.org/10.3390/app13010191

	Introduction
	Related Work
	Vehicular Edge Computing
	Trajectory Prediction

	Method
	Task Offloading
	Task Offloading Optimization Approach
	Search Stage and Energy Management

	LTransformer
	Pre-Training
	Input Module
	Encoding–Decoding Module
	Output Module

	LTransformer Complexity

	Experiment and Analysis
	Experimental Environment and Dataset
	Data Processing
	Approach Comparing
	Accuracy Verification
	Resource Consumption
	Time Consumption
	Memory Consumption

	Parameter Adjustment

	Conclusions
	References

