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Abstract: In the realm of aspect-based sentiment analysis (ABSA), a paramount task is the extraction
of triplets, which define aspect terms, opinion terms, and their respective sentiment orientations
within text. This study introduces a novel extraction model, BiLSTM-BGAT-GCN, which seamlessly
integrates graph neural networks with an enhanced biaffine attention mechanism. This model
amalgamates the sophisticated capabilities of both graph attention and convolutional networks to
process graph-structured data, substantially enhancing the interpretation and extraction of textual
features. By optimizing the biaffine attention mechanism, the model adeptly uncovers the subtle
interplay between aspect terms and emotional expressions, offering enhanced flexibility and superior
contextual analysis through dynamic weight distribution. A series of comparative experiments
confirm the model’s significant performance improvements across various metrics, underscoring its
efficacy and refined effectiveness in ABSA tasks.

Keywords: aspect-based sentiment analysis; aspect sentiment triplet extraction; biaffine attention;
graph attention network; graph convolutional network

1. Introduction

Neural networks, by simulating the way neurons in the human brain connect to
process information and learn, are capable of automatically identifying valuable features
and patterns from vast amounts of data, thereby automating the execution of complex
tasks. This technology has attracted widespread attention due to its broad application
potential and its ability to effectively integrate concepts from multiple fields, e.g., [1,2].
In recent years, the field of image processing has also witnessed innovative integrations
with fractional-order processing methods [3–6], demonstrating the powerful synergy of
interdisciplinary technologies. As a cornerstone of deep learning, neural networks offer
substantial potential and value in various domains such as image recognition, natural
language processing, and complex decision support systems, thereby playing a crucial role
in advancing artificial intelligence.

In the context of the current data-centric era, the progress of neural networks in the
realm of deep learning has significantly fostered a deeper comprehension of textual content,
placing a fine-grained analysis of text sentiment at the vanguard of research and practical
application. Of particular note is the application of graph neural networks in aspect-based
sentiment analysis, providing robust support for accurately identifying the sentiment orien-
tations towards specific entities or aspects within texts. Within the multitude of subtasks in
the aspect-based sentiment analysis domain, employing graph neural networks for aspect
sentiment triplet extraction task poses unique challenges, not merely due to the increased
complexity involved, but also due to the urgent requirement for the in-depth mining of
textual details. Therefore, the thorough investigation and exploration of the aspect senti-
ment triplet extraction task hold substantial academic value and practical significance for
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overcoming these challenges and further broadening the application spectrum of graph
neural networks in complex natural language processing tasks.

Currently, the research methods are mainly divided into two-stage pipeline archi-
tecture, machine reading comprehension (MRC), sequence-to-sequence (seq2seq), and
end-to-end approach, which includes annotation strategies and integrated solutions. A
summary is provided in Table 1. Peng et al. [7] pioneered the ASTE task and implemented
triplet extraction using a two-stage pipeline architecture, which integrates aspect extraction,
aspect sentiment classification, and opinion extraction. However, there may be propa-
gated errors in subsequent stages that are amplified. In addition, other model frameworks
such as MRC [8,9] and seq2seq [10–12] have also been applied to this task. For example,
Mao et al. [8] designed specific query questions to decompose the original task into two
MRC tasks: one for extracting aspect terms and the other for predicting corresponding opin-
ion terms and sentiment polarities. Chen et al. [9] adopted a bidirectional MRC framework
and used a similar approach: first predicting aspects and opinions, and then predicting
opinions and aspects in reverse. Zhang et al. [10] converted the original task into a text
generation problem and proposed two sentiment triplet prediction models, including an-
notation style and extraction style. Yan et al. [11] and Hsu et al. [12] used sentences as
input and pointer indices as targets to predict the start and end indices of aspect terms (or
opinion terms). Mukherjee et al. [13] designed an unlabeled decoding framework using
pointer networks for aspect sentiment triplet extraction, overcoming the limitations of
complex label schemes in traditional methods. Fei et al. [14] proposed a non-autoregressive
decoding method that models the ASTE task as an unordered triplet prediction problem.
However, these methods may have limitations in capturing long-distance dependencies
and understanding complex sentence structures, which may lead to poor performance
when dealing with complex or ambiguous aspect and opinion expressions. Moreover, these
models usually require a large amount of labeled data for training to achieve satisfactory
performance. To deeply investigate the interactions between multiple sentiment factors,
other researchers have proposed numerous integrated solutions. For example, Zhang
et al. [15] proposed a multi-task learning framework that covers aspect term extraction,
opinion term extraction, and sentiment polarity analysis, and further synthesizes sentiment
triplets from the prediction results of these subtasks through heuristic rules. Another
research direction focuses on developing a unified annotation strategy to complete triplet
extraction in one go. For instance, Xu and Wu et al. [16,17] achieved the goal of extracting
triplets in one shot. Specifically, Xu et al. [16] proposed a position-aware annotation strategy
aimed at overcoming the limitations of the existing works by enhancing the expressiveness
of labels. Wu et al. [17] proposed a scheme that achieved end-to-end task processing by
tagging relationships between all word pairs. Despite the advantages of end-to-end meth-
ods and grid tagging schemes, it should be noted that end-to-end methods may be limited
by their high demand for a large amount of labeled data and excessive reliance on data
distribution, while grid tagging schemes may fail to handle highly complex or ambiguous
text relationships.

Due to the complexity of language structure, accurate sentiment analysis often requires
a comprehensive consideration of contextual information, syntactic features, and other
relevant information. Graph neural network (GNN), neural networks tailored for graph-
structured data, have garnered significant interest for their distinct benefits. Subsequently,
graph convolutional neural network (GCN) and graph attention network (GAT) based on
GNN have been introduced into sentiment analysis tasks to enhance the understanding of
model and utilization of syntactic structure. For example, Bastings et al. [18] constructed
directed graphs to integrate syntactic relationships, and GCNs were used to improve the
accuracy of machine translation models, demonstrating their powerful ability to capture
syntactic features in text. A common approach to more finely pair aspects with their
corresponding opinion representations is to use syntactic dependency trees to construct
adjacency matrices for sentence graph structures. However, there are still shortcomings
in the analysis that solely relies on the adjacency matrix generated by the dependency
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tree. To highlight highly relevant information in the dependency tree, Guo et al. [19],
Chen et al. [20], and Li et al. [21] introduced attention mechanisms to construct new edges
in the graph structure, thereby enhancing the ability of the model to grasp dependency
relationships. Huang et al. [22] and Wang et al. [23] used GAT on graph-structured data,
where words in sentences are nodes in the graph and grammatical relationships are edge
labels. The dependency graphs used in the model are obtained from ordinary dependency
tree parsers or modified using heuristic rules. Meanwhile, the widespread use of GCN
in processing dependency graphs and the effectiveness of GAT in handling aspect triplet
extraction tasks demonstrate the potential of these two graph neural networks in enhancing
feature representation. Specifically, Huang et al. [22] used GAT to focus on sentiment words
that are more closely related to aspect terms through target-dependent methods, which
helps to address syntactic ambiguity and clearly establish dependencies between words.
However, the above studies only used a single graph neural network and did not take full
advantage of graph neural networks. Therefore, considering the respective advantages of
GCN and GAT in processing graph-structured data and enhancing syntactic and semantic
relationships, this study aims to fuse GCN and GAT to further improve the performance
and accuracy of aspect sentiment triplet extraction tasks by integrating the strengths of
these two graph networks, overcoming the limitations of existing methods, and effectively
capturing and representing complex text relationships.

Table 1. Previous work.

Method Type Feature

Pipeline Peng-two-stage [7] Build a triplet by breaking down the task into two stages.

MRC Dual-MRC [8] Build two machine reading comprehension tasks to jointly solve subtasks.
BMRC [9] Transforming the ASTE task into a multi round reading comprehension task.

seq2seq

GAS [10] Develop the task as a text generation problem.
Unified generative

framework [11]
Transforming multiple subproblems of sentiment analysis into a unified

generative problem.
Semantics-preserved data

augmentation [12]
Improving model performance by expanding the dataset and increasing data

diversity.

end-to-end

PASTE [13] Propose a location-based approach to unify the representation of opinion
triplets.

onautoregressive
encoder–decoder [14]

Propose a high-order aggregation mechanism to fully interact with
overlapping triplets.

OTE-MTL [15] Propose a multi-task learning framework to jointly extract aspect words and
viewpoint words.

JET-BERT [16] Using position aware tagging scheme to jointly extract triples.

GTS [17] Propose a grid tagging scheme to solve the ASTE task through only a unified
grid tagging task.

In this paper, a new end-to-end model is proposed, which integrates graph con-
volutional networks and graph attention networks with an improved biaffine attention
mechanism for the task of aspect sentiment triplet extraction. The main contributions of
this study are summarized as follows:

• An innovative end-to-end solution that enhances the flexibility and portability of a
model through modular design, capable of effectively handling multiple subtasks
within a single end-to-end process, significantly improving the processing efficiency
and accuracy.

• By integrating the attention mechanism of GAT with the deep processing capabilities of
GCN, there is a significant improvement in processing efficiency for graph-structured
data and a deeper understanding of textual content, effectively capturing the complex
relationships and rich contextual information within texts.
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• By integrating BiLSTM to improve the biaffine attention mechanism, it effectively extracts
high-dimensional aspect features, significantly enhancing the capability to process both
local and global textual information, and increases the accuracy of the model in capturing
long-distance dependencies and recognizing complex emotional expressions.

The following is the order in which each consecutive section is presented in the paper:
In Section 2, the preliminaries of this paper are introduced to the reader in detail. In
Section 3.1, a thorough discussion of the specific structure of the model we propose is given.
Section 4 details an in-depth experimental study and analyzes the performance. Section 5
concludes this study and discusses future directions.

2. Preliminaries
2.1. Graph Neural Network

GNN represents a novel class of neural network models specifically used to process
graph-structured data, distinguishing them from traditional neural network models such
as convolutional neural network and recurrent neural network that handle regular data
structures. Graph data, composed of nodes and edges, depict complex networks of enti-
ties and their interrelations, thus necessitating a unique approach to understanding and
representing these entities and their connections. The core mechanism of GNN lies in
aggregating the feature information of each node and its neighbors, constructing new node
representations through this process. This is typically achieved through a message-passing
framework, where nodes collect information from their neighbors and integrate this infor-
mation to form updated node representations. Through multiple iterations, this captures
the overall structural information of the graph.

2.1.1. GCN

Inspired by convolutional neural networks, GCN is an efficient variant of CNN that
operates directly on graphs. Figure 1 depicts the architectural framework of GCN. The core
formula lies in the propagation between layers, calculated by:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (1)

where Ã = A + I represents the adjacency matrix of the graph plus self-connections,
A ∈ Rn×n and I the adjacency matrix and identity matrix; D̃ represents the degree matrix,
with D̃ii = ∑j Ãij; H represents the features at each layer; W(l) is the weight matrix for the
lth layer; σ is a nonlinear activation function, such as Sigmoid, ReLu.

X4

X2

X3

X1

Z4

Z2

Z3

Z1 Y1

Y4

C F

input layer output layer

hidden
layers

Figure 1. The GCN architecture.
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Given the feature representation of node i at layer l − 1, hl−1
i , the output, which is the

feature representation of node i at layer l, hl
i , is obtained by:

h(l)i = σ(
n

∑
j=1

AijW(l)h(l−1)
j + b(l)) (2)

where W(l) is the weight matrix; b(l) is the bias vector; h(0)i represents the initial input of
feature xi, with xi ∈ Rd, and d the dimension of the input features.

2.1.2. GAT

GAT can be seen as a variant of GCN. While GCN aggregates nodes using the Laplacian
matrix, GAT assigns different weights to each node through an attention mechanism,
aggregating nodes according to the magnitude of these weights when updating the hidden
layers of nodes. Therefore, by adding attention layers in the network, GAT makes the
computation more efficient and allows for the assignment of different levels of importance
to different nodes without relying on previous spectral-based methods, thereby enhancing
the interpretability of model. Figures 2 and 3 depict the architectural framework of GAT
with self and multi-head attention.

���

Figure 2. GAT with self attention.

��

��
’��

��

��

��

��

Figure 3. GAT with multi-head attention.
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Firstly, an attention mechanism is applied to each node to train its own weight matrix,
calculated as follows:

eij = a(Wh⃗i, Wh⃗j) (3)

where the input is h = [h⃗1, h⃗2, · · · , h⃗N ], with h⃗i ∈ RF; N is the number of nodes; F is
the number of features per node; W is the weight matrix, and a represents the attention
mechanism’s function; eij is obtained through (3), which indicates the importance of node j
to node i.

To facilitate the comparison of coefficients across different nodes, the softmax function
is used to normalize them, as follows:

aij = softmaxj
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

(4)

In the output layer of the aforementioned feedforward neural network, add a
LeakyReLU function:

aij =
exp(LeakReLu(⃗aT [Wh⃗i||Wh⃗j]))

∑k∈Ni
exp(LeakReLu(⃗aT [Wh⃗i||Wh⃗k]))

(5)

where LeakyReLU is the activation function; T represents transpose; || denotes the concate-
nation of the vector representations of nodes i and j after transformation. Subsequently, the
final output result is obtained after passing through an activation function:

h⃗′i = σ( ∑
j∈Ni

αijWh⃗j) (6)

Given that a single layer of self-attention mechanism has a limited capacity to learn
from surrounding nodes, to further enhance the representational ability of each output
features of node, GAT introduces the application of multi-head attention mechanisms
within the network. By utilizing multiple attention mechanisms to calculate the attention
coefficients of surrounding nodes, the learning effectiveness of the model becomes more
stable. Executing k attention mechanisms and then concatenating the features they generate,
the specific output feature representation is obtained through:

h
′
i(K) = ||Kk=1σ( ∑

j∈Ni

αk
ijW

khj) (7)

where αk
ij is the normalized coefficient computed by the kth attention mechanism αk and

Wk is the weight matrix corresponding to the input linear transformation.

2.2. Biaffine Attention

The biaffine attention mechanism is used as an alternative to the traditional MLP-
based attention mechanism and affine label classifier, not using the LSTM recurrent state
in the dual affine transformation, but instead first reducing dimensionality through MLP
operations. Based on the aforementioned performance characteristics, the biaffine attention
mechanism is employed to capture the probability distribution of the relationship between
every pair of words in a sentence, as described by:

ha
i = MLPa(hi) (8)

ho
j = MLPo(hj) (9)

The hidden states hi and hj obtained from the word embeddings Wi and Wj are
processed through a multilayer perceptron to obtain the aspect feature representation ha

i
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and the opinion feature representation ho
j . The adjacency matrix R ∈ Rn×n×m is obtained

through Equations (10)–(12), which represents the relationships between words.

gi,j = haT
i U1ho

j + U2(ha
i ⊕ ho

j ) + b (10)

ri,j,k =
exp(gi,j,k)

∑m
l=1 exp(gi,j,l)

(11)

R=Biaffine(MLPa(H), MLPo(H)) (12)

where, U1, U2, and b are trainable weights and bias;⊕ denotes concatenation; gi,j represents
the relationship between wi and wj; m is the number of relationship types; ri,j,k represents
the score for the kth relationship type of the word pair (wi, wj). Biaffine is the integration
of the aforementioned steps. Figure 4 shows a schematic diagram structure of model.

Embeddings:xi

1
1
1
1

…

=

T

H (arc-dep) 1 U (arc) H (arc-head) S (arc)

MLP:hi (arc-dep) , hi (arc-head)

BiLSTM:ri

ROOTroot Kim NNP

. .

Figure 4. The Biaffine attention architecture.

2.3. BiLSTM

The bidirectional long short-term memory (BiLSTM) incorporates a refined gate mech-
anism and memory cells, optimizing the feature extraction process by selectively retaining
significant features and omitting the less relevant ones. Specifically, i represents the input
gate, which is responsible for handling the input at the current sequence position; f is the
forgetting gate, indicating the degree of forgetting the hidden cell state of the previous
layer, which is used to forget unimportant information; o indicates the output gate, which
is used to determine the output value of the information; memory cells are used to record
additional information. Figure 5 depicts the architectural framework of BiLSTM.

LSTM

LSTM

X1

LSTM

LSTM

X2

LSTM

LSTM

X3

LSTM

LSTM

Xn

...

...

h1 h2 h3 hn

Figure 5. The BiLSTM architecture.
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At time t, given the current input xt, the calculation procedure of the bidirectional
LSTM is as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (13)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (14)

ct = itgt + ftct−1 (15)

gt = tanh(Wxcxt + Whcht−1 + Wccct−1 + bc) (16)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (17)

ht = ot tanh(ct) (18)

where t is the current moment; σ represents the sigmoid function; hT−1 and ct−1 represent
the hidden vector of the previous moment, respectively; it representative enter door; WI x,
WIh, WIc, bI are, respectively, corresponding to the weighting matrix and deviation; the
same, ft forgotten door, Wx f , Wh f , W f c, b f , respectively, correspond to the weighting
matrix and deviation; ct is the cell state at time t; ot represents the output gate, Wxo, Who,
Woc, bo, respectively, correspond to the weighting matrix and deviation. Finally, the results
obtained from the forward LSTM and the backward LSTM are spliced together through (13)
to (19) to obtain hi:

hi =
−→
hi ⊕

←−
hi (19)

3. Proposed Framework

This paper describes a novel hybrid model known as BiLSTM-BGAT-GCN. It initially
utilizes the hidden representation sequence obtained from the BERT pre-trained language
model. Then, it processes through the four given types of language features, biaffine
attention based on bidirectional long short-term memory, and graph attention neural
networks. Subsequently, it employs a multi-branch GCN method to integrate multiple
language feature representations obtained after multiple processing steps. Finally, the final
aspect sentiment triplets are generated through surface-level interactions, output layer
processing, and training steps. In addition, the architecture of BiLSTM-BGAT-GCN is
described in Figure 6.

BERT

Grid Tagging Scheme

Triplet Decoder

Triplet Set:
(Aspect,Opinion,Sentiment)

BiLSTM-Biaffine 
AttentionGAT Layer

Refine Strategy

GCN Layer

w1      w2      w3      ...      wn

h1      h2      h3      ...      hn

...

... ...

...

h1      h2      h3      ...      hn

Biaffine Attention

BiLSTM

...

MLPa MLPo

Syntactic 
Dependency Type

Part-of-Speech 
Combination

Tree-based 
Distance

Relative Position 
Distance

w
1      w

2      w
3      ...      w

n

Linguistic Features

...

Figure 6. The architecture of the proposed BiLSTM-BGAT-GCN model.
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3.1. Task Formulation

Given a sentence containing n words, the goal is to output a set of triplets
T = {(a, o, s)m}|T|m=1, where a and o represent aspect item and sentiment item. The af-
fective polarity s belongs to the affective label set S = {POS, NEU, NEG}.

3.2. Input and Encoding Layer

The effectiveness of BERT pre-trained language models has been demonstrated on mul-
tiple tasks. For an input sentence denoted by W = {w1, w2, · · · , wn} with n signs, hidden
by both the word embedded model based on BERT said sequence H = {h1, h2, · · · , hn}.

3.3. Relation Definition and Table Filling

To provide more accurate information to the model and thus define the task objectives
more precisely. Based on the four basic relations in the existing grid labeling scheme, the
relationship between words is defined in greater detail, and the relationship definitions
between ten kinds of words are given. Table 2 provides the corresponding interpretations,
where NI represents relational inclusion that is not defined. According to the above rules,
this paper constructs a relational table for each sentence using grid notation. In Figure 7,
we visually represent the definitions provided by the table through an example sentence.

Table 2. The definitions of defined ten relations.

Sequence Relationship Meaning

1 B− A Beginning of aspect term
2 I − A Inside of aspect term
3 A Aspect term
4 B−O Beginning of opinion term
5 I −O Inside of opinion term
6 O Opinion term
7 POS Sentiment polarity is positive
8 NEU Sentiment polarity is neutral
9 NEG Sentiment polarity is negative

10 NI Not included in the above
relationships

NI NI NI NI NI NI NI NI NI NI

NI B-A A NI POS NI NI NI NI NI

NI A B-A NI POS NI NI NI NI NI

NI NI NI NI NI NI NI NI NI NI

NI POS POS NI B-O NI NI NI NI NI

NI NI NI NI NI NI NI NI NI NI

NI NI NI NI NI NI NI NI NI NI

NI NI NI NI NI NI NI B-A NI NEG

NI NI NI NI NI NI NI NI NI NI

NI NI NI NI NI NI NI NEG NI B-O

The gourment servicethebutdelicious is poorfood is

The

gourment

food

is

delicious

service

the

but

is

poor

Figure 7. A grid marking of a sentence.
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3.4. Linguistic Features

According to the structural features of the graph data, the relationship of linguistic
features are established within the graph G = (V, E), where V represents the vertices
(i.e., nodes or words) and E represents the connection between two nodes (i.e., dependencies
or linguistic relationships). Usually, this relationship is represented in matrix form. In this
paper, inspired by Chen et al. [24], four linguistic feature matrices are introduced. Before
being input into the graph convolutional neural network, these four language features need
to be encoded as adjacency matrices and initialized as Rsdt, Rpsc, Rtbd, and Rrpd, as shown
in Figure 8.

In Figure 8, taking syntactic dependency types as an example, if there is some depen-
dency between wi and wj, assuming the dependency is the noun subject (nsubj), then Rdep

i,j

is initialized as an embedding of nsubj; conversely, if there are no dependencies, Rdep
i,j is

initialized to an m-dimensional zero vector. Similarly, if wi and wj are a part-of-speech
combination, such as a combination of a common noun (NN) and a determiner (DT), then
Rdep

i,j is initialized as an embedding of (NN-DT); or a combination of an adjective (JJ) and a

common noun (NN) can initialize Rdep
i,j as an embedding of (JJ-NN). Tree-based distance

and relative position distance are similarly defined.

The setting is nice

The

setting

is

nice

DT-DT DT-NN DT-VBZ DT-JJ

NN-DT NN-NN NN-VBZ NN-JJ

VBZ-DT VBZ-NN VBZ-VBZ VBZ-JJ

JJ-JJVBZ-JJNN-JJDT-JJ

The

setting

is

nice

0 1 3 2

1 0 2 1

3 0 1

011

The setting is nice

self det

det self nsubj

-

selfcopnsubj

0 1 2 3

1 0 1 2

2 1 0 1

0123

Syntactic Dependency Type Part-of-Speech Combination

Tree-based Distance Relative Position Distance

-

-

copself

- -

2

2

-

The setting is nice

DT NN VBZ JJ

cop

nsubj

det

Figure 8. Four types of features for a sentence.

3.5. BiLSTM-Biaffine Attention

This method addresses the shortcomings of conventional feature extraction and re-
lational understanding techniques, which often fail to effectively leverage long-distance
contextual data and overlook complex interactions between aspect and opinion terms. By
integrating the biaffine attention mechanism with BiLSTM, the model enhances aspect-
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level sentiment analysis. BiLSTM excels in capturing long-term textual dependencies and
contextual nuances, whereas the biaffine attention mechanism further refines how attention
weights are distributed across text elements, particularly between aspect and opinion terms.

This fusion strategy not only enhances the ability of model to understand context,
improving the precision of feature extraction and the capture of complex sentiment rela-
tionships, but also significantly boosts the generalization capabilities of model, enabling it
to more accurately analyze and predict aspect-level emotions in diverse texts. By adopting
this approach, we aim to overcome the limitations of traditional sentiment analysis methods
and provide a more nuanced and efficient solution for complex textual sentiment analysis.

The sequence of hidden textual representations H = {h1, h2, · · · , hn} obtained by
BiLSTM is first reduced by MLP and then input into the biaffine attention mechanism,
which is calculated through:

ha
i = MLPa(hi) (20)

ho
j = MLPo(hj) (21)

Then, the adjacency matrix R is obtained by the biaffine attention mechanism
as follows:

gi,j = haT
i U1ho

j + U2(ha
i ⊕ ho

j ) + b (22)

ri,j,k =
exp(gi,j,k)

∑m
l=1 exp(gi,j,l)

(23)

R = Biaffine(MLPa(H), MLPo(H)) (24)

where U1, U2 and b are trainable weights and bias; ⊕ denotes connection; gi,j is the relation-
ship between wi and wj; m is the count of relationship types; and ri,j,k represents the rating of
the word for the K-th relation type of (wi, wj); the adjacency matrix R ∈ Rn×n×m represents
the relationship between words. Biaffine is the integration of the aforementioned steps.

3.6. BiLSTM-BGAT-GCN Model

Prior to integration into the graph convolutional neural network, the data traverse six
distinct pathways. The initial two pathways remain as they were, one facilitating the gener-
ation of a new adjacency matrix Rba via the biaffine attention mechanism. Another pathway
utilizes the graph attention network to derive a new node feature table Ĥgat. Building
on this, four additional pathways focus on linguistic features: syntactic dependency type,
parts of speech combinations, syntactic tree-based distance, and positional relationships.
Each of these pathways, respectively, results in four new adjacency matrices: Rsdt, Rpsc,
Rtbd, and Rrpd.

The adjacency matrix Rsdt, Rpsc, Rtbd, and Rrpd obtained according to the four language
features introduced above are, respectively, input into GCN to carry out repeated graph
convolution operations. The new nodes represent Hsdt, Hpsc, Htbd, and Hrpd. Specific
calculations are given in Equations (25)–(28):

(1) Syntactic dependency types

H̃sdt
k = σ(Rsdt

:,:,k HWk + bk) (25)

(2) Part-of-speech combination

H̃psc
k = σ(Rpsc

:,:,k HWk + bk) (26)

(3) Tree-based distance

H̃tbd
k = σ(Rtbd

:,:,k HWk + bk) (27)
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(4) Relative position distance

H̃rpd
k = σ(Rrpd

:,:,k HWk + bk) (28)

where Rsdt
:,:,k ∈ Rn×n, Rpsc

:,:,k ∈ Rn×n, Rtbd
:,:,k ∈ Rn×n and Rrpd

:,:,k ∈ Rn×n said, respectively,
according to the relationship between the first k type modeling of adjacency matrix; Wk and
bk are to learn the weights and bias; σ is the activation function. Then, the adjacency matrix
modeled from all relationship types is aggregated to obtained through:

Ĥsdt = f (H̃sdt
1 , H̃sdt

2 , · · · , H̃sdt
m ) (29)

Ĥpsc = f (H̃psc
1 , H̃psc

2 , · · · , H̃psc
m ) (30)

Ĥtbd = f (H̃tbd
1 , H̃tbd

2 , · · · , H̃tbd
m ) (31)

Ĥrpd = f (H̃rpd
1 , H̃rpd

2 , · · · , H̃rpd
m ) (32)

where f represents the average pooling function.
Similarly, input adjacency matrix Rba from the BiLSTM-biaffine attention model into

the graph convolutional neural network to obtain new node representation Hba through:

H̃ba
k = σ(Rba

:,:,k HWk + bk) (33)

where Rba
:,:,k ∈ Rn×n are said to be according to the relationship between the first k type

modeling by adjacency matrix; Wk and bk are to learn the weights and bias; and σ is
the activation function. Then, the adjacency matrix modeled by all relationship types is
aggregated to obtain:

Ĥba = f (H̃ba
1 , H̃ba

2 , · · · , H̃ba
m ) (34)

At the same time, input adjacency matrix Rgat from BiLSTM-biaffine attention model into
the graph convolutional neural network to obtain new node representation Hgat through:

H̃gat
k = σ(Rgat

:,:,k HWk + bk) (35)

Ĥgat = f (H̃gat
1 , H̃gat

2 , · · · , H̃gat
m ) (36)

Finally, the final result is obtained through:

H = f
(

Ĥgat, Ĥba, Ĥsdt, Ĥpsc, Ĥtbd, Ĥrpd
)

(37)

R = Rba ⊕ Rsdt ⊕ Rpsc ⊕ Rtbd ⊕ Rrpd (38)

where f represents the average pooling function.

3.7. Refining Strategy and Predict

Firstly, assuming that wi denotes the aspect terms and wj denotes the opinion terms,
the word (wi, wj) is generally predicted for affective polarity, i.e., POS, NEU, or NEG.
Then, the introduction of rii and rjj to refine the word (wi, wj) is calculated by:

sij = hi ⊕ hj ⊕ rij ⊕ rii ⊕ rjj (39)

Passing through Equation (40) to produce the probability distribution of the label pij:

pij = softmax
(
Wpsij + bp

)
(40)

where softmax is an activation function, Wp and bp are learnable weights and biases, respectively.
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3.8. Loss Function

Each of the four language features introduced in this chapter sets constraints Lsdt, Lpsc,
Ltbd, and Lrpd, which are obtained through:

Lsdt = −
n

∑
i

n

∑
j

∑
c∈C

I(yij = c) log(rij|c) (41)

Lpsc = −
n

∑
i

n

∑
j

∑
c∈C

I(yij = c) log(rij|c) (42)

Ltbd = −
n

∑
i

n

∑
j

∑
c∈C

I(yij = c) log(rij|c) (43)

Lrpd = −
n

∑
i

n

∑
j

∑
c∈C

I(yij = c) log(rij|c) (44)

Set a constraint on the adjacency matrix obtained by the biaffine attention mechanism Lba:

Lba = −
n

∑
i

n

∑
j

∑
c∈C

I(yij = c) log(rij|c) (45)

Cross-entropy loss is used for prediction results Lp, which is obtained through:

Lp = −
n

∑
i

n

∑
j

∑
c∈C

I(yij = c) log(pij|c) (46)

where I represents the indicator function; yij is the true value of the word (wi, wj);
c represents a set of the relationship.

The final objective function L is obtained through:

L = Lp + αLba + β
(

Lsdt + Lpsc + Ltbd + Lrpd

)
(47)

where the coefficients α and β are used to adjust the impact of the loss resulting from the
corresponding constraint on the total loss.

4. Experiments and Analysis
4.1. Datasets

In part of datasets, we select datasets that are widely used in aspect level sentiment
analysis tasks, which are derived from SemEval ABSA challenges (Pontiki et al., 2014, 2015,
2016) [25–27]. In addition, the first dataset was modified by Wu et al. [17] according to the
ASTE task, and the second dataset was annotated by Xu et al. [16], whilst Peng et al. [7]
further proposed a corrected version of the dataset. The above two datasets are labeled D1
and D2, respectively. The options include Laptop 14, Restaurant 14, Restaurant 15, and
Restaurant 16. Statistics for these two groups of datasets are shown in Table 3.

Table 3. Data information of datasets.

Dataset 14res 14lap 15res 16res
#S #T #S #T #S #T #S #T

D1

train 1259 2356 899 1452 603 1038 863 1421
dev 315 580 225 383 151 239 216 348
test 493 1008 332 547 325 493 328 525

D2

train 1266 2338 906 1460 605 1013 857 1394
dev 310 577 219 346 148 249 210 339
test 492 994 328 543 322 485 326 514
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4.2. Experimental Parameter Setting

The aspect-level sentiment analysis model based on fusion graph neural network
proposed in this paper is designed and written using Python programming language. The
batch size is set to 8 and the number of model iterations is 100. The dimensional settings
for GAT and GCN are established at 500, with a learning rate of 10−5.

4.3. Baselines

To verify the effectiveness of the proposed BiLSTM-BGAT-GCN model, we conducted
comparisons with several leading baseline models, with the results presented as follows:

Peng-two-stage [7] and its related variants are a series of models in the field of senti-
ment analysis, which extract emotional pairs, opinion terms, and construct triplets through
a two-stage process. Among them, Peng-two-stage+IOG [17] combines IOG technology
to enhance performance; GTS-CNN [17] and GTS-BiLSTM [17] incorporate grid tagging
schemes with CNN and BiLSTM techniques for feature extraction; Dual-MRC [8] con-
structs two machine reading comprehension problems to extract relevant information;
IMN + IOG [17] combines the advantages of interactive multi-task learning networks and
IOG; CMLA [7] uses the attention mechanism for collaborative extraction. RINANTE [7]
is based on word dependency in sentences and extraction rules; Li-unified-R [7] is an
improved version of its original OE component; OTE-MTL [15] achieved triplet extrac-
tion through multi-task learning; JET-BERT [16] simultaneously extracts triplets using
a position-aware tagging approach; BMRC [8] converts the task into a machine reading
comprehension task; and EMC-GCN [24] processes words and edges in sentences through
multichannel graphs. These models possess unique characteristics and advantages, provid-
ing sophisticated and efficient solutions for complex text sentiment analysis.

4.4. Main Results

This section presents the main experimental findings, as illustrated in Table 4 and
Figure 9. Drawing on the data displayed in the table, the following conclusions can be made:

Under the F1 metric, our proposed BiLSTM-BGAT-GCN model achieves scores of
73.36%, 58.05%, 58.61%, and 69.14% on the D1 datasets, respectively. For the D2 datasets,
the performance results are 71.55%, 60.83%, 58.81%, and 66.18%, respectively. A careful
review of Table 3 clearly demonstrates that our BiLSTM-BGAT-GCN model outperforms all
existing pipeline models, including Peng-two-stage + IOG, IMN + IOG, CMLA, RINANTE,
Li-unified-R, and Peng-two-stage. Moreover, it surpasses all MRC-based methods, such as
Dual-MRC and BMRC.
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Figure 9. The results on D1 and D2 datasets.

Further comparison with end-to-end methods reveals that our model also exhibits a
superior performance, outdoing GTS-CNN, GTS-BiLSTM, OTE-MTL, and JET-BERT. Not
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only that, but in comparison with the best baseline model EMC-GCN, our BiLSTM-BGAT-
GCN model also shows significant progress. On the D1 dataset, it secures improvements of
1.65% (73.36–71.71%), 1.25% (58.05–56.80%), (58.61–58.61%), and 0.45% (69.14–68.69%) in
F1 scores across the four sub-datasets. On the D2 dataset, the performances of the BiLSTM-
BGAT-GCN model are only slightly below the EMC-GCN on F1 in Restaurant 15. Fur-
thermore, the remaining performances of the BiLSTM-BGAT-GCN model in Restaurant14,
Laptop14, and Restaurant16 also achieves 1.78% (71.55–69.77%), 5.23% (60.83–55.60%),
0.08% (66.18–66.10%) increases, respectively.

Table 4. Experimental results of each model (%).

Model 14res 14lap 15res 16res
P R F1 P R F1 P R F1 P R F1

D1

Peng-two-stage + IOG 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67
GTS-CNN 70.79 61.71 65.94 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73

GTS-BiLSTM 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
Dual-MRC 71.55 69.14 70.32 57.39 53.88 55.58 63.78 51.87 57.21 68.60 66.24 67.40
IMN + IOG 59.57 63.88 61.65 49.21 46.23 47.68 55.24 52.33 53.75 - - -
EMC-GCN 71.15 72.29 71.71 56.55 57.06 56.80 59.21 58.01 58.61 67.98 69.41 68.69

BiLSTM-BGAT-GCN 73.70 73.02 73.36 62.26 54.38 58.05 52.98 65.57 58.61 66.85 71.60 69.14

D2

CMLA 39.18 47.13 42.79 30.09 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72
RINANTE 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87

Li-unified-R 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
Peng-two-stage 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21

OTE-MTL 62.00 55.97 58.71 49.53 39.22 43.42 56.37 40.94 47.13 62.88 52.10 56.96
JET-BERT 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

BMRC 75.61 61.77 67.99 70.55 48.98 57.82 68.51 53.40 60.02 71.20 61.08 65.75
EMC-GCN 67.40 72.33 69.77 57.00 54.90 55.60 64.01 61.24 62.59 63.93 68.42 66.10

BiLSTM-BGAT-GCN 73.00 70.15 71.55 61.36 60.31 60.83 55.52 62.53 58.81 61.29 71.91 66.18

P, R, and F1 represent precision, recall, and F1 score, respectively. Precision refers to the proportion of samples
that are actually classified as positive categories among all samples classified as positive categories. Recall refers
to the proportion of samples that have been successfully predicted by the model as positive categories among
all actual positive category samples. F1 score is the harmonic mean of precision and recall, which combines the
information of precision and recall, helping us find a balance between precision and recall.

In conclusion, as demonstrated by the results, our proposed BiLSTM-BGAT-GCN
model has proven to effectively perform the ASTE task.

To provide a more intuitive demonstration of the effectiveness of our improvements,
we compared the two following models, as illustrated in Table 5 and Figure 10, where
BGAT-GCN represents the model without the improved biaffine attention mechanism. The
experimental results show that, by introducing bidirectional long short-term memory to
improve the biaffine attention mechanism, the model achieved significant improvements in
three key indicators: precision (P), recall (R), and F1 score. This improvement measure not
only effectively enhances the overall performance of the model, but also further proves the
effectiveness and practicality of this improvement measure in model optimization.

Table 5. Experimental results of each model (%).

Model 14res 14lap 15res 16res
P R F1 P R F1 P R F1 P R F1

D1
BGAT-GCN 72.11 72.70 72.40 56.96 57.80 57.38 55.74 61.06 58.28 65.05 71.89 68.30

BiLSTM-BGAT-GCN 73.70 73.02 73.36 62.26 54.38 58.05 52.98 65.57 58.61 66.85 71.60 69.14

D2
BGAT-GCN 66.64 73.96 70.11 61.67 58.60 60.10 51.76 66.60 58.25 63.71 71.54 67.40

BiLSTM-BGAT-GCN 73.00 70.15 71.55 61.36 60.31 60.83 55.52 62.53 58.81 61.29 71.91 66.18

P, R and F1 represent precision, recall, and F1 score, respectively.
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Figure 10. Comparison results on D1 and D2 datasets.

To delve deeper into the influence of each linguistic feature on our task, we carefully
selected a sentence sample and depicted the distribution of attention weights across each
word, as exemplified in Figure 11. This figure intricately displays each row as the visu-
alization derived from the GCN for every distinct linguistic feature, while every column
unravels the intricacies of how a word is interpreted across the four linguistic features.
Initially, it is clear that GCN’s focus is variably distributed among the sentence’s words.
Take, for instance, Figure 11, where the pivotal word for the branch FG

sdt+GCN is “is”, con-
trasting starkly with its positioning as the final word in the attention sequence ordered by
FG

psc+GCN , which, in turn, allocates a substantial attention weight to “this”. Similar patterns

are observable in FG
tbd+GCN and FG

rpd+GCN . It is further intriguing that should a branch

overlook a specific word, say “is” in both FG
psc+GCN and FG

rpd+GCN , an alternate branch of

the GCN compensates by amplifying its attention on the word, as seen with FG
sdt+GCN and

FG
tbd+GCN . This interplay not only underscores the essence of feature integration but also

highlights the adeptness of our model at synthesizing diverse branch features to enrich text
representation, thereby significantly bolstering the performance of ASTE task.

����+���
�

����+���
�

����+���
�

����+���
�

this food of this isdiner good
Figure 11. Attention distribution on word.
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5. Conclusions and Future Work

This paper introduces an innovative end-to-end model, BiLSTM-BGAT-GCN, aimed
at addressing the task of ASTE. By integrating GCN and GAT, and introducing an im-
proved biaffine attention mechanism, this model significantly optimizes the capability to
process the relationships between aspect and opinion terms within texts. It has enabled
a deeper understanding of the complex relationships between aspect and opinion terms
in texts, while also increasing the accuracy and efficiency of sentiment triplet extraction.
Moreover, by incorporating multiple linguistic features, the model has further enhanced
its comprehensive understanding of texts, making sentiment triplet extraction even more
precise. This innovation not only provides an effective technical approach to solving the
ASTE task but also offers a new perspective for sentiment analysis research in the field of
natural language processing. Experimental results demonstrate that the proposed BiLSTM-
BGAT-GCN model achieves outstanding performance across multiple standard datasets,
showing significant improvements, especially in capturing complex textual relationships
and enhancing sentiment analysis accuracy, compared to existing methods. Future research
will explore the further optimization of model parameters and structures to adapt to a
more diverse range of text types and sentiment analysis tasks. Additionally, considering
the richness of multimodal data, combining textual information with other modalities such
as images and videos to more comprehensively understand and analyze sentiments is also
a direction worth further investigation.
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