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Abstract: With the development of digital holography, the accuracy requirements for the reconstruc-
tion phase are becoming increasingly high. The transfer function of the double fast transform (D-FFT)
algorithm is distorted when the diffraction distance is larger than the criterion distance dt, which
reduces the accuracy of solving the phase. In this paper, the Fresnel diffraction integration algorithm
is improved by using the low-pass Tukey window to obtain more accurate reconstructed phases. The
improved algorithm is called the D-FFT (Tukey) algorithm. The D-FFT (Tukey) algorithm adjusts the
degree of edge smoothing of the Tukey window, using the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) to remove the ringing effect and obtain a more accurate reconstructed
phase. In a simulation of USAF1951, the longitudinal resolution of the reconstructed phase obtained
by D-FFT (Tukey) reached 1.5 µm, which was lower than the 3 µm obtained by the T-FFT algorithm.
The results of Fresnel holography experiments on lung cancer cell slices also demonstrated that the
phase quality obtained by the D-FFT (Tukey) algorithm was superior to that of the T-FFT algorithm.
D-FFT (Tukey) algorithm has potential applications in phase correction, structured illumination
digital holographic microscopy, and microscopic digital holography.

Keywords: Fresnel diffraction convolution; limitation of diffraction distance; ringing effect; Tukey
window; under-sampling effect

1. Introduction

As an important method for reconstructing object light in digital holography, Fresnel
diffraction integrals are widely used in many research areas related to digital hologra-
phy such as phase correction [1–3], structured illumination digital holography [4–7], and
microscopic digital holography [8–10]. Since this integral has no analytical solution in
most cases and requires the help of the fast Fourier transform (FFT) to obtain a numeri-
cal solution, several algorithms have been developed. The first algorithm requires only
one FFT operation and is called the S-FFT algorithm. Restricted by Nyquist’s sampling
theorem, the S-FFT algorithm is suitable for dealing the problems with long diffraction
distances. When the Fresnel diffraction integral is considered a convolution process, it can
be accomplished with the D-FFT algorithm, which requires two FFT operations, or with the
T-FFT algorithm, which requires three FFT operations [11]. Since the size of the observation
surface reconstructed by the S-FFT algorithm is related to the diffraction distance, the wave-
length, and the number of samples, the T-FFT algorithm or the D-FFT algorithm is often
chosen in practice. Examples include color digital holography [12,13], and reconstructing
holograms using controlled magnification [14]. Since the transfer function in the D-FFT
algorithm has an analytic expression, while the T-FFT algorithm requires the use of FFT to
calculate the transfer function, which not only increases the amount of computation but
also may introduce errors, it is usually considered that the former calculation results are
better than the latter [15]. However, when solving the diffraction field at a far distance, the
D-FFT algorithm will lead to under-sampling and noise increases in both the amplitude and
phase [16] and even obtains worse results than the T-FFT algorithm. When dealing with
problems requiring a high accuracy of reconstructed amplitude and phase such as phase
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correction, structured illumination digital holographic microscopy, and microscopic digital
holography, the two existing algorithms cannot meet the demand, and a more accurate
calculation method is urgently needed.

To pursue more accurate calculated results, many studies have been carried out.
For example, digital hologram apodization [17], zero-padding, and then extending the
hologram eliminates any ringing noise due to aperture diffraction [18], optimizing the
sampling resources of the S-FFT algorithm to remove noise from high-frequency component
aliasing [19], analyzing the applicable conditions of each existing diffraction integration
algorithm to obtain the best reconstruction results [20], and improving existed diffraction
convolution algorithms [21–24]. In terms of the improvement of diffraction convolution
algorithms, there are many methods such as limiting the bandwidth of the transfer function
using an ideal low-pass filter [21], extending the unmixed bandwidth of the transfer
function by rearranging the sampling points in the spatial frequency domain [22], carrying
out polynomial decomposition of the transfer function [23], and replacing the traditional
Fourier transform in the reconstruction process with the fractional Fourier transform to
utilize more high-frequency components [24]. Among these, for the improvement of
the transfer function, two common methods are filtering the transfer function with a
rectangular window (D-FFT (rect)) [21] and resampling the distorted part of the transfer
function [22]. However, filtering the transfer function with a rectangular window will cause
a ringing effect because of the sharp edge, and using a non-uniform FFT to resample the
aliasing part of the transfer function will cause a similar amplitude and phase error to the
T-FFT algorithm.

In this paper, the T-FFT algorithm and D-FFT algorithm are briefly introduced at first.
Then, the results of the T-FFT algorithm and D-FFT algorithm are compared with examples
to illustrate the problems of the D-FFT algorithm. Based on the above analysis, the D-FFT
algorithm is improved, and finally, the simulation results before and after the improvement
and comparison examples of lung cancer cells’ experimental measurements are given. The
experimental results show that the improved Fresnel diffraction convolution algorithm
eliminates the under-sampling effect of the transfer function without causing the ringing
effect, and a higher resolution of the phase distribution is obtained.

2. Methods

Practical numerical calculation of Fresnel diffraction integrals with the help of Fourier
transforms proceeds as follows:

U(x, y) = F−1{F{Uo(x, y)}H(u, v)}, (1)

where F{} stands for the Fourier transform, F−1{} stands for the inverse Fourier trans-
form, and u and v are the spatial–spectral coordinates. The Fourier transform and its
inverse are usually accomplished with FFT and IFFT (inverse fast Fourier transform). When
the T-FFT algorithm is used, the transfer function H(u, v) is calculated using the following
equation:

H(u, v) = F
{

exp(jkd)
jλd

exp
[

jk
2d

(
x2 + y2

)]}
, (2)

Since H(u, v) has analytic solutions:

H(u, v) = exp
{

jkd
[
1 − λ2

(
u2 + v2

)
/2

]}
, (3)

The corresponding diffraction algorithm is referred to as the D-FFT algorithm. In
order to ensure the accuracy of the calculation results, both the D-FFT algorithm and the
T-FFT algorithm must satisfy the Nyquist sampling theorem. Assuming that the optical
field Uo(x, y) satisfies the sampling theorem, to obtain the correct calculation results, it is
required that the maximum phase difference between two neighboring sampling points in
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Equations (2) and (3) is no greater than π. Based on this condition, it is easy to infer that the
diffraction distance d must be satisfied as follows:

d ≤ Lo
2/(λN), for D-FFT (4)

d ≥ Lo
2/(λN), for T-FFT (5)

where Lo is the physical size of the diffraction surface, and N is the number of sampling
points. The criterion of the two algorithms is dt = Lo

2/(λN) [16].
The T-FFT algorithm is applicable for a problem of diffraction distance more than

dt, but the calculation error cannot be ignored since there is no analytical solution for the
transfer function of T-FFT. The transfer function of the D-FFT algorithm has an analytical
solution; however, it is not suitable for the issue of d ≥ Lo

2/(λN). According to ref. [21],
forcing the part of phase distortion in the transfer function of the D-FFT algorithm to be
zero can engineer the D-FFT algorithm to be applicable to a problem of diffraction distance
more than dt, but it will introduce a ringing noise. To eliminate the under-sampling effect of
the transfer function without inducing the ringing effect, a two-dimensional Tukey window
with smooth edges is selected to filter the transfer function of D-FFT:

P(u, v) =

{
0 if | ∂(phase)

∂(u) | > π or | ∂(phase)
∂(v) | > π

tukwin(u, v,β) otherwise
, (6)

where phase is the phase of the transfer function of D-FFT, tukwin(u, v,β) is a two-
dimensional Tukey window in the frequency domain, the edge smoothing factor β is
the coefficient of the value interval at (0, 1), and u, v are the frequency domain coordinates.

The final improved transfer function of the D-FFT algorithm is

H′(u, v) = exp{jkd
[
1 − λ2

(
u2 + v2

)
/2

]
} × P(u, v), (7)

In order to visualize the effect of β values on the edge portion of the Tukey window,
the profile lines of the Tukey window with different β values are shown in Figure 1A.
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completely filtered out. At the same time, the ringing effect can be suppressed because the 
Tukey window has smooth edges. 

Figure 1. (A) Tukey windows for different β values; (B) phase of H(u, v) before improvement;
(C) phase of H(u, v) after improvement.

As shown in Figure 1A, when β = 0, the Tukey window is an ideal low-pass filter
(rectangular window). When 0 < β < 1, the edge portion of the Tukey window becomes
smoother as β increases, and it still has multiple points at its top equal to 1. When β is equal
to 1, the non-zero portion of the Tukey window resembles a Gaussian low-pass filter. When
comparing Figure 1B,C, it can be seen that after the transfer function of the D-FFT algorithm
is filtered by the Tukey window (β = 0.2), its under-sampling parts are completely filtered
out. At the same time, the ringing effect can be suppressed because the Tukey window has
smooth edges.

3. Experiments and Results

To compare D-FFT, T-FFT, D-FFT (rect), and D-FFT (Tukey), Young’s double-hole
diffraction issue was analyzed with the parameters listed in Table 1. The slit was used as
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the light source. The simulation results of the intensity profiles calculated with different
algorithms are shown in Figure 2.

Table 1. Parameters of Young’s double-hole diffraction.

Parameter Variable Value

Wavelength λ 0.589 µm
Distances from object to light source s 100 mm
Distances from object to observation d 500 mm

Diameter of holes D 0.05 mm
Distance of holes a 0.5 mm

Illuminating slit width b s λ/2a
Number of sub-light sources M 41

Size of hologram Lo 10 mm
Number of sampling points N 1024
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As shown in Figure 2, the results when using the ideal low-pass filter window
(Figure 2C) were much better than those before the improvement (Figure 2A). However,
due to the ringing effect, there was still jumping at the edges of the picture and the peak
of the diffraction fringes in Figure 2C. It is worth mentioning that the edges also sharply
jumped when using the T-FFT algorithm, as shown in Figure 2B, which was inconsistent
with the experimental observation. However, Young’s double-hole diffraction results when
using D-FFT (Tukey) (Figure 2D) were in good agreement with the experimental results.
There was neither sharp jumping at the edges nor absence of distortion at the peak of the
diffraction fringes.

According to the theory of Goodman, the distribution of diffraction light field at
a point on the observation surface is mainly derived from a limited-width (4

√
λd) area

around the corresponding point on the diffraction surface [16]. That is to say, a spatial
filter limiting is added to filter out some of the high-frequency components of the spectrum
without increasing the sampling point. The amplitude of the D-FFT algorithm’s transfer
function is always equal to 1 while the amplitude of the high-frequency component of
the T-FFT algorithm’s transfer function is much lower than the amplitude of the low-
frequency component [25]. That is why the T-FFT algorithm has better results than the
D-FFT algorithm for d ≥ Lo

2/(λN). However, in practice, the amplitude and phase of the
transfer function H(u, v) used in the T-FFT algorithm cannot completely avoid the under-
sampling effect, so the errors of the T-FFT algorithm still cannot be ignored, especially when
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dealing with diffraction problems with lots of intricate structures, for example, microscopic
digital holography.

It should be noted that the more β increases, the more the high-frequency component
of the transfer function is lost, and that not all values of β apply to this diffraction problem.
In order to visualize the effect of different values β on the diffraction results of Young’s
double-hole diffraction issue, we considered cases where β took other values, as shown in
Figure 3.
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In Figures 2 and 3, it can be seen that when β is smaller than 0.2, the intensity profile of
Young’s double-hole diffraction oscillates at the fringes, the ringing effect is not eliminated,
and the fringes located at the edges of the picture are drowned in the noise. When β is
greater than 0.2, the number of fringes in Young’s double-hole diffraction field obtained
by the D-FFT (Tukey) algorithm decreases. When β = 0.3, the amplitude of the fringes
at the edges of the picture is significantly reduced, although there are still 15 fringes in
Figure 3B. When β takes 0.5 and 0.7, there are only 13 fringes in Figure 3C,D. In other
words, the degree of edge smoothing of the Tukey window directly affects the accuracy of
the calculated amplitude distribution, and the value of the edge smoothing factor β needs
to be selected according to the actual situation when using the D-FFT (Tukey) algorithm to
deal with different diffraction problems.

To compare the reconstructed amplitudes and phases of the D-FFT (Tukey) and T-FFT
at diffraction distances more than dt, an extra simulation experiment of Fresnel holographic
reconstruction of USAF1951 was conducted. In the simulation, limited by the set pixel size,
the pixel widths of the horizontal lines were one row of pixels and two rows of pixels in
group 7, element 2. The physical widths of these lines were 1.5 µm and 3 µm, respectively.
The relevant parameters are shown in Table 2.

Table 2. Parameters of simulation of Fresnel hologram.

Parameter Variable Value

Wavelength λ 0.6328 µm
Pixel size Pix 10 µm

Pixel number of hologram N 1024 × 1024
Diffraction distance d’ 235.5 mm

Reconstructed distance d 353.3 mm
Demarcation distance dt 161.8 mm

Radius of reconstructed light R 706.5 mm
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As mentioned earlier, the two simulations should have had different values of β due
to the different complexities of the objects. That is to say, in practice, D-FFT (Tukey) must
choose an appropriate β value according to the diffractive plane, to obtain the best results. β
can be determined with the help of the peak signal-to-noise ratio (PSNR) and the structural
similarity (SSIM).

PSNR(x, y) = 10 log10 (Max2/MSE(x, y)), (8)

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µx
2 + µy

2 + C1)(σx2 + σy2 + C2)
(9)

where Max is the maximum gray value of the image, MSE(x, y) is the mean square error
between image x and image y, µ is the grayscale mean of all pixel points of the image, σ is
the variance of all pixel points of the image, and σxy is the covariance between image x and
image y. A larger PSNR and SSIM mean a better reconstruction quality.

In the simulation experiment of USAF1951, the object on the diffraction screen was
used as the reference image to obtain two curves of β values versus PSNR and SSIM. The
PSNR and SSIM curves are shown in Figure 4.
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In Figure 4, The PSNR of the reconstructed amplitude obtained by the D-FFT algorithm
is only 6.335, while the PSNR of the reconstructed amplitude obtained by the T-FFT
algorithm is 10.89, and the PSNR of the reconstructed amplitude obtained by the D-FFT
(Tukey) algorithm can reach 19.22 when β = 0.89. A similar situation occurs in the SSIM
curves, where the SSIM value of the D-FFT algorithm is 0.9777 and that of the T-FFT
algorithm is 0.9882, whereas the D-FFT (Tukey) can take a maximum SSIM value of 0.9979
at β = 0.91. That is to say, the quality of the reconstructed amplitudes obtained using the
D-FFT (Tukey) algorithm is significantly improved and outperforms the T-FFT algorithm’s
results. From the curves, the maximum values of PSNR and SSIM both appear with the
change in β. The maximum values of PSNR and SSIM appear at β = 0.89 and β = 0.91,
respectively. Considering PSNR and SSIM together, β = 0.9 finally becomes the optimal
value for diffraction calculation. The results obtained by the D-FFT (Tukey) and T-FFT
algorithms are shown in Figure 5.

As shown in Figure 5, the amplitude obtained by the T-FFT algorithm is heavily
contaminated by a ringing noise, with a large number of oscillations in the background
part, while the background part of the amplitude obtained by the D-FFT (Tukey) algorithm
is very homogeneous and the ringing noise is well suppressed. Not only the amplitude but
also the phase obtained by the D-FFT (Tukey) algorithm are superior to the T-FFT. As can
be seen from Figure 5, the phase obtained by the T-FFT algorithm has a pseudo-boundary
at USAF1951 group 6, element 2, and at the same location, the fringe boundary obtained by
D-FFT (Tukey) matches the real situation. Similarly, at the black rectangular hole in the red
box, the phase reconstructed by T-FFT has remarkable oscillations inside the hole, while
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the phase reconstructed by the D-FFT (Tukey) has clear and smooth boundaries. Most
importantly, some fringes of group 7, element 2 calculated by T-FFT are missing, while
the corresponding bars calculated by DFFT (Tukey) are intact, as shown in the blue box of
Figure 5. The above is shown more visually in Figure 6.
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As shown in Figure 6A, in the phase reconstructed by the D-FFT algorithm, all three
fringes in group 7, element 2 of USAF1951 can be resolved, whereas in the phase recon-
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structed by the T-FFT algorithm, there is a severe distortion at this location and only the
centrally located fringe can be resolved. According to the profile line shown in Figure 6B,
the phase distribution inside the rectangular hole obtained by the T-FFT algorithm has
serious oscillations, which cannot distinguish the rectangular hole from the fringe effec-
tively, while the D-FFT (Tukey) algorithm can distinguish the fringe from the rectangular
hole in the same situation. Although the phase inside the rectangular hole obtained by
the D-FFT (Tukey) algorithm still has oscillations, it does not affect the recognition of the
rectangular hole. That is to say, DFFT (Tukey) is capable of obtaining more accurate and
higher-resolution phase distributions than T-FFT.

To verify the effectiveness of D-FFT (Tukey) in practical applications, we discuss a
Fresnel digital holographic diffraction reconstruction issue of a lung cancer slice. The
relevant parameters are shown in Table 3. The experimental light path is shown in Figure 7.

Table 3. Parameters of reconstruction of lung cancer section.

Parameter Variable Value

Wavelength λ 0.671 µm
Magnification of microscope M 20×

Pixel size Pix 3.45 µm
Resolution of CCD N’ 1600 × 1200

Pixel number of hologram N 1600 × 1600
Diffraction distance d’ 246 mm

Reconstructed distance d 98.75 mm
Demarcation distance dt 28.4 mm

Radius of reconstructed light R 150.8 mm
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As shown in Figure 7, a laser with a wavelength of 671 nm is passed through a beam-
splitter prism (BS1) and divided into object light and reference light. The beam on the
reference side is reflected by reflecting mirror M1 and expanded by a 20-times microscope
objective (MO1), then filtered into a spherical wave by a pinhole filter (PF1) with a diameter
of 10 µm, and passed through a Fourier lens (L1) with a focal length of 300 mm, where
the beam is transformed into a plane wave. The plane wave then enters the microscope
objective MO3 and is reflected to the CCD through the beam-splitter prism BS2. The
objective side of the microscope objective MO3 has the same parameters as that of the
microscope objective MO4 in order to compensate for the phase difference caused by MO4.
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The other light is used as the object light, passed through a beam spatial filter (SF2) with
the same parameters as the SF on the reference light side, and then converted into a plane
wave to irradiate the lung cancer cell sections. The object light carrying information about
the lung cancer cells is imaged by a 20-times microscope objective (MO4) with a distance of
246 mm from the imaging plane to the CCD.

During the experiment, a CCD is used to record the image plane amplitude information
of the lung cancer cells passing through the microscopic objective MO3, and then the CCD
is moved in the direction away from the lung cancer slice to take a Fresnel hologram of the
magnified lung cancer cells.

The experimental Fresnel holograms are reconstructed using the D-FFT algorithm,
the T-FFT algorithm, and the D-FFT (Tukey) algorithm. The image amplitude of the lung
cancer cells imaged by the microscopic objective MO4 is used as the reference image for the
calculation of PSNR and SSIM, and the curves of PSNR and SSIM are shown in Figure 8.
From this, the optimal value of β for this diffraction problem can be determined from the
PSNR and SSIM curves.
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In Figure 8, the PSNR of the reconstructed amplitude obtained by the D-FFT algorithm
is 9.5070, the PSNR of the reconstructed amplitude obtained by the T-FFT algorithm is
9.5351, and the PSNR of the reconstructed amplitude obtained by the D-FFT (Tukey)
algorithm is 9.7277. The SSIM curves of the three algorithms have the same trend as
the PSNR curves. The SSIM value of the D-FFT algorithm is 0.9902, the SSIM value of
the T-FFT algorithm is 0.9906, and the SSIM value of the D-FFT (Tukey) algorithm is
0.9908. It can be seen that the PSNR and SSIM of the reconstruction results of the T-FFT
algorithm are higher than those of the D-FFT algorithm, which means that the reconstructed
intensity of the T-FFT algorithm is closer to the reference image than that of the D-FFT
algorithm. The D-FFT algorithm has the lowest PSNR and SSIM, corresponding to the
poorest reconstruction quality. This is consistent with theoretical knowledge and simulation
results. With β increasing, the reconstruction quality of the D-FFT (Tukey) algorithm will
exceed that of the T-FFT algorithm. According to Figure 8, the optimal β = 0.81 leads to the
optimal reconstruction quality of the D-FFT (Tukey) algorithm. The results of the Fresnel
holographic reproduction experiment under the optimal β are shown in Figure 9.

As shown in Figure 9A–C, there are oscillations in the reconstruction amplitude of
the D-FFT, T-FFT, and T-FFT (rect) algorithms. Taking the image in the yellow box as an
example, the existence of the oscillation phenomenon leads to an image background that is
not smooth, and the lung cancer cell boundaries are presented as jagged-like boundaries.
The oscillation phenomenon at the image background of the reconstructed image of D-FFT
(Tukey) shown in Figure 9D is well suppressed, and the edges of the lung cancer cells
are smoother.
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To visualize the oscillations of the reconstructed amplitudes of the different algorithms
more intuitively, the profiles of amplitude at the dashed line in the yellow box and the
solid line in the red box in Figure 9 are given in Figure 10. As shown in Figure 10A, the
reconstructed amplitudes obtained by the D-FFT algorithm, T-FFT algorithm, and D-FFT
(rect) algorithm have different degrees of oscillations at the edges of the field of view, with
the T-FFT algorithm having the most serious oscillations. In contrast, the reconstructed
amplitudes from the D-FFT (Tukey) algorithm at the edge of the field of view have very
smooth profiles, and there is hardly any oscillation in the profiles. There are jumps not only
at the edges but also inside the reconstructed image. As shown in Figure 10B, the amplitude
profiles reconstructed by D-FFT (Tukey) have fewer jumps not only at the edges but also
inside the reconstructed image. That is to say, D-FFT (Tukey) can effectively suppress the
ringing effect.
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In order to demonstrate the superiority of the D-FFT (Tukey) algorithm for reconstruct-
ing the phases in practical applications, the phases reconstructed by different algorithms
are shown in Figure 11.
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When comparing the phases reconstructed by the four algorithms, as shown in
Figure 11, it can be observed that lung cancer cell edges of the phases reconstructed by
D-FFT, T-FFT, and D-FFT (rect) are often discontinuous, whereas the phases reconstructed
by the D-FFT (Tukey) algorithm have smoother edges. In the background of Figure 11, the
other three algorithms show noises similar to parallel pinstripes, while the D-FFT (Tukey)
algorithm eliminates these noises while preserving the original phase of the lung cancer
cells. That is, the D-FFT (Tukey) algorithm obtains a more accurate and higher-quality
reconstructed phase, which is consistent with the simulation results.

4. Conclusions

In summary, a more accurate Fresnel diffraction integration algorithm is urgently
needed because both the D-FFT algorithm and the T-FFT algorithm cannot obtain accurate
amplitude and phase distributions of the diffracted field when dealing with diffraction
problems with diffraction distances exceeding the splitting distance. Based on this need,
the D-FFT (Tukey) algorithm has been proposed in this paper.

The D-FFT (Tukey) algorithm filters the transfer function using a Tukey window with
adjustable edge smoothing, which eliminates the ringing effect while filtering out the phase
distortion part of the transfer function. Since the algorithm filters out the phase-distorted
portion of the transfer function directly using the Tukey window, it avoids the error caused
by using the fast Fourier transform to compute the transfer function when calculating
long-distance diffracted fields and thus improves the resolution of the phase distribution.
The improved algorithm is suitable for diffraction problems where the diffraction distance
is larger than the splitting distance. In particular, the edge smoothing of the Tukey window
used for filtering is affected by β. For any diffraction problem, PSNR and SSIM can be
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calculated according to the actual parameters to select the optimal solution for β, which
makes the D-FFT (Tukey) algorithm generalizable.

The improved algorithm proposed in this paper eliminates the under-sampling effect
of the transfer function without causing the ringing effect, and a higher resolution of the
phase distribution is obtained. It is expected to be applied in areas such as phase correction,
structured illumination digital holographic microscopy, and digital holographic microscopy,
which have stringent requirements for the reconstruction amplitude and phase.
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