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Abstract: This study begins by conducting side milling experiments on SKD11 using tungsten carbide
TiAlN-coated end mills to compare the surface roughness performance between two combinations of
milling process parameters (feed rate and radial depth of cut), along with three ultrasonic-assisted
methods (rotary, dual-axis, and rotary combined with dual-axis). The results suggest that the rotary
(z-axis oscillation) ultrasonic-assisted method may provide better performance. Subsequently, this
superior ultrasonic-assisted method was applied both with and without laser locally preheating
assistance, respectively. Using a Taguchi orthogonal array, milling process parameters (spindle speed,
feed rate, and radial depth of cut) were planned for experiments with the same cutting tool and the
workpiece just mentioned above. The surface roughness serves as the objective function while being
constrained by cutting-tool life. The characteristics of the smaller-the-better in the Taguchi method
were applied to determine the optimal combination of process parameters. Based on the optimal
milling process parameters obtained and the superior hybrid-assisted method adopted, milling
experiments were repeatedly performed to collect the data on cutting force and cutting-tool wear.
Feature engineering was performed on the cutting force signals, and different domain characteristics
from both the time and frequency domains were extracted. Hereafter, feature selection by random
forest and data standardization were further applied to feature extractions, and the data processing
was thus completed. For the processed data, a cutting-tool wear prediction model was constructed
by ensemble learning. This method leverages various machine learning regression models, including
decision tree, random forest, extremely randomized tree, light gradient boosting machine, extreme
gradient boosting, AdaBoost, stochastic gradient descent, support vector regression, linear support
vector regression, and multilayer perceptron. After hyper-parameter tuning, the ensemble voting
regression prediction was performed based on these ten mentioned models. The experimental results
demonstrate that the ensemble voting regression model surpasses the performance of each individual
machine learning regression model. In addition, this regression model achieves a coefficient of
determination (R2) of 0.94576, a root mean square error (RMSE) of 0.24348, a mean squared error
(MSE) of 0.05928, and a mean absolute error (MAE) of 0.18182. Therefore, the ensemble learning
approach has been proven to be a feasible and effective method for monitoring cutting-tool wear.

Keywords: SKD11; rotary ultrasonic; laser preheating; machine learning; ensemble learning

1. Introduction

When the demand for new products rapidly emerges, bringing with it new mold
requirements, manufacturers must efficiently design and produce molds while maintaining
precision. Among the various mold requirements, SKD11 alloy tool steel is a widely used
material for mold manufacturing. SKD11 finds extensive applications in the automotive,
household appliance, and electronics manufacturing industries. It is a high-carbon and
high-chromium alloy steel that exhibits exceptionally high hardness and toughness. This
steel also incorporates elements such as molybdenum (Mo) and vanadium (V), giving

Appl. Sci. 2024, 14, 3811. https://doi.org/10.3390/app14093811 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093811
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14093811
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093811?type=check_update&version=2


Appl. Sci. 2024, 14, 3811 2 of 29

it wear resistance, low deformation, high fatigue strength, and impact resistance charac-
teristics. These qualities make it one of the preferred materials for various applications,
including stamping dies and plastic molds. Heat-treated SKD11 alloy tool steel can achieve
a hardness of HRC 58-62. However, these excellent properties of SKD11 make it a difficult-
to-cut material. Difficult-to-cut materials have poor machinability, high-cutting-power
requirements, and tend to generate a significant amount of cutting heat, resulting in ele-
vated cutting temperatures, reduced tool life, and decreased production efficiency.

As cutting-tool wear increases, the magnitude and fluctuation pattern of cutting forces
also undergo variations. Cutting-tool wear can lead to irregular fluctuations in cutting
forces, causing vibrations during the cutting processes. By analyzing the characteristics
of cutting force fluctuations, the degree of the cutting-tool wear can be inferred, allowing
for the prediction of remaining cutting-tool life. Therefore, in the process of establishing
a cutting-tool wear prediction model, precise monitoring and analysis of cutting force
fluctuations contribute to achieving real-time awareness of the cutting-tool condition,
enhancing the stability and efficiency of the manufacturing processes.

The necessity of establishing a cutting-tool wear prediction model lies in enhancing
the efficiency, quality, and safety of the manufacturing processes. By predicting cutting-tool
wear, the production line can promptly initiate cutting-tool replacement, thereby reducing
downtime and production costs. Furthermore, the cutting-tool wear prediction model
can be employed to optimize cutting parameters, improving machining efficiency. This
helps prevent excessive wear or premature cutting-tool replacement, thus saving costs and
extending cutting-tool life.

With the advancement of the times and the rapid development of technology, product
iteration speeds have increased. At the same time, there is a need to deal with higher manu-
facturing complexity and shorter production cycles, which, undoubtedly, raise research and
development costs, as well as production pressures in the industry. Finding more efficient
and cost-effective ways to shorten production cycles is a challenge for the manufacturing
sector [1,2].

The high strength, hardness, and toughness of SKD11 result in poor machinability.
To meet the precision, stability, and shorter production cycles required for molds, there
are numerous factors to consider during the machining process. These factors include, but
are not limited to, machining parameters, machining assistance, and the impact of tool
wear. Firstly, machining parameters such as cutting speed and feed rate play a crucial
role. Cutting speed directly affects the machining time and tool wear rate, while the
feed rate impacts material removal rates and surface roughness. Secondly, machining
assistance significantly influence the machining process. Effective machining assistance can
extend tool life and enhance product quality. Lastly, tool wear directly affects machining
efficiency and workpiece quality. As tool wear increases, it results in reduced accuracy and
increased surface roughness. Excessive tool wear can also lead to increased cutting forces,
accelerating further tool wear and reducing production efficiency. Therefore, to improve
the machinability of SKD11, enhance machining efficiency, and reduce production costs,
it is essential to identify optimal process parameters and cutting assistance that can help
minimize costs and improve machining efficiency [3].

A literature review on ultrasonic-assisted milling examines the influence of ultrasonic
assistance on cutting performance. Kadhim Mejbel et al. [4] proposed axial ultrasonic
vibration on the rotating mill to conduct experiments on hardened AISI H11 tool steel,
using a carbide flat end mill. The experiments involved slot milling under wet cutting con-
ditions with variations in cutting speed, feed rate, and milling depth in both conventional
milling and ultrasonic vibration-assisted milling. The study aimed to investigate the effect
of ultrasonic-assisted machining on surface roughness, surface topography, and subsurface
microhardness. The results indicated that the surface produced by axial ultrasonic-assisted
milling was uniform, and the peak-to-peak value remained consistent, thereby enhancing
surface finish. Additionally, the study verified the importance of axial ultrasonic vibration
on rotary tooling for improving machining surface quality, as this vibration imparts a
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hammering action on the cutting-tool tip, making the cutting marks left by the teeth flat.
Compared to conventional milling, ultrasonic-assisted milling resulted in a significant
reduction of surface roughness, Ra, with up to 89.7% improvement. Tsai et al. [5] utilized
cemented carbide flat end mills to conduct the ultrasonic-assisted end milling of AISI420
mold steel by varying the ultrasonic vibration frequencies and amplitudes, the rake an-
gles and helix angles of the cutting-tool. The study aimed to improve machined surface
roughness and cutting-tool wear via the assisted system. In addition, the effects of the
input voltage, cutter stretch length, and holding force on the amplitude of the ultrasonic
vibration system were also investigated. The results showed that the ultrasonic ampli-
tude increased with increasing stretch length and input voltage. In addition, a proper
holding force and an optimum amplitude, which are related to the best surface finish,
were ascertained. The machined surfaces with ultrasonic-assisted milling exhibited better
uniformity and smoothness as compared to those machined under the same conditions
without assistance. In addition, the cutting-tool wear was slower during ultrasonic-assisted
milling, which leads to an extension of tool life. Cutter geometry, such as positive rake angle
with a larger helix angle of 45◦, and vibration parameters, such as a frequency of 50 kHz
and an amplitude of 2.2 µm, provided better surface smoothness and smaller cutting-tool
wear during ultrasonic-assisted milling. Ding et al. [6] investigated cutting machinability
improvement in two-dimensional ultrasonic-assisted micro-end-milling on hardened tool
steel. By varying the vibration parameters, such as amplitude and the frequency of ultra-
sonic assistance, experiments were conducted for both conventional and ultrasonic-assisted
milling to examine their effects on surface roughness and cutting-tool wear under process
parameter conditions. The results showed that cutting-tool wear in ultrasonic-assisted
milling was reduced by approximately 5 to 20%. As the amplitude and frequency of
the ultrasonic-assisted system increased, both cutting-tool wear and surface roughness
decreased. Compared to conventional milling, this two-dimensional ultrasonic assistance
effectively enhanced the overall machining performance. Gao et al. [7] performed the dry
milling of Ti-6Al-4V with the assistance of longitudinal ultrasonic vibration to enhance
machinability and surface quality. By varying the ultrasonic amplitude, an investigation
was made with respect to cutting forces, cutting temperature, surface topography, and 3D
surface roughness. The results showed that the average cutting forces along the feed and
longitudinal direction, the maximum and average cutting temperature and the mean values
of 3D surface roughness, Sa and Sq, all exhibited reductions from a specific percentage to a
larger extent, respectively, as the ultrasonic amplitude increased from 0 to 6 µm. These are
attributed to the increased amplitude, which increased the separation distance between
the cutting-tool and the workpiece, with friction constraint and contact time between them
being thus reduced.

A literature review on laser-assisted milling examines the effect of thermal preheating
on cutting performance. Kumar and Melkote [8] compared the advantages of laser-assisted
micro milling on process responses, such as material removal rates, cutting-tool wear,
cutting force, and surface finish. They utilized TiAlN-coated tungsten carbide end mills
to perform micro slot milling experiments on A2 tool steel (62 HRC), with and without
laser assistance, under a proper micro milling condition. The results showed an average
reduction in cutting force of up to 69% with laser assistance. They also indicated that
cutting-tool wear is significantly less with laser assistance, even when the material removal
rates are increased by six times higher than the cutting conditions recommended by the tool
manufacturer. Through the proper selection of cutting-tool diameter relative to laser spot
size to handle the proper laser thermal preheating, better surface roughness and reduced
cutting-tool wear can be obtained due to reduced burr height formation. Brecher et al. [9]
studied the impact of laser-assisted milling on advanced materials’ cutting forces and
tool flank wear without cooling lubricants. They proposed an innovative laser-assisted
equipment that guides the laser beam through an HSK tool interface, directing irradiation
onto the cutting surface of the workpiece in the machining area. The milling experiments
were conducted on Inconel 718, using cemented carbide end mills with TiAlN coatings on
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a 5-axis machining center. The results showed that the cutting forces along Fx, Fy, and Fz
directions were reduced by 40%, 60%, and 60%, respectively, for the local plastification of
workpiece material in laser assistance. Laser assistance may effectively reduce the cutting
forces and flank wear with optimized laser parameters. Woo and Lee [10] studied the
machining characteristics of laser-assisted milling on cylindrical shape workpieces, focusing
on AISI 1045 and Inconel 718. They proposed a method for three-dimensional laser-assisted
milling suitable for cylindrical workpieces and investigated its effects on surface roughness
and cutting forces. Firstly, finite element analysis was conducted for both materials to
determine the proper preheating temperature and effective cutting depth. Subsequently,
milling experiments were performed, comparing them with conventional milling to observe
variations in surface roughness and cutting forces. The results showed that finite element
analysis for thermal analysis was effective in similar machining processes. Compared
to conventional methods, laser-assisted milling significantly reduced cutting forces and
surface roughness by some specific extent for AISI 1045 and Inconel 718. Additionally, as
the milling position angle increased, both cutting forces and surface roughness increased.
It was suggested to rotate the workpiece clockwise to decrease the angle or utilize tool
edge machining to improve surface roughness and tool life. For AISI 1045, cutting forces
decreased and surface roughness improved with three-dimensional laser assistance, while
for Inconel 718, down milling demonstrated better results.

In their related literature review on high-speed milling, Wang et al. [11] utilized
the split Hopkinson pressure bar technique to obtain stress-strain curves under high
temperature and high strain-rate conditions. They also considered the negative strain rate
and temperature effects of the material to modify the traditional empirical Johnson–Cook
constitutive equation for SKD11 hardened steel. Based on the modified Johnson–Cook
constitutive equation, they proposed a two-dimensional plane-strain finite-element model,
coupled with thermal and mechanical loads for high-speed milling of SKD11. The FE model
aims to simulate the geometric characteristics of chip formations during the high-speed
milling processes and conduct the stress-and-strain quantitative analyses in the shear band.
The cutting forces, cutting temperatures, and cutting performance of coated tools are also
analyzed in the model. The results indicated that a critical value of cutting speed exists
within a specific range. At this speed, stress and strain values increase, causing changes in
stress and strain distributions in the shear band. This leads to the formation of a sawtooth
chip. As the cutting speed continued to increase, the stress, strain, and temperature values
in the shear band also increased, while the distribution in chip region remained unchanged,
resulting in a more pronounced sawtooth chip pattern. The cutting forces decreased as
the cutting speed increased, with temperature exerting a significant influence on cutting
forces. The greater the temperature difference, the faster the decrease in cutting forces.
Wang et al. [12] used TiAlN- and TiSiN-coated carbide tools for the high-speed milling of
hardened steel to determine the wear and breakage mechanisms of the cutting-tool. The
effects of the tool angle, diameter, extended length, cutting forces, and cutting-induced
vibrations on tool conditions were also investigated. The results showed that the primary
patterns of tool wear observed included flank wear, rake face wear, breakage, and micro-
chipping. The breakage modes were coating peeling, chipping, and tip breakage. Increasing
the tool extended length led to increased cutting forces and tool wear, thereby decreasing
surface quality. The abnormal states that occurred after tool wear could be detected through
the signals of cutting forces and cutting-induced vibrations. The TiSiN-coated tools had a
significantly longer tool life compared to the TiAlN-coated tools. Furthermore, experiments
revealed that using cutting tools with a smaller rake angle, a smaller right clearance angle,
and a large helix angle effectively reduced cutting forces, extended tool life, and facilitated
smoother cutting processes. Gong et al. [13] conducted milling experiments on H13 steel
and SKD11 hardened steel by using coated carbide tools to investigate the tool wear and
breakage mechanisms. The results indicated that the hardness of the workpiece had a
dominant effect on tool failure patterns. In milling H13 steel, the tool failure pattern is
flank wear, while in milling SKD11 hardened steel, tools were prone to breakage of the
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rake face due to the initiation and propagation of cracks. Furthermore, the geometry model
of tool wear and breakage was established to explore the variations in cutting-tool angles
resulting from the tool’s wear or breakage mechanisms. Flank wear in H13 reduced the
working clearance angle, while the breakage of the rake face in SKD11 reduced the working
rake angle. Additionally, the effects of tool wear and breakage on cutting forces and chip
formation were analyzed. In milling H13 steel, flank wear increased the friction coefficient
between the tool and the workpiece, leading to increased cutting forces and the formation of
wave-shaped chips. In contrast, in milling SKD11 hardened steel, the breakage of the rake
face increases chip deformation and reduces the sharpness of the cutting edge, resulting in
the curling and separation of sawtooth chips. Pu and Singh [14] conducted high-speed ball
nose end milling experiments on AISI A2 tool steel using PCBN and coated tungsten carbide
tools on a 5-axis machining center, with variations in milling length and cutting speed to
assess changes in the tool wear mechanism and surface roughness. The results revealed
that coated carbide tools performed poorly within the high-speed machining range, while
high-CBN-content PCBN tools are relatively suitable for this hardened steel. Under normal
cutting speeds, the surface roughness of coated carbide tools was twice that of the PCBN
tools. In addition, it led to work hardening on the workpiece, increased hardness, material
drag, surface cracks, and microstructural changes. The failure mode of PCBN tools is
flaking and edge chipping due to the fact that toughness is insufficient for application
when the cutting edge is worn out. Moreover, low-CBN-content PCBN tools lack of the
required toughness and abrasion resistance for the application. Gong et al. [15] conducted
high-speed face milling of the hardened steel SKD11 to investigate the failure patterns
and failure mechanism of a double-layer-coated cemented carbide tool. Additionally, the
effects of cutting-tool damage on cutting forces, surface roughness, and tool failure surface
morphology were also studied. The results showed that the dominating failure pattern of
the coated tool in this study was fatigue fracture, accompanied by chipping. At low cutting
speeds, many fatigue cracks were observed on the rake face, while fatigue striations and
river patterns were observed at the fatigue crack propagation zone with the increase in
cutting speed. In addition, fatigue steps and secondary cracks were found on the fatigue
propagation area under higher cutting speeds. The main fracture modes were intergranular
and transgranular fractures at lower and higher cutting speeds, respectively. The cutting
force had a large influence on tool life in the initial tool wear stage. However, when the
tool breakage and coating peeling occurred, the cutting temperature was the dominating
factor for tool life. With increased flank wear and cutting forces, the values of machined
surface roughness constantly increased.

With regard to the literature review on machine learning, Twardowski et al. [16]
applied two different forms of machine learning classification trees to conduct a study,
utilizing vibration acceleration measurements as the physical parameters, to predict the
possibility of tool wear during the milling process of EN-GJL-250 cast iron. The experiments
were carried out using a four-edge cemented-carbide end mill cutter, with vibration accel-
eration serving as the input data for the models to forecast tool wear. The study obtained
the vibration acceleration results during the experiments and utilized machine learning
techniques, particularly decision trees, to classify tool wear conditions. The experimental
results showed that, compared to regression models, machine learning methods exhibited
significantly smaller errors in predicting tool wear than those reached by the regression
model. Niu et al. [17] used different machine tools conducting two milling-tool life tests
to collect cutting performance data, such as cutting force, vibration, and cutting sound
to construct a tool-wear monitoring model of titanium alloy milling. In the experiments,
the above-mentioned raw signals were captured by multiple sensors and features were
extracted on time, frequency, and time-frequency domains. Then, feature dimensionality
reduction was achieved using an information measurement-based feature selection method,
introducing symmetrical uncertainty to select relevant features. Finally, a multiclass sup-
port vector machine model was developed to identify the wear stages of the tool. The results
demonstrated that the classifier using multiple sensors achieved an overall identification
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accuracy of 96.7%, while the classifiers based on single-force sensors and vibration sensors
exhibited performances of 96.7% and 92.5%, respectively. Mahmood et al. [18] conducted
a study on the prediction of tool wear in various machining processes using machine
learning. They performed different machining experiments such as milling, drilling, and
turning for IN718 material, and each machining process employed six tools in different
states of wear. Initially, experimental data on cutting force from three machining processes
were utilized to extract 15 features. Subsequently, singular spectrum analysis and principal
component analysis were employed for feature selection and dimensionality reduction,
respectively. The severity of tool wear was categorized into five levels, and a prediction
was performed using LightGBM and an ensemble model combining six algorithms: LR,
RF, CART, NB, SVM, and KNN. The results demonstrated the outstanding performance of
the LightGBM model in terms of speed and efficiency, effectively handling huge datasets.
Additionally, the model overcame some of the deficiencies present in previous tool wear
models, such as high dimensionality and overfitting. This improvement is attributed to
the application of dropout and early stopping techniques. Zhou et al. [19] proposed a
milling tool wear prediction method for multi-condition classification and rapid selection
of prediction models based on linear discriminant analysis (LDA) and the ensemble method.
First, the whole wear process of the cutting tool is divided into five stages. Next, the time
domain, frequency domain, and wavelet packet of the raw data are extracted, and the
RF and XGBoost algorithms are used for multi-algorithm feature screening. The LDA
algorithm is used to fuse and downscale the screened features, which are then combined
with the K-means clustering algorithm to group similar working conditions. The samples
are expanded and balanced using the SMOTE algorithm. Then, separate regression and
classification prediction models are created for each group of working conditions. These
models are integrated with an algorithm to determine the optimal prediction model for
each group of working conditions. Compared with the traditional transfer learning algo-
rithms, the proposed method allows for the rapid selection of a prediction model, which is
achieved by dividing new conditions into groups with reduced dimensionality. The test
results demonstrate the method’s effectiveness in addressing the challenges of selecting
prediction models and reducing the number of model transfers. Kilundu et al. [20] explored
the use of data mining techniques for monitoring the tool condition in metal cutting. The
study focused on the analysis of vibration signals, particularly employing the pseudo-local
singular spectrum analysis (SSA) method. The methodology includes the integration of
SSA and band-pass filtering to process vibration signals, aiming to eliminate irrelevant
noise components. A major advantage of this approach is its ability to extract relevant
information from high-frequency vibration components. Additionally, the study explores
the use of the SSA method to define features that are highly sensitive to tool wear, enabling
the monitoring of tool condition. The results demonstrate that this method exhibits a high
recognition rate in identifying tool wear conditions. However, its recognition rate is lower
for dysfunctions in the cutting process, such as chip jamming and unproductive passes.
This highlights the potential application of data mining techniques in tool condition moni-
toring. Huang et al. [21] proposed an indirect tool-wear measurement method based on
multi-information fusion by hybrid machine-learning techniques, to increase the utilization
efficiency of multi-sensor signals and improve the measurement accuracy of tool wear.
Triaxial cutting forces and vibration signals are collected and then preprocessed by wavelet
packet denoising. The time, frequency, and time-frequency domain features are extracted
to reduce information redundancy, and the kernel principal component analysis is applied
to fuse the most sensitive characteristics. A fusion model combining least squares support
vector regression and particle swarm optimization algorithms is established to learn the
dependency relationship between the fused features and tool flank wear. They conducted
milling experiments under multiple working conditions to validate the effectiveness of
the proposed method. The experimental results show that the overall performance of the
proposed method is superior to that of other comparison methods.
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Cutting forces play a crucial role in the machining process, providing vital information
about the cutting tool’s condition, being widely applied in various aspects of manufacturing.
Firstly, by monitoring the changes in cutting force, effective cutting-tool wear monitoring
can be achieved. As the cutting tool wears down, the magnitude and trends in the cutting
force undergo fluctuations, and feature extraction of the cutting force can be used for
analyzing the cutting tool’s condition. Secondly, vibration analysis of cutting forces can be
utilized to assess the stability of a machine tool, thereby detecting the presence of vibrations
or resonances. Additionally, abnormal variations in cutting forces may indicate collisions
between the tool and the workpiece or fixture, facilitating collision detection to ensure
production stability and prevent damage. Cutting force data can also be employed for
optimizing cutting parameters by establishing cutting force models to enhance processing
efficiency and quality.

Machine learning and ensemble learning techniques have demonstrated excellent
performance in constructing cutting-tool wear prediction models. Machine learning can
automatically learn and extract complex features, enhancing the model’s generalization
capability. Ensemble learning, combining predictions from multiple models, effectively
overcomes the limitations of individual models, thereby improving the overall predictive
performance. Through these technologies, it can more accurately predict the trends in
cutting-tool wear variations, achieving precise control over the cutting processes. Cut-
ting force is a complex nonlinear function influenced by various factors, such as material
properties, cutting-tool geometry, and cutting conditions. Utilizing cutting force as in-
put parameters for prediction models comprehensively reflects the characteristics and
variations of the cutting processes. By establishing cutting-tool wear models, the produc-
tion line can promptly initiate cutting-tool replacement, thereby reducing downtime and
production costs.

This study aims to identify the better assisted milling technology and optimal process
parameter combinations for SKD11 hardened steel to enhance cutting performance and
machining quality. Based on these foundations, a cutting-tool wear prediction model
through machine learning is further developed to improve the production efficiency and
cost reductions. The model can predict cutting-tool wear in real-time, reducing the re-
placement times of premature tool disposal, enhancing the rate of high-quality products,
minimizing the degradation of cutting quality due to excessive tool wear, and further
enabling intelligent automatic cutting-tool changing. The goal is to achieve automated and
intelligent manufacturing that maintains both product quality and high efficiency in the
production of hardened steels.

2. Theoretical Foundation
2.1. Cutting-Tool Wear

The cutting-tool wear processes may be divided into three stages: (1) initial wear;
the cutting edge is relatively rough in this stage, and the contact area among the cutting
tool, workpiece, and chips is small. The cutting forces are concentrated at the cutting
edge, leading to a relatively rapid cutting-tool wear in this stage. (2) Normal wear; after
the initial wear occurred in the first stage, the cutting edge gradually becomes smoother,
and the contact area among the cutting tool, workpiece, and chips increases. As a result,
cutting forces are not concentrated at the cutting edge, leading to a slower wear rate.
The cutting tool enters a phase of normal wear during this stage. (3) Severe wear; when
wear progresses to a certain extent, the machined surface becomes rough, and the friction
between the cutting edge and the workpiece increases. The rise in cutting forces and
temperatures leads to an accelerated wear rate. At this point, the cutting edge loses its
ability to remove the workpiece material effectively. The relationship between cutting-tool
wear and machining time for these three stages is depicted in Figure 1.
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2.2. Machine Learning

Machine learning is a critical branch of artificial intelligence that has seen extensive
application in recent years, including our daily lives. In recent times, machine learning has
also gained considerable attention and application in the industrial sector. According to
retrospective studies [22], it can be used for equipment anomaly detection, equipment mon-
itoring, early prevention of equipment failures, reducing downtime, lowering maintenance
costs, and improving production efficiency, all of which hold significant importance. The
core objective of machine learning is to address complex problems, build models capable
of learning from large volumes of data, and discover patterns within the data. It can be
broadly categorized into four main types: (1) supervised learning; supervised learning
primarily involves training models using labeled training data. The model learns the
underlying relationship between inputs and outputs, enabling it to predict the desired
output from input data. (2) Unsupervised learning; in contrast to supervised learning,
unsupervised learning does not require labeled training data. It classifies and clusters
data based on relationships or similarities among data points. (3) Reinforcement learning;
reinforcement learning allows models to learn through interaction with their environment.
Models adjust their behavior based on rewards or penalties received for their actions. This
type of learning is suitable for scenarios where models need to learn through trial and
error, closely resembling human learning. (4) Semi-supervised learning; semi-supervised
learning is a combination of supervised and unsupervised learning. It involves training on
both labeled and unlabeled data to improve prediction accuracy.

Different machine learning methods have their strengths, weaknesses, and suitable
application scenarios. The choice of which method to use should be based on the task
objectives and context assessment.

2.3. Ensemble Learning

In the application of machine learning, the ideal scenario involves training a single
model that learns the patterns or underlying rules within the provided data and makes
accurate predictions for the task at hand. However, in reality, this is often not the case. The
complexity of data, imbalanced data distributions, and the presence of significant noise,
among other factors, make it challenging for a single model to achieve ideal predictive
outcomes. As per the research presented by Sarker [23], these challenges can limit the
performance of a single model.

Ensemble learning is a machine learning strategy that combines predictions from
multiple machine learning models to improve overall predictive accuracy. According to
a review study [24], ensemble learning can enhance generalization capability by training
multiple models and combining their predictions. It has found wide application across
various domains. The following are some common ensemble methods, including bagging,
boosting, stacking, and voting. (1) Bagging is based on random sampling from the raw
data to create multiple different training datasets. Several models are then trained on
these datasets, and the predictions from each model are averaged or voted on to enhance
model performance. Random sampling is achieved through the bootstrap method, where
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subsets are randomly selected, with replacement, from the raw data. For classification
problems, the final output is determined by voting according to the predictions of each
model. For regression tasks, the final output is the average of the predictions from the
models. (2) Boosting is an iterative ensemble learning method. It relies on adjusting
sample weights and iteratively optimizing the model. Each round of learning depends on
the previous round’s results. Errors in predictions are given higher weights to improve
performance in the subsequent round. Each model learns from and corrects errors in the
previous model, resulting in improved predictive accuracy. (3) Stacking aims to combine
the strengths of multiple base models. This approach first trains multiple different base
models, and the final output is derived from a meta-learner that is trained on the predictions
of the base models and their correspondence with the true values. This method leverages
the power of multiple models to enhance overall predictive accuracy. (4) Voting combines
predictions from multiple models. For classification tasks, each model makes predictions,
and the final output is determined by majority voting. In regression problems, the final
prediction is the average of the base models’ predictions. Voting can be effective when
the base models have different strengths and weaknesses, allowing them to complement
each other.

Ensemble learning is widely applied and studied in the field of machine learning.
It leverages the combination of different machine learning models to enhance predictive
capabilities and achieve more accurate results.

3. Approach Methods and Procedures

The side milling experiments of SKD11 alloy tool steel conducted in this study may be
divided into two phases. The 1st phase tries to explore a better ultrasonic-assisted method
for further application in the 2nd phase. Locally, laser preheating assistance is additionally
incorporated with better ultrasonic-assistance to constitute hybrid-assisted milling, in
which process parameter combinations are planned based on Taguchi orthogonal arrays.
In addition, the optimal process parameter can be determined by the Taguchi method.
This study aims to investigate and analyze the influence of milling process parameters
and different assisted machining methods on surface roughness, surface morphology, and
cutting tool wear. Finally, experiments were repeatedly conducted by using the optimal
cutting parameter combination and a hybrid-assisted system to collect the data of cutting
force and cutting-tool wear. Based on these data, a cutting-tool wear prediction model is
constructed through the ensemble learning method. The entire procedure executed in this
study is illustrated in Figure 2.

3.1. Milling Experimental Setup

This study aims to explore various assistance methods and process parameters for
SKD11 milling. The investigation is divided into two phases. In the first phase of the
milling experiment, the focus is on the analysis of cutting performance with no assistance,
rotary ultrasonic assistance, dual-axis ultrasonic assistance, and a combination of rotary
and dual-axis ultrasonic assistance (triple-axis ultrasonic). In the second phase, based
on the results of the first phase analysis, a better assistance method is selected for the
second phase of the milling experiment. The milling parameters are planned by using an
L9 orthogonal array. During the experiment processes, observations and measurements are
made for surface roughness, cutting forces, surface morphology, and cutting-tool wear. A
series of result analyses and discussions are conducted.

The first phase of the experiment aims to explore the effects of different ultrasonic-
assisted methods, namely rotary, dual-axis, and triple-axis, on milling performance. In this
phase, two sets of process parameters are planned, as shown in Table 1. These two sets of
process parameters, with or without assisted methods, respectively, are all conducted in
the experiment, and a total of 8 experiments are executed in this phase. Two factors with
individually extreme levels were designated in this phase.
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Table 1. Process parameter planning for milling experiment of SKD11 in 1st phase.

Set Spindle Speed,
n (rpm)

Radial Depth of
Cut, ae (mm)

Feed Rate,
F (mm/min)

Axial Depth of
Cut, ap (mm)

1 8000 0.1 1000 10

2 8000 0.3 1500 10

The superior ultrasonic-assisted method obtained from the first phase is adopted in
the second phase both in conjunction with and without locally laser preheating assistance,
respectively. The process parameter planning for the milling experiment of SKD11 is
shown in Table 2. Three factors were considered, and each factor had three levels in the
2nd phase. The Taguchi orthogonal array was applied to design milling process parameter
combinations, resulting in a total of 18 experiments, as shown in Table 3. Surface roughness
and cutting-tool life serve as the objective function and constraint, respectively, and the
optimal combination of process parameters was thus determined by the characteristics of
smaller-the-better in the Taguchi method. Based on the optimal milling process parameters
obtained and the superior hybrid-assisted method adopted, milling experiments were
repeatedly performed to collect the data on cutting force and cutting-tool wear.

Table 2. Process parameter planning for milling experiment of SKD11 in the 2nd phase.

Milling Cutter Diameter, d (mm) Φ6

Axial depth of cut, ap (mm) 10

Spindle speed, n (rpm) 8000, 9000, 10,000

Radial depth of cut, ae (mm) 0.1, 0.3, 0.5

Feed rate F, (mm/min) 1000, 1500, 2000

Based on the results from the second phase of the milling experiments, the optimal
process parameters were determined to be a spindle speed of 10,000 rpm, a feed rate
of 1000 mm/min, and a radial depth-of-cut of 0.1 mm, along with a hybrid-assisted
method of rotary ultrasonic combined with local laser preheating. The experiments for
data collection were conducted with these process parameters and assisted configurations.
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Figures 3 and 4 show the milling experimental setup and a photo depicting equipment
configurations. In this setup, rotary ultrasonic-assisted milling is controlled by adjusting
the voltage levels through an ultrasonic driver, and the ultrasonic cutting-tool holder is
driven by a non-contact power transmitter. The resonant effect was used to achieve the
z-axis reciprocal oscillations at a high-frequency of 20 to 40 kHz. Laser assistance involves
localized preheating of the workpiece surface by a laser spot through a laser tube. Data
collection was performed using a dynamometer to capture cutting force signals along the x,
y, and z directions. Through a charge amplifier, the cutting force signals were amplified
and converted into voltage signals. Signal acquisition cards were used to capture the three
cutting force components during machining processes at a sampling rate of 50 kHz, as
shown in Figure 5a. Each data set of the cutting force signal consists of three portions for
each force component during milling processes, i.e., before engagement, engagement, and
after engagement. After each machining operation was completed, the cutting tool was
photographed using a tool microscope, and its flank wear was observed and measured, as
shown in Figure 5b. A total of 90 sets of cutting force signals and cutting-tool wear were
collected for use in building subsequent regression models.
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Table 3. Process parameter combinations by L9 orthogonal array in the 2nd phase.

Sets
Process Parameter Spindle Speed

Level
Radial Depth of Cut

Level
Feed Rate

Level
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2

3.2. Machine Learning Architecture

This study, based on predicting cutting-tool wear using a better assisted milling
method and milling process parameter combinations, consists of the following processes.
First, the data collected in the milling experiments in Section 3.1 undergo data processing,
including data cleaning, feature extraction, data splitting, data standardization, and feature
selection. The purpose of these procedures is to prepare the proper data for constructing
a variety of machine learning models. Second, the dataset is randomly split into an
80% training set and a 20% test set. Various machine learning models are constructed
using the training set, with hyperparameter optimization and model evaluation conducted
through grid search and cross-validation to optimize the basic models. Finally, an ensemble
regression model is constructed, and it is evaluated using the test set data. The framework
is illustrated in Figure 6.
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3.3. Data Processing

In the experiments, x, y, and z-axis cutting force signals were sampled, as shown
in Figure 7. The raw cutting force signals include three portions, i.e., before cutting-tool
engagement, the milling process, and after cutting-tool engagement. The signals before
and after the cutting-tool engagement portions, highlighted by the red dashed boxes, are
removed, while only the stable cutting force signals during the milling process, as indicated
by the green dashed box, are reserved for use.
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In a study investigating the relationship between cutting forces and cutting-tool
wear [25], it was found that by performing a Fourier transform on the cutting force signals,
changes in the amplitudes of rotational speed frequency, tooth passing frequency, and their
harmonics were observed due to cutting-tool wear. Following this research, this study
applied a Fourier transform to the cleaned cutting force signals to analyze them in the
frequency domain, as shown in Figure 8. From the graph, it can be observed that the
dominant frequencies are low-frequency signals, with a frequency of 166 Hz, associated
with a spindle speed of 10,000 rpm and a frequency of 664 Hz, associated with the 4-flute
end mill. The other frequencies are harmonics of spindle speed or tooth passing frequencies.
Since the cutting force signals are predominantly low-frequency signals, a low-pass filter
was applied to complete the data cleaning process.
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The cutting force signals contain various environmental noises and, therefore, it is
essential to extract significant features that reflect cutting-tool wear during the cutting
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processes. As cutting-tool wear progresses, it affects the geometrical shape of the cutting
edges of the end mill, which, in turn, impacts the contact area between the cutting-tool
and the workpiece, resulting in increased cutting forces. Therefore, analyzing variations in
cutting forces in the time domain can provide valuable insights into cutting-tool wear [26].
Moreover, variations in cutting forces also lead to variations in the frequency domain.
Extracting features on frequency domain can also be used to assess the cutting-tool wear
conditions [27]. Therefore, extracting features from different domains in the raw signals
can effectively increase the relevance to cutting-tool wear [28,29]. In this study, feature
extraction was performed on the cleaned cutting force signals, with their expressions, as
indicated in Table 4. The sampling frequency for the cutting forces in this study was set at
50 kHz. Thus, each cleaned cutting force signal for one component contains approximately
200,000 data points. The relevant details are stated as follows:

1. For the x, y, and z axes, 9 features in the time domain and 4 features in the frequency
domain were extracted from the cutting force signals.

2. For the x, y, and z axes, the cutting force signals were divided into 10 windows,
with each window containing around 20,000 data points, as shown in Figure 9. Nine
features in the time domain were then extracted for each window.

3. For the x, y, and z axes, the cutting force signals were transformed into the frequency
domain using a Fourier transform. The frequencies of spindle speed at 10,000 rpm
and 4-flute tooth passing in the experiments were approximately 166 Hz and 644 Hz,
respectively. Therefore, these frequencies within ±5 Hz were extracted, and their
amplitudes were used as features.
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After completing the data feature extraction, the dataset is randomly split into a
training set and a test set, with an 80% and 20% ratio, respectively. Subsequently, data
standardization is performed. Features from different domains may have varying scales or
range differences. Standardizing the data ensures that all feature magnitudes are within
the same range, facilitating better model training and evaluation. This reduces biases and
errors introduced by differences in feature magnitudes, allowing the model to learn more
about trends between numerical values.

In this study, Z-score normalization is utilized for data standardization. The Z-score
is calculated using the formula shown in Equation (1), where the variables are defined as
follows: z represents the standardized value, x denotes the raw data points after feature
extractions, µ corresponds to the mean of the dataset, and σ is the standard deviation of the
dataset. After this processing, the mean of the standardized dataset is 0, and the standard
deviation is 1.

z =
x − µ

σ
(1)
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After standardizing the training and test data, feature selection is subsequently per-
formed. Feature extraction is based on the three cutting force component signals after data
cleaning, and it involves three main aspects:

1. For the cleaned cutting force signals, 9 time-domain features and 4 frequency-domain
features were extracted.

2. Each cutting force component signal is segmented into 10 windows, and 9 time-
domain features are extracted in each window.

3. The cleaned cutting force signals are transformed into frequency-domain, and the
amplitudes correspond to spindle speed and tooth passing frequencies, and their
harmonics are extracted.

After feature engineering, the extraction of features related to cutting-tool wear results
in a relatively large number of features. Therefore, feature selection is conducted in
order to find an optimal subset of features. Feature selection is a crucial step in machine
learning, as an excessive number of features can lead to overfitting, causing a decline in
prediction model performance. Through feature selection, irrelevant or redundant features
can be eliminated, and those that contribute to predicting the target variable are retained.
Reducing the number of features can also lower the computational cost of model training
and prediction. In this study, the method employed for feature selection is based on the
feature importance in random forests.

Table 4. Expressions for extracted features.

Domain Feature Expression

Time domain Absolute maximum value xmax = MAX|xi|

Mean x = 1
N

N
∑

i=1
xi

Variance xvar =
1
N

N
∑

i=1
(xi − x)2

Skewness xskew = 1
N−1

∑N
i=1 (xi−x)3

x3
std

Kurtosis xkurt =
1

N−1
∑N

i=1 (xi−x)4

x4
std

Peak-to-peak xp−p1 = xmax − xmin

Peak factor C =
xp−p1
xrms

Pulse factor Sm =
xp−p1

1
N ∑N

i=1 |xi |

Waveform factor Sb = xrms
1
N ∑N

i=1 |xi |

Frequency domain Average amplitude value S1 = 1
N

N
∑

i=1
pi

Center of gravity frequency fc =
∑N

i=1 fi pi

∑N
i=1 pi

Mean square frequency ms f =
∑N

i=1 f 2
i pi

∑N
i=1 pi

Frequency variance v f =
∑N

i=1 ( fi− fc)
2 pi

∑N
i=1 pi

4. Results and Discussion

The side milling experiments on SKD11 were conducted in two phases to determine a
better assisted method and optimal process parameters. In the first phase, eight experiments
were carried out under two sets of process parameters both without assistance and with
several ultrasonic-assisted methods, such as rotary, dual-axis, and triple-axis. This was
undertaken to explore and identify the most effective assisted system. In the second phase,
a superior ultrasonic-assisted method was further combined with or without assistance
from local laser preheating to conduct L9 orthogonal array milling experiments, totaling
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18 experiments. Thus, the effects of spindle speed, feed rate, and radial depth of cut, along
with hybrid-assisted and rotary-assisted methods on surface roughness, cutting force, and
machined surface morphology of SKD11 were investigated.

4.1. Surface Roughness

Due to the high hardness and toughness of the SKD11 tool steel, various issues may
arise during the machining process. Different assisted methods and machining parameters
are crucial factors affecting machining performance. Table 1 shows the planning of process
parameters in the first phase of the experiment, while Figure 10 shows the relationship
between surface roughness and process parameter combination in this phase without
assistance and with different ultrasonic-assisted methods. Here, the surface roughness
parameter measured is Ra, and its measurement device is a contact-type surface roughness-
measuring instrument (Mitutoyo SJ-410). The experimental results indicate that a small
depth of cut and a slow feed rate result in better surface roughness than a large depth of cut
and a fast feed rate, both without assistance and with different ultrasonic-assisted methods.
Among them, the rotary ultrasonic-assisted method proves superior to both the absence of
assistance and the other ultrasonic-assisted methods. However, the absence of assistance
yields better performance than both dual-axis and triple-axis ultrasonic assistance. It
is speculated that dual-axis and triple-axis ultrasonic assistance, which involve radial
vibration, are less effective in removing material due to the high toughness property of
the workpiece material. This deduction suggests poorer performance. Compared to no
assistance, rotary ultrasonic assistance can reduce surface roughness by approximately 5%.
Therefore, the effects of both no assistance and different ultrasonic-assisted methods on
the surface roughness of SKD11 milling are investigated, and the best assisted method is
ascertained. This superior ultrasonic-assisted method, rotary, will be applied in the second
phase milling experiments.
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The superior ultrasonic-assisted method obtained from the first phase is adopted
in the second phase in conjunction with and without laser locally preheating assistance,
hybrid-assisted, and rotary ultrasonic-assisted, respectively, in which the process parameter
planning for the milling experiment on SKD11 is shown in Table 2. An ANOVA (analysis
of variance) is performed on the sampling data to examine the influence and contribution
of various factors to surface roughness. The contribution rates are shown in Tables 5 and 6,
and the corresponding factor responses are illustrated in Figure 11a,b, respectively. It can
be observed that under both of these assisted methods, the most significant factor affecting
the surface roughness of SKD11 milling is the feed rate, followed by radial depth of cut, and
lastly spindle speed. The experimental process parameter design for milling experiments
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through L9 orthogonal arrays is presented in Table 2, and the corresponding experimental
sets are shown in Table 3. Comparing surface roughness between hybrid-assisted and rotary
ultrasonic-assisted methods for process parameter combinations in the L9 orthogonal array,
as shown in Figure 12, it is evident that the hybrid-assisted method can reduce surface
roughness by up to 30%, compared to rotary ultrasonic-assisted alone. Among them,
lower feed rates result in better surface roughness. Higher feed rates may accelerate the
cutting progression but may cause vibrations between the cutting edge and the workpiece
surface, leading to deteriorated surface roughness. Meanwhile, a slower feed rate allows
for an increase in laser preheating time during the cutting processes, effectively achieving a
sufficient preheating phenomenon, and thereby enhancing the surface roughness of the
machined surface.

Table 5. Variance analysis of surface roughness for rotary ultrasonic-assisted milling.

Factor
Factor Level (S/N)

Sum of Squares (SS) Contribution Rate (ρ%)
1 2 3

n (A) 9.08 9.42 9.71 0.6 0.72

ae (B) 11.33 10.2 6.69 35.2 42.65

F (C) 11.73 10.2 6.32 46.5 56.36

Error 0.22 0.27

Total 82.47 100.00

Table 6. Variance analysis of surface roughness for hybrid-assisted milling.

Factor
Factor Level (S/N)

Sum of Squares (SS) Contribution Rate (ρ%)
1 2 3

n (A) 7.74 10.1 10.8 15.1 17.65

ae (B) 11.1 9.76 7.76 16.6 19.45

F (C) 12.1 10.2 6.32 51.6 60.34

Error 2.19 2.56

Total 82.49 100.00
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4.2. Cutting Force

Figure 13 shows the cutting force comparison both among different ultrasonic-assisted
methods and without assistance for two sets of process parameters planned for the first
phase of the experiment. It can be observed that in the first phase of the milling experiment,
the cutting force with triple-axis ultrasonic assistance is the highest, while the cutting
force with rotary ultrasonic assistance is significantly lower than with the other assistances.
The cutting force without assistance is lower than that with dual-axis and triple-axis
ultrasonic assistances. Therefore, in this phase, it is evident that rotary ultrasonic assistance
can effectively reduce cutting forces. It is speculated that since dual-axis and triple-axis
ultrasonic assistance methods include radial vibration, the material’s high hardness and
toughness prevent effective disruption of the material structure, leading to less effective
material removal. Additionally, it increases the contact area and cutting load. In the case
of triple-axis ultrasonic assistance, the radial vibration, unable to disrupt the workpiece
material structure effectively, is combined with z-axis oscillation, increasing the contact
area and cutting load compared to dual-axis ultrasonic assistance, resulting in an increase
in cutting forces. On the other hand, rotary ultrasonic oscillation is along the z-axis, and its
high-frequency oscillation can reduce the contact area in the cutting area. Simultaneously,
it creates a vacuum region between the cutting tool and the workpiece material, facilitating
air to enter the cutting area. This contributes to chip evacuation, reduced cutting forces, and
lower cutting temperatures. Therefore, cutting forces with rotary ultrasonic assistance are
the lowest among all the assistance methods. Compared to no assistance, rotary ultrasonic
assistance can reduce cutting forces by approximately 16%.
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In this section, the laser locally preheating temperature is approximately 620 ◦C, which
elevates the localized temperature of SKD11 to achieve material softening, resulting in
mechanical properties that are distinct from those at room temperature, consequently
reducing cutting forces. As shown in Figure 14, with the assistance of laser preheating,
the hybrid assistance of laser, combined with rotary ultrasonic assistance, exhibits lower
overall cutting forces compared to rotary ultrasonic assistance alone. In comparison to
rotary ultrasonic assistance, the hybrid assistance of laser, combined with rotary ultrasonic
assistance, can reduce cutting forces by up to 16%. Specifically, hybrid assistance demon-
strates lower cutting forces at a spindle speed of 10,000 rpm, a radial depth of cut of 0.1 mm,
and a feed rate of 1000 mm/min. Under fixed feed-rate conditions, cutting forces increase
with the radial depth of cut. The trend of decreasing cutting forces is less apparent at a feed
rate of 2000 mm/min, suggesting that an excessively rapid cutting feed rate may result in
inadequate laser preheating due to the fixed laser irradiation point on the front edge of the
cutting-tool and its movement with the worktable, causing insufficient preheating time and
a less-noticeable reduction in cutting forces. Under fixed radial depth of cut conditions,
cutting forces increase with the feed rate. It is inferred that a deeper radial depth of cut may
lead to insufficient effective preheating depth by the laser, and the feed rate also affects
the laser preheating temperature, resulting in inadequate preheating effects and, therefore,
ineffective reduction in cutting forces.
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4.3. Machined Surface Morphology

After completing the milling experiments, the test samples were adequately cleaned
and placed on a tool microscope with a 20× objective lens to observe the upper edge
of the machined surface morphology. This section focuses on comparing the surface
morphology under different process parameters along with rotary ultrasonic-assisted and
hybrid-assisted methods in the second-phase of the experiment. Figure 15 shows the
machined surface morphology comparisons for some specific combinations of process
parameters and assisted milling methods. It can be observed that the machined surface
morphology of the hybrid-assisted method performs better than the rotary ultrasonic-
assisted method alone under the same process parameters. The rotary ultrasonic assistance
method can reduce the contact area in the cutting zone and create a vacuum region between
the cutting tool and the workpiece material, aiding chip evacuation and reducing cutting
forces and temperature. This is beneficial because the high hardness and strength of
SKD11 may lead to surface edge fracture or damage, especially at high feed rates. It
can be observed that under high feed rates and large radial depths of cut, defects in the
surface morphology are more pronounced. Under the same cutting process parameters,
hybrid-assisted milling has a better surface morphology. This assistance combines the
advantages of rotary ultrasonic assistance with the local softening of SKD11 by the laser
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spot, providing better machinability. The maximum locally measured laser preheating
temperature in this experiment is approximately 620 ◦C. According to reference [30],
maintaining surface temperatures between 600 ◦C and 750 ◦C on SKD11 workpieces results
in better machinability. Therefore, compared to rotary ultrasonic assistance alone, it can
reduce the occurrence of surface edge defects. At a feed rate of 2000 mm/min, the surface
edge of rotary ultrasonic assistance shows significant fracture and damage. In addition,
with an increase in radial depth of cut, the defects in the surface morphology become
more pronounced. At a feed rate of 1500 mm/min, a similar trend is observed. When the
feed rate is reduced to 1000 mm/min, defects in the surface morphology become more
apparent, with an increase in radial depth of cut. However, compared to feed rates of
2000 mm/min and 1500 mm/min, the defects are significantly reduced, and the integrity
of the surface morphology is better. Increasing the feed rate leads to an increase in the
number of cutting-tool edges engagement in the workpiece material per minute, enhancing
cutting forces accordingly. Excessive cutting forces may cause vibration, resulting in more
severe defects in the surface morphology. From Figure 15, it is evident that hybrid-assisted
milling provides significantly better surface morphology integrity than rotary ultrasonic
assistance alone. Although high feed rates and deeper radial depths of cut may affect the
laser irradiation preheating time and preheating depth on SKD11, the hybrid assistance
method achieves localized preheating and softening, resulting in a more complete surface
morphology as compared to rotary ultrasonic assistance.

4.4. Cutting-Tool Wear

After completing the milling experiments, the cutting tools were removed from the
spindle system and cleaned, and they were placed on a tool microscope with a 10× objective
lens to observe cutting-tool flank wear. The photographs of cutting-tool flank wear shown in
Figure 16 for each experiment are all captured at the end of milling state, i.e., 70 mm milling
distance. The comparison involved 18 milling cutters used in the Taguchi experiments, with
two assisted methods. Different factors affecting cutting-tool wear were also investigated.
From Figure 16, it can be observed that under rotary ultrasonic assistance, cutting-tool
wear is more severe, with instances of broken and chipped cutting-tool edges. As the
feed rate and depth of cut increase, rotary ultrasonic assistance shows larger areas of
wear and breakage, following a similar trend to machined surface edge. At a feed rate of
2000 mm/min, the cutting tools under rotary ultrasonic assistance exhibit clear fracture
and damage, and with an increase in radial depth of cut, the width of cutting-tool wear also
significantly increases. At the radial depths of cut of 0.3 mm and 0.5 mm, severe fracture
and chipping occur. At a radial depth of cut of 0.1 mm, the wear width and cutting-tool
edge damage are reduced. At a feed rate of 1500 mm/min, an increase in radial depth of
cut leads to a corresponding increase in cutting-tool wear width. However, as compared
to a feed rate of 2000 mm/min, cutting-tool edge chipping and fracture are significantly
reduced. At a feed rate of 1000 mm/min, the improvement in wear width and cutting-
tool edge defects is most apparent. Under the same process parameters, hybrid-assisted
milling shows a significant reduction in cutting-tool wear width and edge fracture. This
is attributed to the localized preheating on SKD11 by laser assistance, providing better
machinability. Additionally, the rotary ultrasonic oscillation factor shortens the contact time
between the cutting-tool edge and the workpiece, reducing the load on the cutting-tool
edge and effectively ejecting chips, reducing the occurrence of cutting-tool edge fracture
and significantly extending cutting-tool life. However, at a feed rate of 2000 mm/min and
radial depths of cut of 0.3 mm and 0.5 mm, there are still instances of cutting-tool edge
fracture. In situations with deeper radial depths of cut and faster feed rates, preheating
locally with laser has a shorter preheating time on the machined surface. Despite the local
softening of the material, the preheating time and depth are insufficient, and the material’s
high hardness, combined with the dynamic load, cutting-tool debris, and material chip
effects, result in faster cutting-tool wear during machining.
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Figure 16. Cutting-tool wear comparisons for some specific combinations of process parameters and
assisted milling methods: (a) n = 8000, ae = 0.5 mm, F = 2000 mm/min; (b) n = 10,000, ae = 0.5 mm,
F = 1500 mm/min; (c) n = 9000, ae = 0.5 mm, F = 1000 mm/min; (d) n = 10,000, ae = 0.1 mm,
F = 2000 mm/min; (e) n = 9000, ae = 0.1 mm, F = 1500 mm/min; (f) n = 8000, ae = 0.1 mm,
F = 1000 mm/min.
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4.5. Machine Learning

The model training process involves hyperparameter tuning using the training dataset
and evaluating the model through 5-fold cross-validation. The hyperparameter combina-
tion that performs the best is selected as the model’s parameter configuration. Finally, the
optimized base regression models, including decision tree (DT), random forest (RF), extra
trees, XGBoost (XGB), LightGBM (LGBM), AdaBoost, stochastic gradient descent (SGD),
support vector regressor (SVR), least squares support vector regressor (LSVR), and multi-
layer perceptron (MLP), comprising ten models, are used to construct a voting regression
model for predicting the test set. The predictive performance of different machine learning
models is compared to assess whether there are differences in predictive performance be-
tween ensemble learning and individual machine learning models. The evaluation metrics
used in this experiment include the coefficient of determination (R2), the root mean squared
error (RMSE), the mean squared error (MSE), and the mean absolute error (MAE) to assess
the model’s performance.

The coefficient of determination (R-squared, R2) ranges between 0 and 1, with a value
closer to 1 indicating that the model can fully explain all variations, while a value closer
to 0 suggests that the model cannot explain any variations. A higher R2 implies a better
predictive performance of the model. The relevant formula is given by Equation (2), where
N represents the sample size, yi represents the actual values, ŷi represents the predicted
values, and y denotes the mean of the actual values.

R2 = 1 −
1
N ∑N

i=1 (yi − ŷi)
2

1
N ∑N

i=1 (yi − y)2 (2)

The mean squared error (MSE) is the average of the squared differences between actual
values and predicted values. A smaller MSE indicates a better predictive performance of
the model. The relevant formula is given by Equation (3), where N represents the sample
size, yi represents the actual values, and ŷi represents the predicted values.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (3)

The root mean square error (RMSE) is a commonly used evaluation metric in regression
tasks. It is the square root of the average of the squared differences between actual values
and predicted values. A smaller RMSE indicates a better predictive performance of the
model. The relevant formula is given by Equation (4), where N represents the sample size,
yi represents the actual values, and ŷi represents the predicted values.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (4)

The mean absolute error (MAE) is a commonly used evaluation metric in regression
tasks. It is the average of the absolute differences between actual values and predicted
values. A smaller MAE indicates a better predictive performance of the model. The relevant
formula is given by Equation (5), where N represents the sample size, yi represents the
actual values, and ŷi represents the predicted values.

MAE =
1
N

N

∑
i=1

|yi − ŷi| (5)

4.5.1. Machine Learning Results

In this section, machine learning metric scores are based on the results from the test
dataset. Each model has different metric scores, as shown in Table 7 and Figure 17. The
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decision tree (DT) model performs the worst among all models, with an R2 of 0.69132,
RMSE of 0.58086, MSE of 0.3374, and MAE of 0.4311. This is speculated to be because
the model is too simple to capture the complex relationships in the data. The extra trees
model performs the best on all metrics, with an R2 of 0.91737, RMSE of 0.30053, MSE of
0.09032, and MAE of 0.21134. This is likely due to the introduction of more randomness
and the fact that the model’s generalization capability could be enhanced. Different models
exhibit different performances, indicating that various machine learning models have
distinct performance advantages. This can also be observed in Figure 18, which shows
scatter plots for each regression model. It is evident that extra trees, AdaBoost, RF, and
XGB have better predictive results, while DT and SVR perform poorly, with higher errors
compared to other models. The figure also illustrates that each model has a different trend
in predicting results.

Table 7. Performance comparisons among different machine learning models.

Models
Indicators

R2 RMSE MSE MAE

DT 0.69132 0.58086 0.3374 0.43112
RF 0.90902 0.31534 0.09944 0.22303

Extra Trees 0.91737 0.30053 0.09032 0.21134
XGB 0.90144 0.32822 0.10773 0.22051

LGBM 0.78587 0.48379 0.23405 0.32589
AdaBoost 0.91051 0.31276 0.09782 0.23232

SGD 0.85313 0.40066 0.16053 0.2977
SVR 0.70355 0.56924 0.32403 0.36844

LSVR 0.81672 0.44758 0.20033 0.27107
MLP 0.88668 0.35195 0.12387 0.28653
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4.5.2. Machine Learning and Ensemble Learning Results

Similarly, the machine learning metric scores are based on the results from the test
dataset in this section. The ensemble voting regression model, composed of the basic
regression models, including DT, RF, extra trees, XGB, LGBM, AdaBoost, SGD, SVR, LSVR,
and MLP, is constructed to predict the test dataset. It is compared with the best-performing
model in all metrics from the machine learning models in Section 4.5.1, which is the
extra trees model. As shown in Figure 19 and Table 8, the performance of the voting
regression model surpasses that of the extra trees model. The extra trees model is the
best-performing model among the ten basic regression models, indicating that the voting
regressor outperforms other machine learning models. The metric scores for this model
are an R2 of 0.94576, RMSE of 0.24348, MSE of 0.05928, and MAE of 0.18182. The residual
plots in Figure 20 demonstrate that different models have distinct interpretations and
levels of significance for the data. By combining multiple models, a better prediction of
data characteristics can be achieved. Using multiple models allows for balance, even if
one model’s predictive performance is poor; the results from the other models can help
compensate, providing a more stable prediction. As shown in Figure 21, the residual
values of the voting regression model are closer to the central 0 line on the horizontal axis
compared to other models, indicating a more centered distribution.
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Voting 0.94576 0.24348 0.05928 0.18182
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5. Conclusions

This study conducted side-milling experiments on SKD11 in two phases. The first
phase aimed to explore the effects of different ultrasonic-assisted methods, including rotary,
dual-axis and triple-axis, on milling performance. The better ultrasonic-assisted method
obtained from the first phase was then adopted in the second phase both in conjunction
with and without assistance from locally preheating with a laser, in which the Taguchi
orthogonal array was applied for milling process parameter planning. The surface roughness
and cutting-tool life served as the objective function and constraint, respectively, and the
optimal combination of process parameters was thus determined by the characteristics
of the smaller-the-better in the Taguchi method. Based on the optimal milling process
parameters obtained and the superior hybrid-assisted method adopted, milling experiments
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were repeatedly performed to collect the data of cutting force and cutting-tool wear. An
ensemble learning method was applied to construct a cutting-tool wear prediction model
after the data underwent the processes of cleaning, feature extraction, data standardization,
and feature selection. From the above analyses, the following conclusions can thus be drawn:

1. As various ultrasonic-assisted methods compared with no assisted milling in the first
phase experiments, it was found that ultrasonic-assisted machining could improve
machining quality, reduce cutting force, and enhance surface roughness. Among
them, rotary ultrasonic-assisted showed the best cutting performance.

2. As compared to the method without assisted milling, the rotary-assisted ultrasonic
method could reduce surface roughness by approximately 5% and cutting force by
16%. When compared to rotary ultrasonic assistance, hybrid-assisted milling could
reduce surface roughness by 30% and cutting force by 16%.

3. Among the multiple machine learning models in this study, extra trees exhibited the
best performance, with an R2 of 0.91737, RMSE of 0.30053, MSE of 0.09032, and MAE
of 0.21134.

4. The ensemble voting regression model for cutting-tool wear prediction on the test
dataset, can achieve an R2 of 0.94576, RMSE of 0.24348, MSE of 0.05928, and MAE
of 0.18182.

5. As compared to all the individual regression models in this study, the ensemble
voting regression model exhibited the best generalization capabilities. This method
can integrate the complementary predictive capabilities among different individual
models and its generalization capabilities can be enhanced by combining the strengths
of the multiple models. Therefore, ensemble machine learning is a feasible and
effective method for monitoring cutting-tool wear.
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