
Citation: Monteiro, P.; Pereira, R.;

Nunes, R.; Reis, A.; Pinto, T.

Context-Aware System for

Information Flow Management in

Factories of the Future. Appl. Sci. 2024,

14, 3907. https://doi.org/10.3390/

app14093907

Academic Editor: Redha Taiar

Received: 22 March 2024

Revised: 26 April 2024

Accepted: 30 April 2024

Published: 3 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Context-Aware System for Information Flow Management in
Factories of the Future
Pedro Monteiro 1, Rodrigo Pereira 1 , Ricardo Nunes 1 , Arsénio Reis 1,2 and Tiago Pinto 1,2,*

1 School of Science and Technology, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
rrnunes@utad.pt (R.N.); ars@utad.pt (A.R.)

2 INESC-TEC, Vila Real Pole, 5000-801 Vila Real, Portugal
* Correspondence: tiagopinto@utad.pt

Abstract: The trends of the 21st century are challenging the traditional production process due to
the reduction in the life cycle of products and the demand for more complex products in greater
quantities. Industry 4.0 (I4.0) was introduced in 2011 and it is recognized as the fourth industrial
revolution, with the aim of improving manufacturing processes and increasing the competitiveness
of industry. I4.0 uses technological concepts such as Cyber-Physical Systems, Internet of Things and
Cloud Computing to create services, reduce costs and increase productivity. In addition, concepts
such as Smart Factories are emerging, which use context awareness to assist people and optimize tasks
based on data from the physical and virtual world. This article explores and applies the capabilities
of context-aware applications in industry, with a focus on production lines. In specific, this paper
proposes a context-aware application based on a microservices approach, intended for integration
into a context-aware information system, with specific application in the area of manufacturing. The
manuscript presents a detailed architecture for structuring the application, explaining components,
functions and contributions. The discussion covers development technologies, integration and
communication between the application and other services, as well as experimental findings, which
demonstrate the applicability and advantages of the proposed solution.

Keywords: context; context awareness; context-aware applications; Industry 4.0; Internet of Things;
microservices

1. Introduction

Many organizations are currently integrating innovative technologies into their pro-
duction systems to increase efficiency and improve product quality. The concept of Industry
4.0 (I4.0) is becoming widely recognized by organizations due to the benefits it brings to
production and manufacturing processes [1]. The implementation of I4.0 in manufacturing
companies is driven by technology. Described as the fourth Industrial Revolution (IR), I4.0
represents the current trend towards automation in the manufacturing industry, especially
encompassing enabling technologies [2].

Throughout history, we have witnessed major transformations in industry, marked
by the so called IRs. These revolutions, characterized by technological advances and
innovations in industry over certain periods of time, have a huge impact on that sector and
bring benefits to society [3].

Industry has already gone through four of these revolutions and is currently in the
midst of the Fourth IR, known as I4.0. Compared to its predecessors, this IR is progressing
at a significantly high speed, resulting in the disruption of almost all industries worldwide
and leading to the transformation of entire production systems [4].

This revolution aims to strengthen the competitiveness of the manufacturing industry
by targeting improvements in industrial processes [5]. The central idea of I4.0 is centered
on technology and, above all, on the production area, but it is possible to apply this concept
to any type of company [6].

Appl. Sci. 2024, 14, 3907. https://doi.org/10.3390/app14093907 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093907
https://doi.org/10.3390/app14093907
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6623-8084
https://orcid.org/0000-0002-7557-2121
https://orcid.org/0000-0002-9818-7090
https://orcid.org/0000-0001-8248-080X
https://doi.org/10.3390/app14093907
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093907?type=check_update&version=1

Appl. Sci. 2024, 14, 3907 2 of 23

I4.0 enables new technological ideas such as Cyber-Physical Systems (CPS), Internet
of Things (IoT) and Cloud Computing to develop new services [6]. The adoption of I4.0
technologies enables more flexible production on a large scale, resulting in reduced lead
times and increased efficiency [7]. Individually or collectively, the technologies incorporated
into I4.0 promise to reduce costs and improve quality in manufacturing environments [8].
In addition, concepts such as Smart Factories are emerging, which use context awareness
to assist people and optimize tasks based on data from the physical and virtual world [5].

Smart factories are made possible by advances in sensor technologies and wireless
communications to automate the collection and distribution of information from physical
events [9]. In these factories, technical assistance systems augment human skills, reduc-
ing errors and facilitating correct decisions [10]. Smart manufacturing uses advanced
technologies for flexible, intelligent and reconfigurable processes, optimizing production
and improving the product lifecycle [11]. It is characterized by the autonomy and decen-
tralization of the agents involved, being highly integrated through the use of network
technologies and manufacturing data, and is attracting great interest from companies [12].

Twenty-first century trends challenge production due to shorter life cycles, demand for
complex products and unsustainable resource use practices [13]. Companies face significant
challenges in the management and complexity of their production lines, where it is essential
to maintain good performance [14].

In this situation, context-aware applications can play a key role in helping companies
facing these challenges. They have the ability to understand the context of the factory in real
time, processing it and generating relevant information for employees [15]. Context-aware
applications are being implemented in various areas of the commercial sector, including
manufacturing and smart factories, to assist Industry 4.0. Based on the context of the
factories, these applications provide relevant information to workers through recommen-
dations, assisting them with their tasks and helping to improve the management of the
production process [16]. In this way, they enable workers to make decisions based on more
comprehensive information, rather than relying on a fragmented view of the factory and
limited specialist knowledge.

This article aims to explore and apply the capabilities of context-aware applications in
industry, with a focus on production lines. This is accomplished by proposing and describ-
ing the development of a context-aware application, based on a microservices’ architecture,
intended for integration into a context-aware information system, with specific application
in the area of manufacturing. The solution description includes the description of a detailed
architecture for structuring the application, explaining components, functions and contri-
butions. The discussion covers development technologies, integration and communication
between the application and other services, as well as experimental findings.

The article is organized as follows: Section 2 presents the theoretical framework,
establishing the theoretical basis of the key themes. Section 3 discusses the application
development process, detailing the various choices made for its realization. In Section 4, the
tests carried out on this application are discussed and some case studies are presented which
provide a more detailed and real insight into the contribution and use of the application
developed. Finally, Section 5 presents the most relevant conclusions of the work, as well as
suggestions for future work.

2. Theoretical Framework

This section aims to establish a theoretical and conceptual foundation for various topics
addressed throughout this article. Here, relevant literature on these topics is reviewed and
synthesized, thus assisting in contextualizing the topics addressed later in this article.

2.1. Industry 4.0

The term “Industry 4.0” refers to the fourth IR and became publicly known in Germany
in 2011 [5]. I4.0 promotes the idea of the start of a new IR, driven by the advance and

Appl. Sci. 2024, 14, 3907 3 of 23

convergence of various technologies that make it possible to connect the physical and
digital worlds in real time [8].

One of the foundations of I4.0 lies in the introduction of interconnected intelligent
systems that enable self-sustainable production, in which people, machines, equipment and
products communicate with each other [13]. I4.0 is made possible by Internet technologies
to create intelligent products, intelligent production and intelligent services, since, from a
communications point of view, I4.0 technologies rely heavily on the mobile internet [17].
This revolution aims to boost the competitiveness of the manufacturing sector by improving
industrial procedures associated with production, engineering, the application of materials,
supply chain management and the product life cycle [5].

I4.0 incorporates various innovative concepts, such as smart factories (production
is equipped with intelligent components), Cyber-Physical Systems (CPS, resulting from
the combination of the physical and digital worlds, allowing real-time integration of
information), new systems in the development of products and services, adaptation to
human needs, among others [18].

I4.0 is driven by four fundamental principles: [5]

• Interconnection—involves linking machines, devices, sensors and people;
• Information transparency—interconnects the physical and virtual worlds, providing

contextual data in real time for appropriate decision-making;
• Decentralization of decisions—combines local and global information to increase

productivity at different levels, this is possible thanks to systems that monitor and
control the physical world autonomously;

• Technical assistance—uses mobile devices and robotic technology to assist in decision-
making and problem-solving.

The implementation of I4.0 faces a number of challenges in different areas, such as
science, technology, the economy, society and politics. It is essential to train workers to
use the new technologies. In addition, business issues related to innovation, technological
components and digital transformation represent major obstacles. Another major difficulty
lies in data analysis and management [19].

2.2. Context-Aware Applications

Context-aware computing was first addressed by Schilit and Theimer in 1994 and
since then, there have been numerous attempts to define this concept [20].

Context is any information that characterizes the situation of an entity, which can
be a person, place or object considered relevant to the interaction between the user and
the application. Context-aware applications use context to provide relevant information
and/or services to the user, where relevance depends on the user’s task [21].

These applications can provide support in three types of situations, displaying in-
formation and services to a user, automatically executing a service for a user and finally
associating the context with the information to facilitate later retrieval [20].

Currently, most context-aware applications in the manufacturing industry focus on
creating intelligent information for factory workers, allowing them to respond to manu-
facturing processes based on this information [22]. These applications have the ability to
examine their environment and react to changes in it [23].

In this way, context-aware applications can play an important role in industry by
assisting employees in decision-making and improving the performance of factory opera-
tions. This assistance is provided by the application, which understands in real time the
context of the factory (including tools, machines, parts, products, information relating to
the planning of manufacturing processes, among others), processing this information and,
based on it, making relevant information/services available to employees [15].

Context-aware applications or systems can and are being integrated with various
technologies in order to improve and increase their capabilities. These include technologies
such as the Internet of Things (IoT) and Cloud Computing, which are being integrated and

Appl. Sci. 2024, 14, 3907 4 of 23

used to implement these applications. In I4.0, the integration of these technologies and
their implementation in industry aims to improve quality in manufacturing environments.

2.3. Internet of Things

The Internet of Things (IoT) is a subject of great relevance in the technology, politics
and engineering sectors [24]. Many organizations are beginning to recognize and value the
possibilities and benefits of IoT to improve their operational activities [25].

The term “Internet of things” was first used in 1999 to describe a system in which
real-world objects could be connected to the Internet via sensors, however, today, this
expression is common to describe situations in which the Internet connection expands to
cover a variety of everyday objects, devices and sensors [24].

For some authors, IoT is considered the main technology of the fourth IR. These
objects, or “things”, equipped with electronics, software and connected to a network, allow
for a more direct integration between the physical world and computer systems. In this
way, they make it possible to collect data from their environment and exchange it with
information systems [3].

The IoT is a growing innovative technology, applicable to various functions and
services in various fields [26]. In industry, this technology makes it possible to obtain
and analyze information in real time, contributing to the development of new intelligent
applications [25]. Integrated with appropriate systems in industry, the IoT provides efficient
services for controlling and managing business processes and resources, thus improving
the production processes of manufacturing systems [26].

An era is predicted in which billions of sensors will be connected to the internet.
However, processing all the data collected by these sensors is not practical. For this reason,
understanding the context will play a crucial role in deciding which data needs to be
processed. Context-aware computing also plays a significant role in analyzing, interpreting
and understanding this data [27].

2.4. Microservices

Microservices are a growing trend in software architecture. They were inspired by
Service Oriented Computing (SOC) and are small applications that can be implemented,
scaled and tested independently [28]. They deal with complexity by breaking down large
systems into independent services [29].

The microservices approach advocates the decentralization of processes, where each
one is designed to develop a specific part of the system [30]. Each microservice is designed
and operated as an independent, small-scale system, providing access to its internal logic
and data via a well-defined network interface [31]. In a microservice architecture, microser-
vices interconnect to perform a specific function [30]. Each microservice exhibits a unique
behavior, and the system is formed by combining and coordinating these microservices
through messages [29].

The main characteristics of a microservice system are [29]:

• Flexibility: The system has the ability to easily adapt to changes in the environment
and support all necessary modifications;

• Modularity: The system is made up of isolated components, each of which is respon-
sible for a specific task, rather than relying on a single component that offers all the
functionality;

• Evolution: It is possible to maintain the system while it evolves, adding new function-
alities independently.

The use of microservices has several advantages, such as technological diversity
(the possibility of implementing different technologies in the same system), independent
implementation (the ability to develop and implement a service in isolation, without
depending directly on other services in the system), scalability (the ability to expand
services as necessary, without affecting the system as a whole) and ease of maintenance
(the ability to modify or replace services without affecting the entire application) [32].

Appl. Sci. 2024, 14, 3907 5 of 23

3. Context-Aware Application

In this section, the proposed context-aware application called “Context Engine” is
presented, including its design and development process. Section 3.1 discusses the scenario
in which the application operates, as well as its responsibilities. Section 3.2 discusses the
structure of the system called “Context Aware Factory of Future System” (CA-FoFS), a
context-aware information system in which the Context Engine is integrated. Section 3.3
presents the architecture developed for the Context Engine. Subsequently, Section 3.4
details the choice of technology for implementing the applications, as well as how the appli-
cation integrates and communicates with other systems. Finally, the process of developing
the applications throughout the project is detailed in Section 3.5.

3.1. Scenario

The application to be developed integrates the CA-FoFS system, designed specifi-
cally for Continental Advanced Antenna (https://cotecportugal.pt/associates/continental-
advanced-antenna-portugal/ (assessed on 21 March 2024)), a company that manufactures
radio frequency devices for the automotive industry. As such, the data with which the
application aims to operate comes from this company.

A variety of data is available to the application, including information on production
line stoppages, antenna production per hour, production plans, workers’ schedules and
their assignments on specific lines, as well as the components needed to produce a product,
among others. All this information and context crucial to the operation of the application is
stored in databases. It is important to note that the application to be developed does not
have direct access to this information. To obtain the necessary data, the application has to
make requests to an integration layer via an API. In addition to the information accessible
by the integration layer, the Context Engine can also receive data from other applications
or devices that are part of the CA-FoFS system it integrates with.

At the Continental factory, operators are responsible for different production lines.
During the course of their work, various problems can arise that affect normal manu-
facturing processes, such as machine breakdowns, material shortages and unexpected
stoppages. Continental therefore seeks to solve these problems in order to improve
production efficiency.

The main problems that this work aims to solve are requests for missing labels and
material, which are currently made by operators in person or by telephone, often having to
leave their workstations; the provision of warnings regarding problems on production lines,
such as unplanned stoppages or production deviations; and the provision of contextual
information to assist workers in making data-based decisions, through the provision of
reports or contextual information.

The application to solve these problems works in integration with other services or
applications in the Ca-FoFs system to provide contextual services to help workers. Among
them, there is a smartwatch that is responsible for carrying out the task of requesting
shortages of labels and materials on the production lines, and a virtual assistant in charge
of providing warnings regarding unplanned stoppages and production deviations on the
production lines, as well as other contextual services, such as providing reports, whose
information will be provided by the context-aware application developed.

Therefore, after several meetings with the project members and considering the main
problems that the company’s coordinators, supervisors and operators face on a daily
basis during the production process, the following functionalities were defined that the
context-aware application should perform in integration with the CA-FoFS system:

• Identify data changes in data classes in a database from API requests made to the
integration layer;

• Identify situations considered urgent or important when analyzing data;
• Send alerts/notifications to other applications/services;

https://cotecportugal.pt/associates/continental-advanced-antenna-portugal/
https://cotecportugal.pt/associates/continental-advanced-antenna-portugal/

Appl. Sci. 2024, 14, 3907 6 of 23

• Maintaining its own data repository to store information received by other appli-
cations, recording data that may be needed to verify the proper functioning of the
application or for other types of information;

• Process data to acquire contextual information for other services in the global system
in which it is inserted and provide an access point to this information.

3.2. CA-FoFS Architecture

The “Context Aware Factory of Future System” (CA-FoFS) is based on a layered
architecture, adopting a service/event-oriented approach, and employs context awareness
to dynamically support factory users. This layered approach enables the provision of
contextual information, integration with various data sources, and supports multiple
applications for end users, accessible through various devices [33].

The CA-FoFS architecture is depicted in Figure 1 and consists of five independent
layers: the devices layer, applications layer, services layer, integration layer, and lastly, the
data layer.

Figure 1. CA-FoFS architecture.

The devices layer facilitates access to contextualized information for users, thus helping
them to make decisions. This layer contains various devices that can access the applications
in the application layer.

The applications layer contains all the applications that can be used by users, and
these applications use the services of the service layer to be able to perform their information-
providing functions.

The services layer is responsible for providing the functions used by applications.
These services can access data through the integration layer or the Context Engine.

The Context Engine is the context-aware application proposed in this article. This ap-
plication acts as an intermediary between the application services and the context data that
is accessed from the integration layer. Its responsibility is to monitor changes in context and,
if it identifies changes that are considered important, to generate alerts/notifications. In ad-

Appl. Sci. 2024, 14, 3907 7 of 23

dition, it is responsible for various functionalities for disseminating contextual information
based on parameters such as users involved or locations in the factory, among others.

The integration layer has the responsibility of providing an access point to the data
available in the data layer, through requests for access to that data, and normalizing it into
a common format.

The data layer contains all the data sources from which services and applications can
obtain a variety of information. This layer contains company data, stored in databases
or other data repositories. This data covers a wide variety of information, including
information on production lines, workers and so on, as discussed in Section 3.1.

3.3. Context Engine Architecture

This section proposes a solution for the Context Engine architecture, considering
the presented scenario. The proposal aims to provide a flexible, easily scalable, and
maintainable solution since the application is in the prototype phase and subject to future
adaptations based on new system requirements. Moreover, it should have the capability to
integrate with other systems.

Based on previously conducted research on context-aware applications, which is
presented in [34], a context-aware application should feature a mechanism capable of
acquiring, building, reasoning and disseminating contexts/data. To simplify these tasks,
they have been divided into independent components, with each component responsible
for executing its respective functions. This results in an approach that facilitates the
development and independent maintenance of each component’s functionalities.

The proposed architecture is subdivided into three components/applications: Context
Acquisition (responsible for detecting and acquiring contexts), Context Builder (responsible
for constructing relevant information for the system), and Context Server (responsible for
reasoning and disseminating contexts). In addition, the application has its own database
called Context DataBase for storing the application’s contexts and other relevant information.

Figure 2 illustrates the architecture of the Context Engine and its relationship with other
parts of the CA-FoFS system.

Figure 2. Context Engine Architecture.

The integration layer plays a crucial role as an intermediary in connecting data sources
to the Context Engine. Its responsibility includes providing authorized data to this applica-
tion, offering an access point, and normalizing them into a common format.

DataServices is an embedded interface in the architecture designed to assist Context
Engine components. Whenever these components need access to company data, they use

Appl. Sci. 2024, 14, 3907 8 of 23

this interface, which manages information requests directed to the integration layer. Within
this interface, the necessary logic is defined to fulfill these requests.

The Context Acquisition component is responsible for querying the integration layer
and checking for changes in the data of certain classes. Periodically, this component will
make requests to the integration layer through the DataServices interface. When it identifies
modifications in the data, the component must assess the relevance of this data. This process
is fundamental for identifying important events immediately and triggering alerts when
necessary. These alerts are sent to the “Notification and Alert System” (NAS), a notification
and alert service located in the services layer.

The Context Builder has the responsibility of receiving data from other applications
in the CA-FoFS system or from IoT devices on the factory’s production lines. This data is
transmitted intermediately between these applications or devices and the Context Engine
through the services layer. Subsequently, this data is processed and stored to obtain
relevant information for the system, potentially triggering alerts to the NAS when necessary.
Additionally, this component is responsible for removing old data if it is no longer relevant
to the system and is only consuming memory resources.

The Context Server assumes logical functions related to application data, responsible
for acquiring high-level contextual information through data processing functions. These
data are acquired through the integration layer, using the DataServices interface, as well as
from the application’s own database. Additionally, this component distributes contextual
information to stakeholders, providing access to context data. It offers a set of query
and information services that can be used by CA-FoFS system applications to obtain
relevant data.

The Context Database is the dedicated database for the Context Engine, where essential
data for its operation is stored. These data come from the Context Acquisition and Context
Builder components. The application uses this data in various functionalities required for
system components, as well as for recording information, such as histories of events within
the application.

The services layer is part of the CA-FoFS system and assumes the responsibility of
providing functions used by applications. These functions have the ability to request
information from the Context Server to provide users with a variety of context-based data.
Information is delivered through various visualization devices, such as smartwatches,
tablets, and others. Devices in the factory environment can also communicate with the
Context Engine from the services layer, allowing the sending of new contextual informa-
tion to the Context Builder. This information is subsequently processed and stored by
this component.

3.4. Implementation and Integration Technologies

The selected technology to implement the Context Engine is a microservices’ based
approach. This decision was supported by the widespread popularity of the technology,
as evidenced in the consulted articles and recommendations from their authors [34]. Ad-
ditionally, microservices exhibit crucial characteristics such as flexibility, modularity, and
independent evolution [29], considered highly important for application prototypes due to
their adaptability to changes and independent evolution.

Another crucial feature influencing the selection of this technology was the ability to
perform implementations through APIs. This facilitates interaction and integration among
different software components, enabling efficient communication between various services,
a key requirement for this application.

To establish communication and integration with external applications or devices,
and considering that the application was developed using microservices, the approach
chosen to perform this task was to use the REST API programming interface. This choice
enables integration between the various components, using the HTTP protocol to carry out
communication tasks. This approach allows different components of the system to commu-

Appl. Sci. 2024, 14, 3907 9 of 23

nicate efficiently and flexibly, facilitating the exchange of information and collaboration
between services.

Figure 3 demonstrates the integration and communications used by the application.

Figure 3. Integration and Communication with External Applications.

After the development of the Context Engine architecture, it was observed that its
internal components do not need to communicate with each other. They will only exchange
data with external applications or with the application’s own database. Therefore, it was
not necessary to implement communications or integration between these components.

The communications that the application establishes with other external applications
are as follows:

1. The application can receive information through the integration layer. To do this,
the components that need this data (Context Server and Context Acquisition) must
use the DataServices interface. This data is obtained via HTTP GET requests and
the information is received in JSON format. In addition, the application can receive
data from other applications in the CA-FoFS system, an operation that takes place in
the Context Builder. This receives HTTP POST requests with data in JSON format,
managing this data according to the service task and returning an HTTP status code
indicating the result of the request received.

2. The application can also send information to other external applications. For this to
happen, the application must receive a request for information, which is the responsi-
bility of the Context Server component. This receives HTTP GET requests from the
service layer, providing an HTTP response with the content of the response in JSON
format and the HTTP status code, according to the functionality of the service and the
input parameters received. In addition, the application can send alerts to the NAS,
which are sent via HTTP POST requests with the information in JSON in the content
of the message.

3.5. Development of the Applications

To enable testing and validation of the Context Engine applications during their
development, ensuring no interference with the normal operation of the Continental
Advanced Antenna company’s database, two applications were exclusively developed for
testing purposes. These applications simulate the company’s database and the integration
layer with which the application needs to integrate to obtain this data.

The first application, called ContinentalTestDb, was developed in a web environment
using ASP.NET Core MVC and the C# language. Initially, a simulated database was created
to replicate the structure of the company’s database, as shown in Figure 4. Subsequently,

Appl. Sci. 2024, 14, 3907 10 of 23

the application was integrated with this simulated database. Its main objective was to
simplify the tasks related to data insertion and manipulation, incorporating logical rules to
ensure database consistency. This approach provided a controlled and flexible environment
for testing, allowing different scenarios to be explored and the system’s behavior to be
validated against different sets of data.

Figure 4. Class Diagram of the Experimental Data Model.

The second application, named ContinentalTestAPI, aimed to simulate the integration
layer of the CA-FoFS architecture. It was developed as a web API using ASP.NET Core in C#.
This application replicates the expected behavior of the integration layer, allowing for more
reliable testing of the Context Engine components. This is because these components already
interact seamlessly with an application similar to the integration layer, making requests for
information to an API and receiving information in JSON format.

The development of the Context Engine applications began at a later stage. The Context
Acquisition was designed as a console application in C#. During its development, a
crucial challenge arose in determining how to check for changes in the company’s database
accessed through requests to the integration layer via API. Initial research revealed that
custom methods are often required to determine changes in data, involving triggers,

Appl. Sci. 2024, 14, 3907 11 of 23

adding columns to store last modification dates, or even storing changes in additional
tables [35]. However, none of these options were viable, as it was not intended to interfere
with or modify the company’s data system, and permission to do so was not given. The
solution found was to make data requests to the API and store this data in the Context
Engine’s own database, allowing the comparison of information in subsequent requests to
detect changes. The subsequent development of the functionalities of this application was
relatively straightforward. With the identified changes, it was only necessary to check their
relevance and, if affirmative, send the corresponding alert through an HTTP POST request
to the NAS. Table 1 describes the various services and features that Context Acquisition
uses to perform its functions.

Table 1. Context Acquisition services.

Service Name Description

1 Checking for Data Changes
Responsible for verifying changes in data related to stoppages
and productions in the company database, through requests to
the integration layer via API.

2 Update items
Responsible for adding or updating items verified as changes
to data in the company’s database in the application’s
own database.

3 Check importance

Checks whether the data detected is considered relevant to
trigger the sending of alerts/warnings. The relevant data for
triggering warnings are those relating to unplanned stoppages
that have occurred and data relating to new production that
has occurred with a production deviation below the
expected number.

4 Send alerts Sending alerts to the NAS regarding urgent stoppages or
production deviations.

Both the Context Builder and the Context Server were developed as web APIs using
ASP.NET Core in the C# language. The Context Builder receives information from other
applications through HTTP POST requests, processes this information, and stores it in the
database if necessary. This component includes information reception services, such as
receiving data about the absence of a component on a production line. This information
is sent by an IoT device (a smartwatch) available to the company’s operators on the
production lines. Based on this information, the Context Builder sends alerts to the NAS.
Another responsibility of this component is the removal of old data from the database if it is
no longer needed for the system. To perform this task, background tasks were implemented
in the application, which are executed at predefined time intervals to check for data that
is no longer relevant, subsequently proceeding with its removal. Table 2 describes the
services and functionalities provided by Context Builder.

Through an API, the Context Server provides information via HTTP GET requests,
which are sent by the services in the CA-FoFS system’s service layer when they need
this information to operate. The logic for responding to these information requests is
implemented in each API service. The Context Server component provides a diverse set of
query and information services intended to be used by other applications to obtain relevant
data. To respond, these services use information contained in the company’s databases
from the integration layer or information contained in the application’s own database. These
services include information about what is happening on the factory’s production lines,
such as the products currently in production or the lack of a component on that line. In
addition, it offers services for requesting information stored in the database itself, such as
the history of alerts that Context Engine has sent to the NAS or requests for information
made by certain users to the CA-FoFS system. In total, the application has 14 independent
information services, detailed in Table 3, which highlights their names, input parameters
and corresponding descriptions.

Appl. Sci. 2024, 14, 3907 12 of 23

Table 2. Context Builder services.

Service Name Description

1 Receive and store data

This component provides API services for receiving and storing
data in the database. One example is the reception of Requests,
which consist of data related to requests for information made by
users to other services in the CA-FoFS system and which are stored
in the database.

2 Material replacement
management

This component provides API services for managing material
replenishment information on production lines. It currently
includes services related to the replenishment of labels and
components needed for production. When an operator requests the
replenishment of materials, this component receives the request,
stores the information in the database and sends an alert to the
NAS. Once the replenishment is complete, the information about
the missing material is deleted from the database. In this way,
supervisors can use the application to view a list of missing
materials on the production lines and take the necessary action.

3 Send alerts Sending alerts to the NAS regarding requests to replace
components or labels on production lines.

4 Old data removal
This component has a service that operates in the background and
removes old data from the database that is no longer needed by
the application.

Table 3. Context Server services.

Service Name Input Parameter(s) Description

1 Device Info Device ID

It provides information about the device, including its type (wearable, tablet,
etc.). If the device is associated with an operator, it provides information about
the production line the device is associated with, the product currently in
production, its label, the list of missing components on the line that need
replacing and the work shift. If the device is associated with a coordinator, it
provides information about the coordinator and the production lines for which
he is responsible.

2 Operator Info Worker’s firebase ID It provides information about the operator and the production lines on which he
is working on the current day, along with their working schedules.

3 Stops Info
Start date *
End date *
Planned *

It provides information on the stops that have taken place according to the dates
entered, depending on whether the stops were planned or not.

4 Line Info
Production line ID
Start date *
End date *

It provides information relating to the production line, providing data on the
stoppages and productions that have taken place on the line, according to the
dates entered. It also provides information relating to the coordinator
responsible for the line and the products that are or were being produced during
those dates.

5 Supervisor Info Worker’s firebase ID
Day *

Provides information about the supervisor and the production lines he was
supervising on the day entered, along with the respective working schedules,
according to the request.

6 Get Productions
Info

Production line ID
Start date *
End date *

Provides a list of productions that have taken place according to the
dates entered.

7 Get Components
Device Info Device ID Provides the list of components being used on the production line to which the

device is associated.

8 Product Info Production line ID Provides information on the product being produced on the production line
when the request for information was made.

Appl. Sci. 2024, 14, 3907 13 of 23

Table 3. Cont.

Service Name Input Parameter(s) Description

9 Coordinator Info Worker’s firebase ID Provides information on the coordinator and the production lines for which he is
responsible, according to the request.

10 Notification Rec-
ommendation

Notification type
Worker ID

Provides, if possible (if the employee already has working schedule defined for
that day), a date to send them a notification regarding certain information, such
as sending a graph or other information. If this is not possible, it sends the day
and part of the shift on which the notification should be sent.

11 Get Missing
Components

Production line ID *
Component ID *
Day *

It returns information on the missing components, the respective production
lines affected and the date on which the request to replace the component was
made, depending on the search parameters.

12 Get Missing
Labels

Production line ID *
Label reference *
Day *

Returns information on the missing labels, the respective production lines
affected and the date on which the label replacement request was made,
according to the search parameters.

13 Get Alerts
History

Alert type *
Start date *
End Date *

Returns the history of alerts sent by the application, according to the
search parameters.

14 Get Requests
History

Order type *
Day *
worker ID *

Returns the history of requests for viewing the information requested by users,
according to the search parameters.

Parameters marked with * are optional.

4. Experimental Findings

This section presents the experimental results obtained from tests carried out on the
Context Engine, the developed context-aware application, with the goal of demonstrating
the usefulness and usability of this application. Section 4.1 presents the tests carried out
on the application and presents some observations on this process. In Section 4.2, some
case studies are presented, demonstrating how the Context Engine services are integrated
with other services in the CA-FoFS system, such as the virtual assistant and the wearable
(smartwatch), providing a detailed and contextualized view on the practical application of
the proposed solution.

4.1. Tests

The tests conducted on the Context Engine, namely, its components—Context Ac-
quisition, Context Builder, and Context Server, occurred in a laboratory environment. This
assessment included unit tests, where the application services were evaluated in isolation,
and functional tests, where the operation of the Context Engine was observed when in-
tegrated with services simulating the integration and services layers. In other words, it
involved fictitious data and applications created to test its components.

The unit tests were conducted using the “xUnit.net” tool, which is a framework
for creating unit tests for the .NET Framework. For each application service, these tests
covered functionalities related to the logic of the developed services, and their development
followed the following protocol:

• Preparation: Configure the necessary dependencies (controllers, interfaces, classes,
etc.) using fake objects, simulate the required information (stops, productions, etc.),
and configure the behavior of some functions to return the desired result for the test
(for example, OK or BadRequest).

• Action: Create instances of the class of methods to be tested, passing the necessary
dependencies, instantiating the static information to be used, invoking the respective
methods, and capturing the outputs.

• Verification: Verify the correct execution, ensuring that the methods that modify the
data in the database were called the expected number of times and confirming whether
the returned information or console output is as expected.

Appl. Sci. 2024, 14, 3907 14 of 23

The mentioned fake objects, created using the FakeItEasy library, facilitate testing at
this stage. All objects will be fake, and subsequently, the library itself determines whether
they are mocks or another type.

In total, 61 unit tests were conducted on the components of the Context Engine: 10 on
Context Acquisition, 11 on Context Builder, and 40 on Context Server. All tests were approved,
meaning they were successful.

Regarding functional tests, the functional requirements to be tested were defined, and
later, the method for testing this functionality of the application was determined. After
conducting the necessary tests, it was recorded whether this functionality was executed
as expected. The functional tests conducted in the application are detailed in Table 4,
indicating to which applications they were applied, their description, and the test results.
All functionalities for which the components of the Context Engine are responsible passed
the tests, confirming that the applications are functioning as expected.

Table 4. Functional tests.

Description Application(s) Results

1

Identification of changes when inserting new data
into the simulated database and recognition of ur-
gent or important situations during the analysis of
this data.

Context Acquisition Working correctly

2
Verification of whether, after identifying changes
in the data, there is an addition or update in the
Context Engine database.

Context Acquisition Working correctly

3

Verification of the sending of alerts/notifications to
the NAS when necessary and confirmation in the
history of the Context Engine database regarding
the recording of the sent alerts.

Context Acquisition
Context Builder

Working correctly

4
Verification of the application’s ability to man-
age/clean data by eliminating those older than
deemed valid after their addition to the database.

Context Builder Working correctly

5
Verification of the correct operation of the services
by executing API methods with various data, ana-
lyzing different situations.

Context Builder
Context Server

Working correctly

Figure 5 presents an example of the Context Acquisition in operation when tests 1, 2,
and 3 from Table 4 were applied to verify its functioning. In this test, two productions and
two stops were added to the database through the ContinentalTestDb application; for each
dataset, one object requires sending an alert, while the other does not. As can be seen in
Figure 5, in the red square, the application identified all four data changes.

In the blue square, it is presented what the application performed after these checks,
showing that tests 1, 2, and 3 were approved. In other words, all four data points were
added to the Context Engine database, the application recognized urgent or important
situations during the analysis of this data, and the corresponding alerts were successfully
sent for both cases that should occur.

These tests were not only verified by the console outputs presented in Figure 5, but it
was also confirmed in the Context Engine database whether the identified data changes
were added, and if information about the respective alert submissions was also recorded.
After this verification, it was confirmed that the application was functioning correctly.

In order to conduct test 3, presented in Table 4, in the Context Builder, the approach
was similar. Information about a missing component in a production line was sent through
an HTTP POST request to an API microservice. After this submission, it was verified
whether the application processed the information correctly, sent the corresponding alert,
and recorded the information in the database. This test was also approved, demonstrating
that the functionality is operating correctly.

Appl. Sci. 2024, 14, 3907 15 of 23

Test 4, presented in Table 4, conducted in the Context Builder, was executed as follows:
data was added to the database with dates older than those considered valid by the
application. After this insertion, the necessary time was waited for the application to
clean up old data. Subsequently, it was verified in the database whether this data was
successfully removed. After this verification, it was confirmed that this functionality was
operating correctly.

Figure 5. Context Acquisition Execution Example for Tests.

Finally, test 5 presented in Table 4 was conducted in the Context Builder and Context
Server. In this test, each service of the APIs of these applications was evaluated by inserting
various input parameters into these services and checking if the response was as expected.
For the information services of the Context Server, a variety of data was added to the
database simulating the company’s database to test various scenarios and the expected
responses by the application. All tests conducted were approved, confirming that, in these
cases, the application is operating correctly.

Figures 6 and 7 illustrate a test of this kind. Two requests were made to the Coordinator-
Info service of the Context Server. In the first one, shown in Figure 6, a request was made to
the service, sending an idfirebase of a worker who is not a coordinator type. The application
responded with the worker’s data, accompanied by a “NotFound” response, indicating
that it could not identify the coordinator. In the second test, represented in Figure 7, a
request was made by sending an idfirebase of a worker who is a coordinator. The service
returned “OK,” indicating that the information was successfully obtained, along with the
respective worker’s information and the lines they coordinate. These two test examples
demonstrate that this application service is functioning as intended. The other functional
tests for the services of this application were executed similarly.

These tests demonstrate the capabilities of the Context Engine and show that it is
working correctly. It is, however, important to assess how this solution could be applied in
a real environment. The following section aims to demonstrate the potential and advantages
of such practical application.

Appl. Sci. 2024, 14, 3907 16 of 23

Figure 6. Search test for a worker who is not of the coordinator type.

Figure 7. Search test for a worker who is a coordinator.

4.2. Case Studies

The purpose of this case study section is to provide a more detailed and contextualized
view of Context Engine’s specific contribution to the actual factory. This section presents
examples of Context Engine services that are used by other services in the CA-FoFS system,
such as the virtual assistant and the wearable (smartwatch). Throughout this section, the

Appl. Sci. 2024, 14, 3907 17 of 23

figures presented for the virtual assistant and smartwatch are pictures of these applications
working with static data or mockups. The case studies presented in this section are intended
to demonstrate examples of data requests that other applications can make to Context Engine,
examples of responses that the application can provide to these requests and examples of
how these services use this information. The case studies are presented below as follows.

4.2.1. Case Study 1: Sending Urgent Stop Alerts and Making Them Available through the
Virtual Assistant

This case study shows an example of how the virtual assistant uses the information
from the stop alerts sent by the Context Engine to the NAS. Context Acquisition is responsible
for detecting new stoppages. When new data relating to this information is entered into the
company’s database, it is detected by the application, which studies the data. If the data is
considered important, alerts are sent to the NAS.

Figure 8a shows an example of the detection of two breakdowns and the sending
of alerts to the NAS and Figure 8b shows the application saving the data relating to the
sending of alerts in its database.

Figure 8. Detecting Stoppages and Recording the Sending of Alerts in Context Acquisition.

With the respective information that has been sent to the NAS, the virtual assistant
will make these warnings/alerts available. Figure 9 shows an example of this assistant
providing this information.

The alerts sent by Context Acquisition about production deviations operate in the
same way. The information on stoppage alerts and production deviations provided by the
virtual assistant allows workers to monitor what is happening on the production lines more
actively. From this information considered critical by the application, users are informed
about what has happened on the production lines and can take corresponding measures
if necessary.

Appl. Sci. 2024, 14, 3907 18 of 23

Figure 9. Alerts Received Page in the Virtual Assistant [36].

4.2.2. Case Study 2: Material Replacement Orders from Production Lines

The operators of the factory’s production lines are equipped with smartwatches. These
wearables are integrated with the CA-FoFS system and have two important functions for
the production line, which need data from the Context Engine in order to work. These
functionalities are the request for labels or the request for replacement components, which
are shown in Figure 10.

Figure 10. Material Replacement Request functionality on the Smartwatch.

With regard to the request for labels, operators make this request on the smartwatch
and it is forwarded to the system. To find out which labels need to be replaced, the system
makes an information request to the Context Engine’s DeviceInfo service (service 1 shown
in Table 3). This service, based on the device ID, provides the label reference of the product
currently in production on the production line with which the device is associated. With
this information, the system sends a label replacement notice with this reference to the
entities responsible for the replacement. Figure 11 shows an example of an information
request to the Context Engine’s DeviceInfo service, through which this reference can be
obtained. This is obtained via the tagReference parameter, as can be seen in the figure.

Appl. Sci. 2024, 14, 3907 19 of 23

Figure 11. Example of DeviceInfo Service Response to an Information Request.

The other functionality is the request for replacement components for the production
line. In this functionality, the operator clicks on the materials request shown in Figure 10
from the smartwatch. After this click, the device displays a page where you can select the
components that need to be replaced on the production line. In order to provide this list
of components, the device uses the GetComponentsDeviceInfo service (service 7 shown in
Table 3). Based on the device ID, the Context Engine provides a list of components, which
are the components used in the production of the product currently being manufactured
on the production line with which the device is associated. Figure 12a shows an example of
the application providing this list of components and Figure 12b shows a mockup of this
list displayed on the wearable.

Figure 12. Component replacement order functionality.

The operator can then select the components that need to be replaced and the corre-
sponding replacement alerts are sent to the production line where the device is associated.

These features offered by the Context Engine to the CA-FoFS system help operators by
allowing them to request replacement components or labels simply and quickly, without
the need to leave the production line.

Appl. Sci. 2024, 14, 3907 20 of 23

4.2.3. Case Study 3: Provision of Contextual Information for Creating Reports by the
Virtual Assistant

Another task that the services provided by Context Engine have is to assist the virtual
assistant in creating and making available PDF reports for sending by email. Context Engine
helps this virtual assistant by providing its contextual services, which are used to generate
reports based on this information. These reports are then made available to factory workers
by this assistant.

Figure 13 shows a virtual assistant service that uses Context Engine services to create
reports. This service creates a report on what happened on the production lines on a
certain day. In this case, it provides information about the productions that took place, the
stoppages that were recorded and presents a graph about the time spent on productions
with these stoppages.

Figure 13. Virtual Assistant Report creation functionality [36].

For this virtual assistant service to be able to present this information, it needs to make
requests for information to the Context Engine, more specifically to the LineInfo service
(service 4 presented in Table 3). This service, based on the production line ID and search
dates entered, provides the productions and stoppages that occurred on that production
line. With this information, the virtual assistant can create the report.

The Context Engine provides other information services that can be used by the virtual
assistant and the applications of the CA-FoFS system. However, these three presented case
studies manage to provide a more detailed insight into the contribution of the Context
Engine to the company, through some practical illustrative cases. Overall, the Context
Engine is a fundamental application for building the CA-FoFS system. This application
provides various context services that offer essential information to the applications of this

Appl. Sci. 2024, 14, 3907 21 of 23

system so that they can operate, besides providing information to users to assist them in
decision-making.

5. Conclusions and Future Work

This article presents and discusses the development of a context-aware application
called Context Engine. Initially, a theoretical study on this type of application is presented.
This study enables reaching the conclusion that contextual applications can perform various
functions and that, when applied in the manufacturing industry, they aim to generate intelli-
gent information for workers. Such information enables them to respond to manufacturing
processes in an instructed and informed way.

The Context Engine architecture was designed taking into account the operational
scenario, the functions it performs, the previous study on this type of application in the
article [34], as well as the CA-FoFS architecture. Divided into three main components—
Context Acquisition, Context Builder and Context Server—according to the different capabilities
they have, the architecture makes it possible to modify and add functionality independently,
which is crucial given that it is still in a prototype state.

By using microservices technology, a choice justified by its flexibility, modularity
and evolution, the application is able to adapt to changes and incorporate new features
independently. In addition, the use of this technology allows efficient integration and
communication between services via APIs, which was crucial in the development of the
application. Once the applications had been developed, their functionalities were tested
in each application in a laboratory environment and showed their correct functioning
and development.

Once the applications had been developed, their functionality was tested in a labo-
ratory environment using unit and functional tests. 61 unit tests were carried out on the
Context Engine components and all passed, confirming that the services tested behaved as
expected and provided responses as predicted. As for the functional tests, all the function-
alities provided by Context Engine were tested in each application, integrating them with
services that simulate the integration and services layer. All the functionalities were found
to be working correctly.

As prospects for future work, there are several tasks that can be incorporated into
this application, given the extensive range of functionalities that this type of application is
capable of performing. One particularly intriguing and essential initiative for production
environments would be the integration of Context Acquisition with IoT devices to process
data in real time and generate valuable information for the company. Various IoT devices,
such as temperature, humidity, pressure and vibration sensors, among others, could be ap-
plied in the company. The information from these sensors could be received and processed
by Context Acquisition and used to monitor environmental conditions in production areas,
ensuring that they are suitable for production, for workers or even to carry out preventive
maintenance on machines.

In addition, the application’s information provision functionalities can be extended.
For example, functionalities relating to crucial information such as stock levels, the location
of parts in the factory and production estimates could be incorporated. This expansion of
functionalities would not only offer more comprehensive support for decision-making, but
would also contribute to optimizing processes and improving the overall performance of
the production environment.

Finally, security rules need to be defined and implemented in the application to
guarantee data integrity and protection. Given the current emphasis on the architecture and
functionality of the application, the issue of security has been left open to be dealt with at a
later date. It will be necessary to carry out a comprehensive analysis of security measures
for future iterations and enhancements of communications between the Ca-FoFs system
and the Context Engine, ensuring that they comply with appropriate security standards.

Appl. Sci. 2024, 14, 3907 22 of 23

Author Contributions: Conceptualization, A.R. and T.P.; methodology, R.P.; software, P.M.; validation,
R.P., R.N. and T.P.; investigation, P.M., R.P. and T.P.; resources, A.R. and T.P.; data curation, P.M. and
R.P.; writing—original draft preparation, P.M.; writing—review and editing, T.P.; visualization, R.N.;
supervision, A.R. and T.P.; project administration, A.R.; funding acquisition, A.R. All authors have
read and agreed to the published version of the manuscript.

Funding: The study was developed under the project A-MoVeR—“Mobilizing Agenda for the Devel-
opment of Products & Systems towards an Intelligent and Green Mobility”, operation n.º 02/C05-
i01.01/2022.PC646908627-00000069, approved under the terms of the call n.º 02/C05-i01/2022—
Mobilizing Agendas for Business Innovation, financed by European funds provided to Portugal by
the Recovery and Resilience Plan (RRP), in the scope of the European Recovery and Resilience Facility
(RRF), framed in the Next Generation UE, for the period from 2021–2026.

Data Availability Statement: The datasets presented in this article are not readily available because
data is the property of Continental A.A.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sivakumar, K.; Dhyankumar, C.T.; Cherian, T.M.; Manikandan, N.; Thejasree, P. Requirements for the Adoption of Industry 4.0

in the Sustainable Manufacturing Supply Chain. In Industry 4.0 Technologies: Sustainable Manufacturing Supply Chains: Volume
II-Methods for Transition and Trends; Springer: Berlin/Heidelberg, Germany, 2023; pp. 185–201.

2. Ferreira, J.J.; Lopes, J.M.; Gomes, S.; Rammal, H.G. Industry 4.0 implementation: Environmental and social sustainability in
manufacturing multinational enterprises. J. Clean. Prod. 2023, 404, 136841. [CrossRef]

3. Bisio, I.; Garibotto, C.; Grattarola, A.; Lavagetto, F.; Sciarrone, A. Exploiting context-aware capabilities over the internet of things
for industry 4.0 applications. IEEE Netw. 2018, 32, 101–107. [CrossRef]

4. Xu, M.; David, J.M.; Kim, S.H. The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 2018, 9, 90–95.
[CrossRef]

5. Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii
International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016.

6. Petrasch, R.; Hentschke, R. Process modeling for industry 4.0 applications: Towards an industry 4.0 process modeling language
and method. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering
(JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 1–5.

7. Yavuz, O.; Uner, M.M.; Okumus, F.; Karatepe, O.M. Industry 4.0 technologies, sustainable operations practices and their impacts
on sustainable performance. J. Clean. Prod. 2023, 387, 135951. [CrossRef]

8. Olsen, T.L.; Tomlin, B. Industry 4.0: Opportunities and Challenges for Operations Management. Manuf. Serv. Oper. Manag. 2020,
22, 113–122. [CrossRef]

9. Wieland, M.; Leymann, F.; Schäfer, M.; Lucke, D.; Constantinescu, C.; Westkämper, E. Using context-aware workflows for
failure management in a smart factory. In Proceedings of the Fourth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies UBICOMM, Florence, Italy, 25–30 October 2010; pp. 379–384.

10. Flatt, H.; Koch, N.; Röcker, C.; Günter, A.; Jasperneite, J. A context-aware assistance system for maintenance applications in smart
factories based on augmented reality and indoor localization. In Proceedings of the 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), Luxembourg, 8–11 September 2015; pp. 1–4.

11. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017,
3, 616–630. [CrossRef]

12. Shi, Z.; Xie, Y.; Xue, W.; Chen, Y.; Fu, L.; Xu, X. Smart factory in Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 607–617. [CrossRef]
13. Gubán, M.; Kovács, G. INDUSTRY 4.0 CONCEPTION. Acta Tech.-Corviniensis-Bull. Eng. 2017, 10, 22.
14. Reza, M.N.H.; Malarvizhi, C.A.N.; Jayashree, S.; Mohiuddin, M. Industry 4.0—Technological revolution and sustainable firm

performance. In Proceedings of the 2021 Emerging Trends in Industry 4.0 (ETI 4.0), Raigarh, India, 19–21 May 2021; pp. 1–6.
15. Alexopoulos, K.; Makris, S.; Xanthakis, V.; Sipsas, K.; Chryssolouris, G. A concept for context-aware computing in manufacturing:

The white goods case. Int. J. Comput. Integr. Manuf. 2016, 29, 839–849. [CrossRef]
16. Bang, A.O.; Rao, U.P. Context-aware computing for IoT: History, applications and research challenges. In Proceedings of the

Second International Conference on Smart Energy and Communication: ICSEC 2020, Jaipur, India, 20–21 March 2020; Springer:
Singapore, 2021; pp. 719–726.

17. Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The future of industrial communication: Automation networks in the era of the
internet of things and industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [CrossRef]

18. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [CrossRef]
19. Mohamed, M. Challenges and benefits of industry 4.0: An overview. Int. J. Supply Oper. Manag. 2018, 5, 256–265.
20. Dey, A.K. Understanding and using context. Pers. Ubiquitous Comput. 2001, 5, 4–7. [CrossRef]

http://doi.org/10.1016/j.jclepro.2023.136841
http://dx.doi.org/10.1109/MNET.2018.1700355
http://dx.doi.org/10.5430/ijfr.v9n2p90
http://dx.doi.org/10.1016/j.jclepro.2023.135951
http://dx.doi.org/10.1287/msom.2019.0796
http://dx.doi.org/10.1016/J.ENG.2017.05.015
http://dx.doi.org/10.1002/sres.2704
http://dx.doi.org/10.1080/0951192X.2015.1130257
http://dx.doi.org/10.1109/MIE.2017.2649104
http://dx.doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1007/s007790170019

Appl. Sci. 2024, 14, 3907 23 of 23

21. Abowd, G.D.; Dey, A.K.; Brown, P.J.; Davies, N.; Smith, M.; Steggles, P. Towards a better understanding of context and context-
awareness. In Proceedings of the Handheld and Ubiquitous Computing: First International Symposium, HUC’99, Karlsruhe,
Germany, 27–29 September 1999; Proceedings 1; Springer: Berlin/Heidelberg, Germany, 1999; pp. 304–307.

22. Ye, Y.; Hu, T.; Nassehi, A.; Ji, S.; Ni, H. Context-aware manufacturing system design using machine learning. J. Manuf. Syst. 2022,
65, 59–69. [CrossRef]

23. Schilit, B.; Adams, N.; Want, R. Context-Aware Computing Applications. In Proceedings of the 1994 First Workshop on Mobile
Computing Systems and Applications, Washington, DC, USA, 8–9 December 1994; pp. 85–90. [CrossRef]

24. Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. (ISOC) 2015, 80, 1–50.
25. Breivold, H.P.; Sandström, K. Internet of Things for Industrial Automation—Challenges and Technical Solutions. In Proceedings

of the 2015 IEEE International Conference on Data Science and Data Intensive Systems, Sydney, Australia, 11–13 December 2015;
pp. 532–539.

26. Lampropoulos, G.; Siakas, K.; Anastasiadis, T. Internet of things in the context of industry 4.0: An overview. Int. J. Entrep. Knowl.
2019, 7, 4–19. [CrossRef]

27. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of Things: A Survey. IEEE
Commun. Surv. Tutor. 2014, 16, 414–454. [CrossRef]

28. Larrucea, X.; Santamaria, I.; Colomo-Palacios, R.; Ebert, C. Microservices. IEEE Softw. 2018, 35, 96–100. [CrossRef]
29. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, today, and

tomorrow. In Present and Ulterior Software Engineering; Springer: Cham, Switzerland, 2017; pp. 195–216.
30. Shadija, D.; Rezai, M.; Hill, R. Towards an understanding of microservices. In Proceedings of the 2017 23rd International

Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–6. [CrossRef]
31. Jamshidi, P.; Pahl, C.; Mendonça, N.C.; Lewis, J.; Tilkov, S. Microservices: The journey so far and challenges ahead. IEEE Softw.

2018, 35, 24–35. [CrossRef]
32. Viggiato, M.; Terra, R.; Rocha, H.; Valente, M.T.; Figueiredo, E. Microservices in practice: A survey study. arXiv 2018,

arXiv:1808.04836.
33. Continental FoF (2023) Continental FoF—Continental AA’s Factory of Future (utad.pt). Available online: https://fof.utad.pt/

(accessed on 23 April 2024).
34. Monteiro, P.; Lima, C.; Pinto, T.; Nogueira, P.; Reis, A.; Filipe, V. Context-Aware Applications in Industry 4.0: A Systematic

Literature Review. In International Symposium on Distributed Computing and Artificial Intelligence; Springer: Cham, Switzerland,
2023; pp. 301–311.

35. Controle de Alterações de Dados (SQL Server). Available online: https://learn.microsoft.com/pt-br/sql/relational-databases/
track-changes/track-data-changes-sql-server?view=sql-server-ver16 (accessed on 13 November 2023).

36. Pereira, R. Uso de Assistentes Virtuais no Apoio à Gestão de Produção. Master’s Thesis, Universidade de Trás-os-Montes e Alto
Douro, Vila Real, Portugal, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jmsy.2022.08.012
http://dx.doi.org/10.1109/WMCSA.1994.16
http://dx.doi.org/10.37335/ijek.v7i1.84
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1109/MS.2018.2141030
http://dx.doi.org/10.23919/IConAC.2017.8082018
http://dx.doi.org/10.1109/MS.2018.2141039
https://fof.utad.pt/
https://learn.microsoft.com/pt-br/sql/relational-databases/track-changes/track-data-changes-sql-server?view=sql-server-ver16
https://learn.microsoft.com/pt-br/sql/relational-databases/track-changes/track-data-changes-sql-server?view=sql-server-ver16

	Introduction
	Theoretical Framework
	Industry 4.0
	Context-Aware Applications
	Internet of Things
	Microservices

	Context-Aware Application
	Scenario
	CA-FoFS Architecture
	Context Engine Architecture
	Implementation and Integration Technologies
	Development of the Applications

	Experimental Findings
	Tests
	Case Studies
	Case Study 1: Sending Urgent Stop Alerts and Making Them Available through the Virtual Assistant
	Case Study 2: Material Replacement Orders from Production Lines
	Case Study 3: Provision of Contextual Information for Creating Reports by the Virtual Assistant

	Conclusions and Future Work
	References

