
Citation: Kim, J.-B.; Choi, J.-B.; Jung,

E.-S. Design and Implementation of

an Automated Disaster-Recovery

System for a Kubernetes Cluster

Using LSTM. Appl. Sci. 2024, 14, 3914.

https://doi.org/10.3390/app14093914

Academic Editor: Chilukuri K. Mohan

Received: 23 January 2024

Revised: 8 April 2024

Accepted: 1 May 2024

Published: 3 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Design and Implementation of an Automated Disaster-Recovery
System for a Kubernetes Cluster Using LSTM
Ji-Beom Kim , Je-Bum Choi and Eun-Sung Jung *

Department of Software & Communications Engineering, Hongik University, Sejong 30016, Republic of Korea;
kjbeom@g.hongik.ac.kr (J.-B.K.); b989061@g.hongik.ac.kr (J.-B.C.)
* Correspondence: ejung@hongik.ac.kr

Abstract: With the increasing importance of data in modern business environments, effective data
management and protection strategies are gaining increasing research attention. Data protection
in a cloud environment is crucial for safeguarding information assets and maintaining sustainable
services. This study introduces a system structure that integrates Kubernetes management platforms
with backup and restoration tools. This system is designed to immediately detect disasters and
automatically recover applications from another Kubernetes cluster. The experimental results show
that this system executes the restoration process within 15 s without human intervention, enabling
rapid recovery. This, in turn, significantly reduces the potential for delays and errors compared to
manual recovery processes, thereby enhancing data management and recovery efficiency in cloud
environments. Moreover, our research model predicts the CPU utilization of the cluster using Long
Short-Term Memory (LSTM). The necessity of scheduling through this predict is made clearer through
comparison with experiments without scheduling, demonstrating its ability to prevent performance
degradation. This research highlights the efficiency and necessity of automatic recovery systems in
cloud environments, setting a new direction for future research.

Keywords: data protection; automatic recovery; kubernetes; cluster; LSTM

1. Introduction

In the modern era, data have become a crucial asset and a key to competitiveness for
businesses. With the expansion of digitalization and cloud technology, data continues to
increase in value. In this context, data loss poses a significant threat to businesses, high-
lighting the need for efficient data management and protection strategies. Data protection
in cloud environments is vital, enabling companies to respond to various threats such as
software errors, hardware failures, cyber-attacks, and natural disasters. The maintenance
of data stability and reliability has emerged as a key element of business operations.

The importance of data backup is emphasized in this context. Data backup transcends
mere information copying; it involves various functions from fulfilling legal obligations
to protecting against security threats, such as ransomware and hacking, and preparing
for natural disasters [1–4]. Data backup strategies, such as the setting of recovery time
objectives (RTOs) and recovery point objectives, play a crucial role in minimizing service
disruptions and preventing data loss. These strategies are essential for organizations to
protect their information assets from various risks and maintain sustainable services.

The significance of disaster recovery is an extension of data backup strategies. Disaster
recovery provides more comprehensive security and stability in conjunction with data
backup. Disaster-recovery solutions respond quickly and effectively to data loss or damage
due to natural disasters, technical errors, and cyber-attacks. Such strategies ensure quick
recovery and the provision of sustainable services, thus guaranteeing business continu-
ity. Companies operating various applications and services in cloud environments must
implement advanced disaster-recovery strategies.

Appl. Sci. 2024, 14, 3914. https://doi.org/10.3390/app14093914 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-8782-6133
https://orcid.org/0000-0002-1288-7521
https://doi.org/10.3390/app14093914
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093914?type=check_update&version=1

Appl. Sci. 2024, 14, 3914 2 of 21

Disaster Recovery, as a Service (DRaaS), supports the quick recovery of data and
applications in the event of a disaster [5]. This service is applied in various environments,
and its importance has been increasingly highlighted in cloud usage. Cloud-based busi-
nesses and organizations require effective disaster-recovery strategies to ensure data and
service continuity. DRaaS is designed to meet this requirement by considering the flexibility
and scalability of cloud infrastructure to minimize business disruptions in the event of a
disaster. DRaaS in cloud environments offers many advantages, including cost efficiency,
fast recovery times, and accessibility, making it an essential element in modern business
environments. Consequently, research on disaster recovery in cloud environments is being
actively pursued [6–10].

Backup and restoration tools for Kubernetes are crucial for protecting the data and
system state of container-based applications. These tools play an important role in rapidly
restoring important data and configurations in the event of a failure [11]. Their usage
supports the safe backup of critical data and configurations and quick restoration in case of
failure or data loss.

The Kubernetes management platform provides an environment for the integrated
management of various clusters and services. With the continuous increase in the com-
plexity of cloud services and applications, consistent cluster management and deployment
have become essential. This platform enhances operational efficiency in complex envi-
ronments, reduces operational burdens through resource optimization and automation,
and emphasizes the need for a centralized management platform with the increase in the
number of clusters. This reduces the possibility of errors and facilitates maintenance and
monitoring. The Kubernetes management platform simplifies the manual management of
individual clusters and supports consistent policy application, effective monitoring, and
stable application deployment. This plays a significant role in enhancing the efficiency of
the IT infrastructure for businesses and organizations, contributing to the achievement of
business goals.

This paper presents a system that automatically recovers applications in a cluster.
The system detects when a cluster loses functionality because of a disaster and automat-
ically restores the services that were operating in the affected cluster to another cluster.
Accordingly, even if a disaster occurs and the cluster loses functionality, automatic recovery
is immediately initiated without the need for user intervention. Conventional disaster
recovery involves delays due to human intervention [12], which can be minimized in an
automated recovery, thus providing the advantage of faster recovery. Compared to manual
recovery, an automated system responds immediately and quickly restores services to
normal. In addition, it prevents mistakes that can occur during manual operations and
ensures consistent recovery.

Our research has two technical contributions. First, it automates the entire recovery
process, i.e., from event detection, including disasters and attacks, to querying backup
files, selecting clusters for restoration, and executing restoration tasks. To automate all
these functions, the system integrates Kubernetes management platforms with Kubernetes
backup and restoration tools. Thus, user-intervention time is eliminated. This automation
prevents mistakes that can occur during manual operations because of the complexity of
the recovery process and ensures consistent recovery. In addition, automated recovery uses
pre-allocated resources to perform tasks most optimally, thereby improving the system’s
overall performance and stability.

Second, when selecting a cluster for the restoration task, machine learning is used
to predict the CPU usage required for selecting a cluster. While clusters can be selected
using algorithms or rules, the time taken for restoration tasks must also be considered.
Therefore, machine learning is used to predict the CPU usage of clusters to select the cluster
for successful restoration. This minimizes service disruption with quick recovery times,
positively affecting RTOs. Finally, the automated-recovery solution reduces management
complexity and enhances the overall system stability by providing consistent recovery

Appl. Sci. 2024, 14, 3914 3 of 21

procedures across various systems or applications. This approach prevents mistakes that
can occur during manual operations and ensures consistent recovery.

The remainder of this paper is structured as follows. Section 2 reviews the current
related research, highlighting the importance of recovery automation in cloud environments
and presenting the unique aspects of our research. Section 3 describes the architecture of the
proposed system, which integrates Kubernetes management platforms with backup and
restoration tools. Section 4 introduces the data used in the experiments and explains the pre-
processing methods used. Section 5 discusses the Long Short-Term Memory (LSTM) and
how to train time-series data on the LSTM. Section 6 details the experimental environment
and methods used. In Section 7, we present and analyze the experimental results. Finally,
conclusions are provided in Section 8.

2. Related Work

Sousa et al. [13] explored two important concepts in cloud software engineering:
“automatic recovery” and “job scheduling”. Automatic recovery refers to the automatic
restoration of services through an orchestration manager in the event of system failures,
enhancing the reliability of cloud services and minimizing the response time to failures.
Job scheduling involves the efficient allocation and scheduling of resources in the cloud
environment, optimizing system performance, and reducing operational costs. These func-
tionalities are essential for the stable and efficient management of the cloud infrastructure,
especially in environments requiring high availability and quick recovery times. The supe-
riority of automatic recovery over manual recovery is demonstrated through experiments
that simulate various failure scenarios and measure the reduction in the service-restoration
time during automatic recovery. In manual recovery, users must identify failures and decide
on the type of system recovery, thus causing delays and errors. In contrast, automatic
recovery precisely monitors the service status and attempts recovery automatically when
the orchestration manager detects a failure, thus enhancing reliability. Container deploy-
ments, including automatic recovery, are considered to be part of the service-development
process, restoring containers to a normal state after failures. The experimental results
show that the orchestration manager continuously monitors the status of services and
automatically restarts services upon detecting issues, thereby reducing service downtime,
and enhancing system reliability, demonstrating that rapid service recovery is possible
without manual intervention. This automatic recovery mechanism proves crucial in the
operation of cloud-based services.

Yu et al. [14] focused on the automatic recovery of applications within aerospace
ground systems, based on cloud computing. They emphasized developing and implement-
ing recovery services to counter software errors. The core of the recovery service is the
automatic recovery capability of applications, which is aimed at improving stability and
availability in the cloud computing environment. They explored the technical details re-
lated to software recovery strategies and provided experimental evaluations of the recovery
time and capability. In addition, measures to automate application recovery concerning
software failures in cloud computing environments were designed and implemented, in-
cluding strategies for various recovery scenarios. Moreover, the efficiency and performance
of these strategies were validated using real experiments. Yu at al. also presented an
automated approach to maintain continuous access portals and ensure business continuity
after application recovery, allowing users to use the service continuously without being
aware of the recovery process. Their research, which focused on the automation of ap-
plication recovery in cloud environments, presented a different approach from those of
previous studies. While most research [15–17] has focused on data and system recovery,
this study focused on automatic recovery at the application level, offering a new direction
for enhancing the stability and the availability of applications in cloud environments.

Previous studies have presented diverse approaches to automatic recovery in Kuber-
netes and cloud computing environments. Our research focuses on automatic recovery
at the cluster level. In contrast to the research by Sousa et al. [13], which was focused on

Appl. Sci. 2024, 14, 3914 4 of 21

individual services or tasks, our approach involves the conducting of automatic recovery
by targeting clusters, thus restoring applications from one cluster to another. Yu et al. [14]
emphasized automated application recovery in aerospace ground systems based on cloud
computing. This study proposes and implements automatic recovery functions at the appli-
cation level in response to software failures. It addresses application recovery strategies and
experimentally evaluates recovery time and capability. Compared to the technique used in
the work presented in [14], which required standby server resources, our research enhances
resource-utilization efficiency by conducting recovery in operational clusters. Yu et al. [14]
addressed automatic recovery from the functional loss of applications in the same environ-
ment, whereas we propose cluster-level automatic recovery, which automatically restores
applications to a different cluster when the original cluster loses functionality.

In the realm of commercial cluster and cloud management, AWS Elastic Disaster
Recovery (AWS DRS) [18] and Google Cloud’s disaster recovery [19] methods are designed
to enhance the resilience and availability of systems and applications in cloud environments.
By leveraging these services, businesses can achieve minimal downtime and data loss in
the event of outages or disasters, aligning with the Recovery Time Objectives (RTOs) and
Recovery Point Objectives (RPOs), which are critical for business continuity management.
To meet the RTOs and RPOs, AWS DRS continuously synchronizes data across multiple
servers to enable rapid recovery, meeting the RTOs and RPOs in the event of a disaster.
This is usually called active/active strategy because a source and target cluster are always
active for real-time synchronization. However, this leads to additional resource use and
increased costs. Google Cloud’s disaster recovery supports similar features.

In our study, we assume a cluster environment, deploying an active/passive strategy
where backup data is restored to the target cluster only when there is a problem with
the source cluster. Three distinctive features are as follows: (1) source cluster data are
continuously transferred to backup storage to meet RPO; (2) target clusters are not in a
standby state and are not only dedicated to a source cluster restore. They may have up-
and-running services. (3) This strategy does not require complex data synchronization or
migration before the recovery process, thus allowing for more efficient resource utilization.

Our proposed method and module can be integrated with a snapshot-based recovery
method, which creates and stores a copy of the data at a specific point in time, allowing for
the system to be quickly restored when necessary. This offers the advantage of cost and
resource efficiency while meeting the RTO and RPO requirements, although it may not be
as efficient as real-time recovery. Nonetheless, it is very suitable for minimizing resource
usage and reducing idle resources that may occur during data migration.

The choice between an active/active strategy using real-time data migration and
active/passive strategy using snapshots, which is the assumed backup environment in our
study, depends on several factors. Data migration supports the rapid recovery of complex
systems, meeting complex situations and business continuity requirements. In contrast,
the snapshot approach is more suitable for systems prioritizing cost, resource efficiency,
and simplicity in the recovery process. To determine the optimal disaster recovery strategy,
one must consider the system’s characteristics, requirements, and cost-effectiveness. This
decision-making process should also include technical indicators like the Recovery Time
Objective (RTO). Therefore, for organizations aiming to minimize resource usage and
maximize cost efficiency, the active/passive strategy, using our proposed method and
module, can be an excellent alternative to the AWS or Google strategy. Avoiding complex
data synchronization and migration while enabling quick and effective recovery when
necessary is particularly suitable for scenarios prioritizing cost and operational efficiency.
The AWS multi-region access point failover control is a high-availability feature that
automatically switches data access requests to another AWS region within minutes. This
ensures resilience and business continuity through multi-region architecture. Google’s
disaster recovery scenarios offer cold, warm, and real-time concurrent services depending
on the RTO, but even real-time concurrent services, as well as warm sites, require standby
resources. In contrast, unlike AWS and Google services, our system’s active/passive

Appl. Sci. 2024, 14, 3914 5 of 21

strategy does not rely on standby resources, allowing for operational services to exist,
which differentiates it.

3. Design

This section explains the structure of the automatic recovery system, implemented
by integrating Kubernetes backup and restoration tools with the Kubernetes management
platform. This system automatically transfers the applications of a cluster to another cluster
if the original cluster experiences a disaster and loses its connection to the Kubernetes man-
agement platform. The automatic recovery system is added to the cluster state, monitoring
part of the Kubernetes management platform, and integrates by installing Kubernetes
backup and restoration tools in the environment.

The proposed automatic recovery system operates on the Kubernetes management
platform and continuously monitors the state of a cluster. In the event of a disaster, the
system is capable of monitoring and detecting events to identify the situation. Once a
disaster is detected, the system performs resource comparison by comparing the resources
of the affected cluster with those of other clusters to identify a cluster with superior
resources. Subsequently, it verifies the name of that cluster and selects a target cluster for
performing the restoration work based on the CPU usage of that cluster. Finally, the system
executes the restoration process by using the backup files of the disaster-affected cluster
in the selected cluster. This entire process comprises four main components, and Figure 1
shows the flowchart of the components of the proposed automatic recovery system. The
structure and operation of each component are as follows.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 23

automatically switches data access requests to another AWS region within minutes. This

ensures resilience and business continuity through multi-region architecture. Google’s

disaster recovery scenarios offer cold, warm, and real-time concurrent services depending

on the RTO, but even real-time concurrent services, as well as warm sites, require standby

resources. In contrast, unlike AWS and Google services, our system’s active/passive strat-

egy does not rely on standby resources, allowing for operational services to exist, which

differentiates it.

3. Design

This section explains the structure of the automatic recovery system, implemented

by integrating Kubernetes backup and restoration tools with the Kubernetes management

platform. This system automatically transfers the applications of a cluster to another clus-

ter if the original cluster experiences a disaster and loses its connection to the Kubernetes

management platform. The automatic recovery system is added to the cluster state, mon-

itoring part of the Kubernetes management platform, and integrates by installing Kuber-

netes backup and restoration tools in the environment.

The proposed automatic recovery system operates on the Kubernetes management

platform and continuously monitors the state of a cluster. In the event of a disaster, the

system is capable of monitoring and detecting events to identify the situation. Once a dis-

aster is detected, the system performs resource comparison by comparing the resources

of the affected cluster with those of other clusters to identify a cluster with superior re-

sources. Subsequently, it verifies the name of that cluster and selects a target cluster for

performing the restoration work based on the CPU usage of that cluster. Finally, the sys-

tem executes the restoration process by using the backup files of the disaster-affected clus-

ter in the selected cluster. This entire process comprises four main components, and Fig-

ure 1 shows the flowchart of the components of the proposed automatic recovery system.

The structure and operation of each component are as follows.

Figure 1. Flowchart of the Components of the Automatic Recovery System.

 Monitoring and event-detection component: The Kubernetes management platform

monitors the clusters it manages. In this study, we enhanced this feature to detect

events when a managed cluster becomes disconnected and then transmit the name

of that cluster to the resource-comparison component. Figure 2 shows the flowchart

of the monitoring and event-detection component.

Figure 1. Flowchart of the Components of the Automatic Recovery System.

• Monitoring and event-detection component: The Kubernetes management platform
monitors the clusters it manages. In this study, we enhanced this feature to detect
events when a managed cluster becomes disconnected and then transmit the name of
that cluster to the resource-comparison component. Figure 2 shows the flowchart of
the monitoring and event-detection component.

• Resource-comparison-and-alert component: By using the name of the disaster-affected
cluster transmitted by the monitoring and event-detection component, the allocated
CPU core counts of that cluster and the other managed clusters are compared to
check if any cluster has more CPU cores than the disaster-affected cluster. If none
of the other clusters match this criterion, the restoration procedure is halted and
an alert is sent to the user, as proper restoration cannot be achieved. In contrast, if
clusters are found with more CPU cores than those of the affected cluster, the names
of such clusters are retrieved for the restoration process and sent to the Restoration
target cluster-selection component. As there can be more than one cluster with more
CPU cores than the affected cluster, multiple cluster names can be transmitted to the
Restoration target cluster-selection component. Figure 3 shows the flowchart of the
Resource-comparison-and-alert component.

Appl. Sci. 2024, 14, 3914 6 of 21
Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 23

Figure 2. Flowchart of the monitoring and event-detection component.

 Resource-comparison-and-alert component: By using the name of the disaster-af-

fected cluster transmitted by the monitoring and event-detection component, the al-

located CPU core counts of that cluster and the other managed clusters are compared

to check if any cluster has more CPU cores than the disaster-affected cluster. If none

of the other clusters match this criterion, the restoration procedure is halted and an

alert is sent to the user, as proper restoration cannot be achieved. In contrast, if clus-

ters are found with more CPU cores than those of the affected cluster, the names of

such clusters are retrieved for the restoration process and sent to the Restoration tar-

get cluster-selection component. As there can be more than one cluster with more

CPU cores than the affected cluster, multiple cluster names can be transmitted to the

Restoration target cluster-selection component. Figure 3 shows the flowchart of the

Resource-comparison-and-alert component.

Figure 2. Flowchart of the monitoring and event-detection component.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 23

Figure 3. Flowchart of the Resource-comparison-and-alert component.

 Restoration target cluster-selection component: The names of the clusters transmitted

through the Resource comparison component are used to query their current CPU-

utilization rates. The queried current CPU-utilization rates of these clusters are

passed to a machine-learning model as the parameters to predict CPU utilization,

and the predicted CPU-utilization rates are returned. The cluster with the lowest pre-

dicted CPU-utilization rate among all predicted clusters is selected. Then, the name

of the selected target cluster for restoration is transmitted to the Restoration-execu-

tion component. Figure 4 shows the flowchart of the Restoration target cluster-selec-

tion component.

Figure 3. Flowchart of the Resource-comparison-and-alert component.

Appl. Sci. 2024, 14, 3914 7 of 21

• Restoration target cluster-selection component: The names of the clusters transmitted
through the Resource comparison component are used to query their current CPU-
utilization rates. The queried current CPU-utilization rates of these clusters are passed
to a machine-learning model as the parameters to predict CPU utilization, and the pre-
dicted CPU-utilization rates are returned. The cluster with the lowest predicted CPU-
utilization rate among all predicted clusters is selected. Then, the name of the selected
target cluster for restoration is transmitted to the Restoration-execution component.
Figure 4 shows the flowchart of the Restoration target cluster-selection component.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 23

Figure 4. Flowchart of the Restoration target cluster-selection component.

 Restoration-execution component: The cluster selected as the target for restoration

and transmitted through the Restoration target cluster-selection component executes

the restoration command of the Kubernetes backup and restoration tool. This resto-

ration command includes the location of the backup file of the disaster-affected clus-

ter. When the restoration command is executed in the target cluster, the backup file

is retrieved from its storage location and is used to restore applications and other

components. Figure 5 shows the flowchart of the Restoration-execution component.

Figure 4. Flowchart of the Restoration target cluster-selection component.

• Restoration-execution component: The cluster selected as the target for restoration and
transmitted through the Restoration target cluster-selection component executes the
restoration command of the Kubernetes backup and restoration tool. This restoration
command includes the location of the backup file of the disaster-affected cluster. When
the restoration command is executed in the target cluster, the backup file is retrieved
from its storage location and is used to restore applications and other components.
Figure 5 shows the flowchart of the Restoration-execution component.

Appl. Sci. 2024, 14, 3914 8 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 23

Figure 5. Flowchart of the Restoration-execution component.

4. Experimental Data

4.1. Google Cluster Trace Dataset

We used the Google Cluster Trace dataset [20], specifically the ClusterData-2011_2

version, to train our cluster-state-prediction model. This dataset records the activity of a

single cluster during May 2011, encompassing approximately 12,500 machines, 650,000

jobs, and 20 million tasks. The tasks mentioned herein refer to Linux programs executable

on machines. The dataset includes detailed trace information about the behavior of jobs

and tasks, resource allocation, and the activities of the machines in the cluster. The dataset

is categorized into various tables, including the Machine Event, Machine Attributes, Job

Event, Task Event, Task Constraints, and Task Resource Usage Tables. Each table provides

the following information:

 Machine Events Table: This table comprises one or more records of every machine in

a cluster. Most of the records describe the machines present at the start of the trace.

Event types include addition, removal, and update, and the CPU and memory capac-

ities of each machine are standardized. The platform ID denotes the micro-

Figure 5. Flowchart of the Restoration-execution component.

4. Experimental Data
4.1. Google Cluster Trace Dataset

We used the Google Cluster Trace dataset [20], specifically the ClusterData-2011_2
version, to train our cluster-state-prediction model. This dataset records the activity of a
single cluster during May 2011, encompassing approximately 12,500 machines, 650,000 jobs,
and 20 million tasks. The tasks mentioned herein refer to Linux programs executable on
machines. The dataset includes detailed trace information about the behavior of jobs and
tasks, resource allocation, and the activities of the machines in the cluster. The dataset
is categorized into various tables, including the Machine Event, Machine Attributes, Job
Event, Task Event, Task Constraints, and Task Resource Usage Tables. Each table provides
the following information:

• Machine Events Table: This table comprises one or more records of every machine in a
cluster. Most of the records describe the machines present at the start of the trace. Event
types include addition, removal, and update, and the CPU and memory capacities of
each machine are standardized. The platform ID denotes the micro-architecture and
the chipset version of the machine; machines with the same ID can differ in terms of
clock speed or number of cores.

• Machine Attributes Table: This table comprises key-value pairs representing the
machine’s characteristics, including the kernel version, clock speed, and IP address.
Values are expressed as strings if not in integer form, and “1” indicates a missing value.

Appl. Sci. 2024, 14, 3914 9 of 21

• Job Events Table: This table includes the time, ID, type, user, and scheduling informa-
tion of a job. Information about active (RUNNING) or pending (PENDING) jobs is
also recorded, with each job containing scheduling constraints. The scheduling class
contains the latency information of the job, and job names are provided as encrypted
strings, repeated for multiple runs of the same program.

• Task Events Table: This table contains information such as timestamps, missing details,
job ID, task index, machine ID, event type, username, scheduling class, priority, CPU
cores, RAM, and local disk space requests. A task’s priority is inversely proportional
to its numerical value, with higher numbers indicating a higher priority. “Free”
denotes low priority, “production” is high priority, and “monitoring” is a priority for
monitoring other low-priority tasks. Resource requests indicate the maximum CPU,
memory, and disk space that a task can use, and exceeding these limits can restrict
the task.

• Task Resource Usage Table: This table includes information such as the start and end
times of the measurement period, job ID, task index, machine ID, CPU usage, memory
usage, disk I/O time, and cache usage. It contains essential data for understanding
the actual resource usage in the cluster, such as the average CPU usage, normalized
memory usage, average disk I/O time, and average local disk space usage.

These tables represent CPU-related resource usage data as normalized values. This
normalization adjusts to a relative scale based on the maximum resource capacity of
all tracked machines, with the maximum value standardized at 1.0. The CPU usage is
measured in core seconds per second; for instance, if a job consistently uses two cores, the
usage rate is 2.0 core seconds per second [20].

4.2. Preprocessing

According to Bi [21], the resource usage data in the Google Cluster Trace dataset is
highly non-linear, exhibiting erratic and highly variable characteristics. Figure 6 visualizes
this by normalizing the CPU rate data by using the min–max normalization method and
representing it in 5 min intervals, showcasing the irregular values of the CPU rate.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 23

architecture and the chipset version of the machine; machines with the same ID can

differ in terms of clock speed or number of cores.

 Machine Attributes Table: This table comprises key-value pairs representing the ma-

chine’s characteristics, including the kernel version, clock speed, and IP address. Val-

ues are expressed as strings if not in integer form, and “1” indicates a missing value.

 Job Events Table: This table includes the time, ID, type, user, and scheduling infor-

mation of a job. Information about active (RUNNING) or pending (PENDING) jobs

is also recorded, with each job containing scheduling constraints. The scheduling

class contains the latency information of the job, and job names are provided as en-

crypted strings, repeated for multiple runs of the same program.

 Task Events Table: This table contains information such as timestamps, missing de-

tails, job ID, task index, machine ID, event type, username, scheduling class, priority,

CPU cores, RAM, and local disk space requests. A task’s priority is inversely propor-

tional to its numerical value, with higher numbers indicating a higher priority. “Free”

denotes low priority, “production” is high priority, and “monitoring” is a priority for

monitoring other low-priority tasks. Resource requests indicate the maximum CPU,

memory, and disk space that a task can use, and exceeding these limits can restrict

the task.

 Task Resource Usage Table: This table includes information such as the start and end

times of the measurement period, job ID, task index, machine ID, CPU usage,

memory usage, disk I/O time, and cache usage. It contains essential data for under-

standing the actual resource usage in the cluster, such as the average CPU usage,

normalized memory usage, average disk I/O time, and average local disk space usage.

These tables represent CPU-related resource usage data as normalized values. This

normalization adjusts to a relative scale based on the maximum resource capacity of all

tracked machines, with the maximum value standardized at 1.0. The CPU usage is meas-

ured in core seconds per second; for instance, if a job consistently uses two cores, the usage

rate is 2.0 core seconds per second [20].

4.2. Preprocessing

According to Bi [21], the resource usage data in the Google Cluster Trace dataset is

highly non-linear, exhibiting erratic and highly variable characteristics. Figure 6 visualizes

this by normalizing the CPU rate data by using the min–max normalization method and

representing it in 5 min intervals, showcasing the irregular values of the CPU rate.

Figure 6. Time series of CPU usage. Figure 6. Time series of CPU usage.

Like previous studies focusing on CPU utilization [21,22], data preprocessing was
initiated by extracting the start and end times, as well as CPU-usage data, from the task
resource usage table. As the Google Cluster Trace dataset does not provide direct CPU
use data for the cluster, the extracted data were aggregated. We then identified the earliest
measurement start time and the latest measurement end time, creating 8352-time slots
at 5 min intervals based on this range. Next, the CPU utilization for each time slot was
aggregated according to the start and end times of each task. This preprocessed data was

Appl. Sci. 2024, 14, 3914 10 of 21

converted to a time series, batched at 5 min intervals, and then used to analyze trends in
the CPU utilization of the cluster.

5. LSTM-Based Scheduling

Where to restore is totally dependent on our scheduling strategy/policy. Our schedul-
ing goal is to recover the services on a failed source cluster on a new target cluster “safely”.
Here, we assume that recovery safety is equivalent to restore to a target cluster with the
“most” available resources, because the lack of resource has more chances of not satisfying
SLAs (Service Level Agreements).

Typical recurrent neural networks (RNNs) may encounter challenges in capturing
long-range dependencies within the data [23,24]. LSTM [25] is an advanced recurrent neural
network that effectively remembers the data sequences from previous time steps for future
applications. The reason for choosing LSTM is that this model integrates gates and memory
lines to effectively learn both long-term and short-term dependencies in the data [26]. Due
to these reasons, LSTM is commonly used in time series data prediction. In contrast to
other models, LSTM excels in solving the gradient vanishing problem that occurs in long
sequence data and has strengths in detecting and learning temporal dependencies [27].
With these characteristics, LSTM demonstrates robust performance in capturing complex
patterns and various time intervals in time series data. Many variations to improve time-
series data prediction have been proposed [28].

5.1. Sliding Window

The lookback window represents the duration of past data provided to the model,
with the current time as the reference point. The model is trained and performs predictions
using data within this period. For example, if the lookback window is 24 h, the model is
trained and predicts based on data from the current time up to 24 h ago.

The forecasting horizon refers to the time interval into the future that the model aims
to predict, with the current time as the reference point. It determines how far into the future
the model intends to make predictions. For instance, if the forecasting horizon is 6 h, the
model performs predictions for the timeframe from the current time to 6 h ahead.

Applying the sliding window technique to chaotic long-term time series data, such as
the Google Cluster Trace Dataset, offers several advantages:

• Non-linear Behavior Detection: Chaotic data often exhibits distinct non-linear dynamic
patterns. Utilizing the sliding window allows the model to capture and learn these
non-linear patterns.

• Temporal Dependencies: Chaotic time series data involves crucial temporal depen-
dencies. Sliding window considers data within specific periods, leading to a more
accurate understanding of the temporal dependencies.

• Adaptability and Model Generalization: Sliding window aids the model in adapting
to the dynamic nature of the data. Chaotic data can be challenging for prediction,
but through the sliding window, the model can learn and generalize patterns within
given periods.

We explored the optimal lookback window and forecasting horizon through experi-
ments on the Google Cluster Trace Dataset. In conclusion, the best prediction performance
was observed with a lookback window of 3 and a forecasting horizon of 1.

5.2. Prediction Model Architecture

Figure 7a illustrates the process of the LSTM model learning time series data. It
depicts the process of constructing and predicting time series data using the LSTM model.
Initially, the time series data is normalized to the [0, 1] range through Min–Max scaling.
Subsequently, the data is divided into X values and Y values by setting the Lookback
Window and Forecasting Horizon of the sliding window. Here, X values correspond to
data from past times, while Y values correspond to data for future times. The data is then
split into training and testing sets through Data Split, with a split ratio of 0.2. The LSTM

Appl. Sci. 2024, 14, 3914 11 of 21

sequentially receives X values from the training data, and Y values are used as labels in
supervised learning. The LSTM model consists of LSTM layers and a Dense layer. The
first LSTM layer has an input shape of (None, 3, 128), which means the input sequence
length is 3 and there are 128 features at each time step. This LSTM layer has 128 units,
and the total number of parameters is 66,560. The second LSTM layer takes the output
of the previous LSTM layer as its input, with an output shape of (None, 128). This LSTM
layer has 128 units, and the total number of parameters is 131,584. Finally, a Dense layer
follows, with an output shape of (None, 1). This layer has one unit, and the total number of
parameters is 129.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 23

5.2. Prediction Model Architecture

Figure 7a illustrates the process of the LSTM model learning time series data. It de-

picts the process of constructing and predicting time series data using the LSTM model.

Initially, the time series data is normalized to the [0, 1] range through Min–Max scaling.

Subsequently, the data is divided into X values and Y values by setting the Lookback Win-

dow and Forecasting Horizon of the sliding window. Here, X values correspond to data

from past times, while Y values correspond to data for future times. The data is then split

into training and testing sets through Data Split, with a split ratio of 0.2. The LSTM se-

quentially receives X values from the training data, and Y values are used as labels in

supervised learning. The LSTM model consists of LSTM layers and a Dense layer. The first

LSTM layer has an input shape of (None, 3, 128), which means the input sequence length

is 3 and there are 128 features at each time step. This LSTM layer has 128 units, and the

total number of parameters is 66,560. The second LSTM layer takes the output of the pre-

vious LSTM layer as its input, with an output shape of (None, 128). This LSTM layer has

128 units, and the total number of parameters is 131,584. Finally, a Dense layer follows,

with an output shape of (None, 1). This layer has one unit, and the total number of param-

eters is 129.

Figure 7. LSTM workflow. (a) Supervised learning of LSTM with normalization, sliding window,

data split; (b) Prediction using the trained LSTM with denormalization.

We have set RMSE as the loss function for LSTM training and used the Adam Opti-

mizer to minimize it. The generated LSTM model has a total of 198,273 trainable parame-

ters, and each model undergoes training for 50 epochs.

Figure 7b illustrates the process of using the trained model to make predictions. The

X values from the Test Data are sequentially input into the trained LSTM model, and the

model predicts the Y values corresponding to the X values through the prediction process,

representing the CPU rate. As these predictions are normalized, they undergo a Denor-

malization process to convert them back into actual prediction values.

Therefore, in our research, we apply the LSTM model to the scheduling of time series

data. This model effectively detects non-linear behavior patterns, understands temporal

Figure 7. LSTM workflow. (a) Supervised learning of LSTM with normalization, sliding window,
data split; (b) Prediction using the trained LSTM with denormalization.

We have set RMSE as the loss function for LSTM training and used the Adam Opti-
mizer to minimize it. The generated LSTM model has a total of 198,273 trainable parameters,
and each model undergoes training for 50 epochs.

Figure 7b illustrates the process of using the trained model to make predictions. The
X values from the Test Data are sequentially input into the trained LSTM model, and
the model predicts the Y values corresponding to the X values through the prediction
process, representing the CPU rate. As these predictions are normalized, they undergo a
Denormalization process to convert them back into actual prediction values.

Therefore, in our research, we apply the LSTM model to the scheduling of time series
data. This model effectively detects non-linear behavior patterns, understands temporal
dependencies, and adapts to chaotic long-term time series data through adaptability and
model generalization.

6. Experiment

In this study, we conducted two experiments. The first is an experiment on the
automatic recovery of a cluster, and the second is a scheduling experiment that uses LSTM.
Both experiments were conducted in a cloud environment. The primary objective of this
study was to demonstrate the efficiency and performance of Kubernetes cluster automatic
recovery according to the recovery time and prove the necessity of scheduling using
machine learning.

Appl. Sci. 2024, 14, 3914 12 of 21

The experimental environment uses AWS EC2 instances and S3 buckets, with the
EC2 instances running Ubuntu Server 22.04 LTS (HVM), SSD Volume Type. The open-
source tools, Rancher and Velero, are used in the Kubernetes management platform and
Kubernetes backup and restoration tools, respectively. The open-source tools, Rancher and
Velero, cannot afford to perform automatic recovery themselves. Our novel module, well
integrated with those tools, implements (1) our proposed automatic recovery mechanism
and (2) efficient restoration to most stable target clusters using LSTM-based available
resource prediction.

6.1. Automated Cluster Recovery

Figure 8 shows the Rancher configuration for the automatic cluster-recovery exper-
iment. In the figure, green represents the systems we added, orange represents Velero,
and blue represents components of Rancher. The Kubernetes cluster running Rancher is
referred to as the Rancher cluster. Although Rancher can operate as a container on a single
server, in our experiment, it runs within a Kubernetes cluster because of the use of Velero.
Clusters 1 and 2, linked to the Rancher cluster, each comprise one master node and two
worker nodes. The master node is a t2.medium EC2 instance type with 2 vCPU, 4 GB
memory, and 30 GB storage, and the worker nodes use t2.small EC2 instances with 1 vCPU,
2 GB memory, and 30 GB storage.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 23

Figure 8. Architecture for the automated cluster-recovery experiment.

Figure 9 shows the flowchart of the cluster auto-recovery experiment. In the figure,

green represents the systems we added, orange represents Velero, and blue represents

components of Rancher. Solid arrows represent the flow of backup file data, while dashed

arrows indicate communication, commands, and similar actions. Velero, connected to the

AWS S3 bucket, is installed in all clusters, including Rancher Cluster, Cluster 1, and Clus-

ter 2. In step 2, if Cluster 1 loses functionality due to a disaster, Rancher detects this. In

step 3, the detected status of Cluster 1 changes to disconnected, triggering the auto-recov-

ery system. In step 4, the auto-recovery system uses Velero to look up the latest backup

file of Cluster 1. In step 5, the restore command, including the name of this backup file, is

transmitted to Cluster 2. In step 6, Cluster 2 executes the received command, using the

backup file in the S3 bucket to restore the application that was running in Cluster 1 to

Cluster 2.

Figure 8. Architecture for the automated cluster-recovery experiment.

Figure 9 shows the flowchart of the cluster auto-recovery experiment. In the figure,
green represents the systems we added, orange represents Velero, and blue represents
components of Rancher. Solid arrows represent the flow of backup file data, while dashed
arrows indicate communication, commands, and similar actions. Velero, connected to the
AWS S3 bucket, is installed in all clusters, including Rancher Cluster, Cluster 1, and Cluster
2. In step 2, if Cluster 1 loses functionality due to a disaster, Rancher detects this. In step
3, the detected status of Cluster 1 changes to disconnected, triggering the auto-recovery
system. In step 4, the auto-recovery system uses Velero to look up the latest backup file
of Cluster 1. In step 5, the restore command, including the name of this backup file, is
transmitted to Cluster 2. In step 6, Cluster 2 executes the received command, using the
backup file in the S3 bucket to restore the application that was running in Cluster 1 to
Cluster 2.

Appl. Sci. 2024, 14, 3914 13 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 23

Figure 9. Flowchart of the automated cluster-recovery experiment.

The automatic recovery experiment was conducted as follows. First, Nginx was run

on Cluster 1, and a backup file was created in the AWS S3 bucket by using the Velero

backup command. Then, the master node of Cluster 1 was stopped to disconnect it from

the Rancher cluster. When the disconnection is detected by the Rancher cluster, the pro-

posed automatic recovery system is initiated for the cluster. Because Clusters 1 and 2 both

have a total of 4vCPU allocated, Cluster 2 is a viable cluster for restoration. In this exper-

iment, because Cluster 2 was the only target cluster available for restoration, the restora-

tion proceeded to Cluster 2 without scheduling. First, Velero in the Rancher cluster que-

ried the latest Nginx backup file in the S3 bucket and sent the restoration command, in-

cluding the name of the backup file, to Cluster 2. Cluster 2 executed the received com-

mand, restoring the Nginx running on Cluster 1 by using the backup file in the S3 bucket.

In this experiment, excluding the process of creating the backup file, the time taken

from when the master node of Cluster 1 was stopped, from the creation of an artificial

disaster scenario to when the Nginx on Cluster 2 was completely restored was measured.

This experiment was repeated 10 times to measure the time. The time taken from execut-

ing the Velero restoration command in Cluster 2 to the completion of the restoration is

referred to as the restoration time. The time utilized by the process, excluding the restora-

tion time, is attributed to the proposed system. The measurement and analysis of these

times are explained in Section 7.

6.2. LSTM-Based Scheduling

Our experiment is based on LSTM-based scheduling, utilizing a model trained on

Google Cluster Trace data [20]. In the work presented in [20], it is stated that “Most re-

source utilization measurements and requests have been normalized, including: (1) CPU

(core count or core seconds/second); (2) memory (bytes); (3) disk space (bytes); (4) disk

time fraction (I/O seconds/second). For each of the foregoing, we compute separate nor-

malizations. The normalization is a scaling relative to the largest capacity of the resource

on any machine in the trace (which is 1.0)”. In this study, we also assume that all CPU

resources are homogeneous and normalized regarding maximum consumption as in

Google Cluster Trace data [20].

The data includes cluster CPU usage rates at 5 min intervals, enabling the training of

a model to predict the cluster CPU usage rate 5 min into the future. The model, built on

insights from five experiments, analyzes CPU usage rates over the past 15 min to predict

the rate for the next 5 min. The choice of predicting the CPU usage rate for the next 5 min

is due to the high volatility in the Google Cluster Trace data. Through LSTM-based

Figure 9. Flowchart of the automated cluster-recovery experiment.

The automatic recovery experiment was conducted as follows. First, Nginx was run
on Cluster 1, and a backup file was created in the AWS S3 bucket by using the Velero
backup command. Then, the master node of Cluster 1 was stopped to disconnect it from the
Rancher cluster. When the disconnection is detected by the Rancher cluster, the proposed
automatic recovery system is initiated for the cluster. Because Clusters 1 and 2 both have a
total of 4vCPU allocated, Cluster 2 is a viable cluster for restoration. In this experiment,
because Cluster 2 was the only target cluster available for restoration, the restoration
proceeded to Cluster 2 without scheduling. First, Velero in the Rancher cluster queried the
latest Nginx backup file in the S3 bucket and sent the restoration command, including the
name of the backup file, to Cluster 2. Cluster 2 executed the received command, restoring
the Nginx running on Cluster 1 by using the backup file in the S3 bucket.

In this experiment, excluding the process of creating the backup file, the time taken
from when the master node of Cluster 1 was stopped, from the creation of an artificial
disaster scenario to when the Nginx on Cluster 2 was completely restored was measured.
This experiment was repeated 10 times to measure the time. The time taken from executing
the Velero restoration command in Cluster 2 to the completion of the restoration is referred
to as the restoration time. The time utilized by the process, excluding the restoration time,
is attributed to the proposed system. The measurement and analysis of these times are
explained in Section 7.

6.2. LSTM-Based Scheduling

Our experiment is based on LSTM-based scheduling, utilizing a model trained on
Google Cluster Trace data [20]. In the work presented in [20], it is stated that “Most
resource utilization measurements and requests have been normalized, including: (1) CPU
(core count or core seconds/second); (2) memory (bytes); (3) disk space (bytes); (4) disk
time fraction (I/O seconds/second). For each of the foregoing, we compute separate
normalizations. The normalization is a scaling relative to the largest capacity of the resource
on any machine in the trace (which is 1.0)”. In this study, we also assume that all CPU
resources are homogeneous and normalized regarding maximum consumption as in Google
Cluster Trace data [20].

The data includes cluster CPU usage rates at 5 min intervals, enabling the training of
a model to predict the cluster CPU usage rate 5 min into the future. The model, built on
insights from five experiments, analyzes CPU usage rates over the past 15 min to predict the
rate for the next 5 min. The choice of predicting the CPU usage rate for the next 5 min is due
to the high volatility in the Google Cluster Trace data. Through LSTM-based scheduling,
the algorithm selects clusters with higher stability compared to algorithms considering
only the current CPU usage.

Appl. Sci. 2024, 14, 3914 14 of 21

To validate this, we conducted two types of experiments. In the first experiment, we
utilized test data comprising 20% of the total data from Figure 6. For each data point, we
compared the current CPU utilization value with the value 5 min ahead. This process
started from the 6681st data point and iterated through the last data point, calculating the
RMSE (Root Mean Square Error) metric. In the second experiment, we constructed an
xLSTM model, following the predictive model architecture presented in Section 5.2. After
hyperparameter tuning, we obtained the best parameters as follows: lookback window
size = 3; prediction window size = 1; batch size = 64; learning rate = 0.0001; trainable LSTM
parameters = 789,761; and training epoch = 100. The model was trained on data from the
past 15 min corresponding to the lookback window value of 3 to predict CPU utilization
5 min ahead (prediction window value of 1). We compared the predicted values with the
actual values in the test data and calculated the RMSE metric.

As a result of the experiments, the RMSE value in the second experiment utilizing
LSTM improved by 2.21% compared to the first experiment. This outcome validates the
excellence of CPU utilization prediction using LSTM. Based on these results, we applied
the experiment to real-world environments.

In the experiments, Google Cluster Trace data is applied to predict CPU usage rates
in the current environment. The cluster’s CPU usage rates are adjusted at 5 min intervals,
aligned with the patterns in the Google Cluster Trace data. This process aims to validate
the model’s prediction accuracy by adapting it to the real environment. In the event of a
disaster, the model mimics data patterns, predicts CPU usage based on applied data in the
actual cluster environment, and selects the cluster with the lowest predicted CPU usage
rate for recovery.

Figure 10 shows the Rancher configuration for the LSTM-based scheduling experiment.
In the figure, green represents the systems we added, orange represents Velero, and blue
represents components of Rancher. Each of the six clusters linked to the Rancher cluster
comprises one master node and two worker nodes. The master node is a t2.medium EC2
instance with 2 vCPU, 4 GiB memory, and 30 GiB storage, whereas the worker nodes are
t2.small EC2 instances with 1v CPU, 2 GiB memory, and 30 GiB storage. The CPU-utilization
rates of the clusters were varied, which was intentional for the scheduling test.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 23

Figure 10. Architecture used in the LSTM-based scheduling experiment.

Figure 11 illustrates a YAML file for a pod operating to adjust the CPU-utilization

rates of the clusters. This pod uses a very resource-light busybox image. The “requests”

and “limits” represent the CPU usage request and maximum limit, respectively. By ad-

justing these values and running them, the CPU-utilization rates of each cluster can be

manipulated. In the example, the “requests” and “limits” were set to 200 m to achieve 5%

utilization of the total 4vCPU of the cluster.

Figure 11. Dummy application YAML.

Figure 12 shows the flowchart of the LSTM-based scheduling experiment. In the fig-

ure, green represents the systems we added, orange represents Velero, and blue represents

components of Rancher. Solid arrows represent the flow of backup file data, while dashed

arrows indicate communication, commands, and similar actions. Velero, connected to the

AWS S3 bucket, is installed in all clusters. In step 1, Cluster 6 uses Velero to create a backup

file of the application running in it in the S3 bucket. In step 2, if Cluster 6 loses functionality

due to a disaster, Rancher detects this. In step 3, the detected status of Cluster 6 changes

Figure 10. Architecture used in the LSTM-based scheduling experiment.

Figure 11 illustrates a YAML file for a pod operating to adjust the CPU-utilization rates
of the clusters. This pod uses a very resource-light busybox image. The “requests” and

Appl. Sci. 2024, 14, 3914 15 of 21

“limits” represent the CPU usage request and maximum limit, respectively. By adjusting
these values and running them, the CPU-utilization rates of each cluster can be manipulated.
In the example, the “requests” and “limits” were set to 200 m to achieve 5% utilization of
the total 4vCPU of the cluster.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 23

Figure 10. Architecture used in the LSTM-based scheduling experiment.

Figure 11 illustrates a YAML file for a pod operating to adjust the CPU-utilization

rates of the clusters. This pod uses a very resource-light busybox image. The “requests”

and “limits” represent the CPU usage request and maximum limit, respectively. By ad-

justing these values and running them, the CPU-utilization rates of each cluster can be

manipulated. In the example, the “requests” and “limits” were set to 200 m to achieve 5%

utilization of the total 4vCPU of the cluster.

Figure 11. Dummy application YAML.

Figure 12 shows the flowchart of the LSTM-based scheduling experiment. In the fig-

ure, green represents the systems we added, orange represents Velero, and blue represents

components of Rancher. Solid arrows represent the flow of backup file data, while dashed

arrows indicate communication, commands, and similar actions. Velero, connected to the

AWS S3 bucket, is installed in all clusters. In step 1, Cluster 6 uses Velero to create a backup

file of the application running in it in the S3 bucket. In step 2, if Cluster 6 loses functionality

due to a disaster, Rancher detects this. In step 3, the detected status of Cluster 6 changes

Figure 11. Dummy application YAML.

Figure 12 shows the flowchart of the LSTM-based scheduling experiment. In the figure,
green represents the systems we added, orange represents Velero, and blue represents
components of Rancher. Solid arrows represent the flow of backup file data, while dashed
arrows indicate communication, commands, and similar actions. Velero, connected to the
AWS S3 bucket, is installed in all clusters. In step 1, Cluster 6 uses Velero to create a backup
file of the application running in it in the S3 bucket. In step 2, if Cluster 6 loses functionality
due to a disaster, Rancher detects this. In step 3, the detected status of Cluster 6 changes
to disconnected, triggering the auto-recovery system. In step 4, the auto-recovery system
uses Velero to look up the latest backup file of Cluster 6. In step 5, the restore command,
including the name of this backup file, is transmitted to the target cluster selected through
LSTM-based scheduling. In the figure, it is transmitted to Cluster 1, which has the lowest
predicted CPU usage. In step 6, the target cluster executes the received command, using
the backup file in the S3 bucket to restore the application that was running in Cluster 6 to
the target cluster.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 23

to disconnected, triggering the auto-recovery system. In step 4, the auto-recovery system

uses Velero to look up the latest backup file of Cluster 6. In step 5, the restore command,

including the name of this backup file, is transmitted to the target cluster selected through

LSTM-based scheduling. In the figure, it is transmitted to Cluster 1, which has the lowest

predicted CPU usage. In step 6, the target cluster executes the received command, using

the backup file in the S3 bucket to restore the application that was running in Cluster 6 to

the target cluster.

Figure 12. Flowchart of the LSTM-based scheduling experiment.

The procedure of the LSTM-based scheduling experiment is as follows. First, a

dummy application is run on Cluster 6. This running application is backed up to the AWS

S3 bucket by using the Velero backup command. Then, the master node of Cluster 6 is

stopped to disconnect it from the Rancher cluster. After the Rancher cluster detects the

disconnection, our automatic recovery system is initiated for the cluster. As Cluster 6 con-

tains a total of 4vCPU, and Clusters 1, 2, 3, 4, and 5 each have 4vCPU allocated, they are

all potential restoration targets. In this experimental environment, multiple target clusters

are available for restoration, and thus scheduling is conducted. The current CPU-utiliza-

tion rates of the clusters are used as input values for the LSTM-based CPU prediction. The

cluster with the lowest predicted CPU-utilization rate is selected as the target cluster.

Then, Velero in the Rancher cluster queries the latest backup file of the dummy application

in the S3 bucket and sends the restoration command, including the name of the backup

file, to the target cluster. The target cluster executes the received command, restoring the

dummy application running on Cluster 6 by using the backup file in the S3 bucket. In our

study, this experiment was conducted 10 times, measuring the CPU-utilization rates of

the clusters each time. Additionally, an experiment in which the target cluster was ran-

domly selected instead of using LSTM-based scheduling was conducted 10 times in the

same manner. These two experiments are compared and analyzed in Section 7.

7. Results and Discussion

7.1. Automated Cluster Recovery

In Table 1, A represents the time taken to restore Nginx in our environment, B is the

time taken for automatic recovery, and A–B is the time excluding the restoration time from

the total time spent on automatic recovery. The restoration of Nginx in our environment

Figure 12. Flowchart of the LSTM-based scheduling experiment.

Appl. Sci. 2024, 14, 3914 16 of 21

The procedure of the LSTM-based scheduling experiment is as follows. First, a dummy
application is run on Cluster 6. This running application is backed up to the AWS S3 bucket
by using the Velero backup command. Then, the master node of Cluster 6 is stopped to
disconnect it from the Rancher cluster. After the Rancher cluster detects the disconnection,
our automatic recovery system is initiated for the cluster. As Cluster 6 contains a total of
4vCPU, and Clusters 1, 2, 3, 4, and 5 each have 4vCPU allocated, they are all potential
restoration targets. In this experimental environment, multiple target clusters are available
for restoration, and thus scheduling is conducted. The current CPU-utilization rates of the
clusters are used as input values for the LSTM-based CPU prediction. The cluster with
the lowest predicted CPU-utilization rate is selected as the target cluster. Then, Velero
in the Rancher cluster queries the latest backup file of the dummy application in the S3
bucket and sends the restoration command, including the name of the backup file, to the
target cluster. The target cluster executes the received command, restoring the dummy
application running on Cluster 6 by using the backup file in the S3 bucket. In our study, this
experiment was conducted 10 times, measuring the CPU-utilization rates of the clusters
each time. Additionally, an experiment in which the target cluster was randomly selected
instead of using LSTM-based scheduling was conducted 10 times in the same manner.
These two experiments are compared and analyzed in Section 7.

7. Results and Discussion
7.1. Automated Cluster Recovery

In Table 1, A represents the time taken to restore Nginx in our environment, B is the
time taken for automatic recovery, and A − B is the time excluding the restoration time from
the total time spent on automatic recovery. The restoration of Nginx in our environment
takes 20 s, which is the time required for the restoration operation to be executed. In the
automatic recovery experiment, the restoration was completed in an average of 27 s across
10 trials, within a range of 20–34 s. Excluding the time taken for the restoration operation,
an additional 0–14 s was added. This time is attributed to the delay caused by Rancher’s
15-s interval for detecting cluster disconnections. However, even if a user were to perform
manual recovery, the inevitable delay would occur only after a Rancher detects cluster
disconnection. Excluding this inevitable delay, the actual additional delay caused by the
automatic recovery operation is determined to be less than 1 s. Therefore, the experiment
proves the efficiency of automatic recovery by eliminating the delay that is caused by user
intervention in a manual recovery process.

Table 1. Results of the time taken to recover Nginx.

Case Recovery Time (A) Restoration Time (B) (A − B)

1 23 20 3

2 34 20 14

3 28 20 8

4 26 20 6

5 32 20 12

6 22 20 2

7 23 20 3

8 25 20 5

9 30 20 10

10 27 20 7

AVG 27 20 7

Appl. Sci. 2024, 14, 3914 17 of 21

7.2. LSTM-Based Scheduling

In this section, the importance of CPU-utilization prediction is explored in the automated-
recovery process. First, an experiment selecting the target cluster for restoration based
on CPU-utilization prediction by using LSTM is compared with an experiment randomly
selecting the target cluster. In each experiment, restoration operations were conducted
10 times on five clusters, starting from the same initial state, and the variations in CPU
utilization in each cluster were analyzed. According to Gusev et al. [29], when CPU utiliza-
tion exceeds 80%, the occurrence of system performance degradation is highly possible.
Thus, maintaining a stable level of CPU utilization in the cluster is important. This study
thoroughly analyzed the results of both experiments, presenting a comparative analysis.

Table 2 shows the results of randomly selecting a target cluster among five clusters
and performing restoration 10 times. The red text in the table shows which cluster the
restoration at that point is scheduled for. The first restoration occurred in Cluster 5,
demonstrating the highest initial CPU utilization, followed by several other restorations.
After 10 restoration operations, Clusters 4 and 5 reached 85% CPU utilization, indicating a
high probability of performance degradation. Moreover, CPU utilization across clusters
demonstrates significant variation.

Table 2. Results of randomly scheduling clusters.

Restoration Count Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Initial State 35% 40% 50% 60% 70%

1 35% 40% 50% 60% 75%

2 40% 40% 50% 60% 75%

3 40% 40% 50% 65% 75%

4 40% 40% 50% 70% 75%

5 40% 40% 50% 70% 80%

6 40% 40% 50% 70% 85%

7 40% 40% 55% 70% 85%

8 40% 40% 55% 75% 85%

9 40% 40% 55% 80% 85%

10 40% 40% 55% 85% 85%

Clusters with CPU
utilization under 80% O O O X X

Table 3 presents the results of selecting the target cluster for restoration based on
CPU-utilization prediction with LSTM and conducting 10 restorations. The red text in the
table shows which cluster the restoration at that point is scheduled for. The first restoration
began in Cluster 1, which has the lowest initial CPU-utilization rate, and subsequent
restoration operations targeted clusters with the lowest rate of CPU utilization at each
point. After completing 10 restoration operations, none of the clusters exceeded 80% CPU
utilization. Moreover, all clusters maintained a stable state, with CPU utilization between
55% and 70%.

The results of these two experiments demonstrate the importance of scheduling
based on CPU-utilization prediction. As shown in Table 2, in Experiment 1, restoration
was started in Cluster 5, which had high initial CPU utilization, leading to performance
degradation. Eventually, CPU utilization in Clusters 4 and 5 reached 85%, increasing the
risk of performance degradation and showing an imbalance in utilization among clusters.
In contrast, in Experiment 2, (Table 3) restoration was started in clusters with lower CPU
utilization and LSTM for prediction, which helped to maintain system balance. All clusters

Appl. Sci. 2024, 14, 3914 18 of 21

maintained a stable state, not exceeding 80% CPU utilization, and a utilization rate between
55% and 70% indicated efficient resource usage.

Table 3. Results of scheduling clusters based on CPU-usage prediction by using LSTM.

Restoration Count Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Initial State 35% 40% 50% 60% 70%

1 40% 40% 50% 60% 70%

2 45% 40% 50% 60% 70%

3 45% 45% 50% 60% 70%

4 50% 45% 50% 60% 70%

5 50% 50% 50% 60% 70%

6 55% 50% 50% 60% 70%

7 55% 55% 50% 60% 70%

8 55% 55% 55% 60% 70%

9 60% 55% 55% 60% 70%

10 60% 60% 55% 60% 70%

Clusters with CPU
utilization under 80% O O O O O

Additionally, we compared five prediction methods: Random Selection, Lowest (5 m
ahead), Lowest (10 m ahead), LSTM (5 m ahead), and LSTM (10 m ahead). Table 4 presents
the RMSE for these five methods. Random Selection shows the results of randomly selecting
a cluster from the five clusters. Lowest (5 m ahead) involves selecting the cluster with
the lowest CPU usage among the five and predicting the CPU usage for the next 5 min
based on the current value. Similarly, Lowest (10 m ahead) predicts the CPU usage for the
next 10 min using the same approach. LSTM (5 m ahead) utilizes 15 min of data from the
five clusters to predict the CPU usage for the next 5 min, while LSTM (10 m ahead) uses
30 min of data to predict the CPU usage for the next 10 min. As shown in Table 4, LSTM
demonstrates approximately 2.2% lower RMSE than Lowest.

Table 4. Random Selection vs. Lowest Selection vs. LSTM-based Selection.

Metric Random Lowest
(5 m Ahead)

Lowest
(10 m Ahead)

Lowest
(20 m Ahead)

LSTM
(5 m Ahead)

LSTM
(10 m Ahead)

LSTM
(20 m Ahead)

RMSE 3085.83 312.30 472.20 608.09 305.54 461.75 621.31

This comparison proves that prediction-based scheduling by using LSTM is crucial for
resource management and performance degradation prevention in cloud environments.
When the prediction model was used to determine the order of restoration operations,
it enhanced the overall system performance, increased resource usage efficiency, and
minimized the risk of potential performance degradation.

LSTM is widely used for its strong ability to model long-term dependencies. However,
due to its intrinsic recurrent approach, there is a tendency for computational and memory
usage to increase as the sequence length becomes longer. This limitation can also be
observed in Table 4. For example, the RMSE for a prediction made 5 min later using
LSTM improved by about 50.8% compared to the RMSE for a prediction made 20 min later.
Therefore, this constraint can lead to problems in large datasets or real-time applications.

Moreover, the scalability issue of LSTM models is also worth noting in relation to
parallelization. Due to its sequential nature, parallelizing LSTMs is generally challenging,

Appl. Sci. 2024, 14, 3914 19 of 21

which can slow down training speeds in large datasets. These limitations can restrict the
practical applicability of LSTMs in real-world scenarios.

Therefore, future research needs to consider the Transformer architecture. Transform-
ers can effectively address long-term dependency issues using attention mechanisms and
are efficient in parallel processing [30]. Transformer architectures for time-series data pre-
diction have been recently studied and leveraging them could overcome the limitations of
LSTMs [31,32].

7.3. Scalability

In our current environment, the time taken to schedule five clusters is less than 1 s.
Judging from these results, scheduling more clusters would not result in significant delays.
Even with more target clusters, LSTM predictions can be parallelized easily. The more
critical issue would be the training of multiple customized LSTM models for a large number
of target clusters. Still, the issue will also be resolved with dedicated training servers
conducting online learning through periodic new data collections from target clusters.

Suppose we apply our proposed methodology to a multi-resource (e.g., CPU and GPU)
cloud environment. In that case, we can collect more detailed information about services
running on a failed cluster and train more customized LSTM prediction models. For
example, a service requiring 0.1 GPU resources and 0.5 CPU resources, where the values are
all normalized, can be relocated to a target cluster having enough GPU and GPU resources
by inferring GPU and CPU resource consumption prediction simultaneously. Either two
separate LSTM models for GPU and CPU, respectively, or a single LSTM model predicting
two types of resources at the same time can be developed. Likewise, any different types of
resources can be handled.

8. Conclusions

This study focused on the efficiency of a Kubernetes cluster automatic recovery system
and the effectiveness of scheduling methods using LSTMs. Compared to previous studies
that mainly explored automatic recovery and restoration at the service or application level,
this study experimentally verified the feasibility and effectiveness of automatic recovery by
targeting the entire cluster. The contributions of this study are two-fold: the reduction in
recovery time and the efficient utilization of resources. In addition, the scheduling method
based on CPU-utilization prediction by using LSTM can optimize the selection of the target
cluster for restoration, contributing to the overall system performance and stability.

Consequently, this research significantly contributes to the design and operation of
automatic recovery systems in cloud environments, opening new horizons for future
research. In addition, we emphasize the need for further research on the applicability of
automatic recovery in various cloud environments and system optimization by integrating
AI technologies. This could stimulate research and innovation to advance cloud computing.

Author Contributions: Conceptualization, J.-B.K. and E.-S.J.; methodology, J.-B.K. and E.-S.J.; soft-
ware, J.-B.K.; validation, J.-B.K. and E.-S.J.; formal analysis, J.-B.K.; investigation J.-B.K. and J.-B.C.;
resources, J.-B.K. and E.-S.J.; data curation, J.-B.K. and J.-B.C.; writing—original draft preparation,
J.-B.K. and J.-B.C.; writing—review and editing, J.-B.K.; visualization, J.-B.K.; supervision, E.-S.J.;
project administration, E.-S.J.; funding acquisition, E.-S.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was also supported by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2021-
0-02082, CDM_Cloud: Multi-Cloud Data Protection and Management Platform).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2024, 14, 3914 20 of 21

References
1. Menard, P.; Gatlin, R.; Warkentin, M. Threat Protection and Convenience: Antecedents of Cloud-Based Data Backup. J. Comput.

Inf. Syst. 2014, 55, 83–91. [CrossRef]
2. Landry, B.J.L.; Koger, M.S. Dispelling 10 common disaster recovery myths: Lessons learned from Hurricane Katrina and other

disasters. J. Educ. Resour. Comput. 2006, 6, 6. [CrossRef]
3. Schroeder, B.; Damouras, S.; Gill, P. Understanding latent sector errors and how to protect against them. ACM Trans. Storage 2010,

6, 1–23. [CrossRef]
4. Nath, S.; Yu, H.; Gibbons, P.B.; Seshan, S. Subtleties in Tolerating Correlated Failures in Wide-area Storage Systems. In Proceedings

of the Third Conference Networked Systems Design & Implementation—(NSDI ‘06), San Jose, CA, USA, 8–10 May 2006; Volume 3.
5. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; NIST Special Publication 800-145; NIST: Gaithersburg, MD, USA, 2011.

[CrossRef]
6. Tomas, L.; Kokkinos, P.; Anagnostopoulos, V.; Feder, O.; Kyriazis, D.; Meth, K.; Varvarigos, E.; Varvarigou, T. Disaster Recovery

Layer for Distributed OpenStack Deployments. IEEE Trans. Cloud Comput. 2020, 8, 112–123. [CrossRef]
7. Harwalkar, S.; Sitaram, D.; Jadon, S. Multi-cloud DRaaS using OpenStack Keystone Federation. In Proceedings of the 2019

International Conference on Advances in Computing and Communication Engineering (ICACCE), Sathyamangalam, India, 4–6
April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [CrossRef]

8. Sato, T.; He, F.; Oki, E.; Kurimoto, T.; Urushidani, S. Implementation and Testing of Failure Recovery Based on Backup Resource
Sharing Model for Distributed Cloud Computing System. In Proceedings of the 2018 IEEE 7th International Conference on Cloud
Networking (CloudNet), Tokyo, Japan, 22–24 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–3. [CrossRef]

9. Zhang, J.-h.; Zhang, N. Cloud Computing-based Data Storage and Disaster Recovery. In Proceedings of the 2011 International
Conference on Future Computer Science and Education, Xi’an, China, 20–21 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp.
629–632. [CrossRef]

10. Wood, T.; Cecchet, E.; Ramakrishnan, K.K.; Shenoy, P. Disaster Recovery as a Cloud Service: Economic Benefits & Deployment
Challenges. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA,
22–25 June 2010; pp. 22–25.

11. Poniszewska-Marańda, A.; Czechowska, E. Kubernetes Cluster for Automating Software Production Environment. Sensors 2021,
21, 1910. [CrossRef] [PubMed]

12. Yu, H.; Xiang, X.; Zhao, Y.; Zheng, W. BIRDS: A Bare-Metal Recovery Systemfor Instant Restoration of Data Services. IEEE Trans.
Comput. 2014, 63, 1392–1407. [CrossRef]

13. Sousa, T.B.; Ferreira, H.S.; Correia, F.F.; Aguiar, A. Engineering Software for the Cloud: Automated Recovery and Scheduler. In
Proceedings of the 23rd European Conference on Pattern Languages of Programs, Irsee, Germany, 4–8 July 2018; ACM: New
York, NY, USA, 2018; pp. 1–8. [CrossRef]

14. Yu, X.; Wang, D.; Sun, X.; Zheng, B.; Du, Y. Design and Implementation of a Software Disaster Recovery Service for Cloud
Computing-Based Aerospace Ground Systems. In Proceedings of the 2022 11th International Conference on Communications,
Circuits and Systems (ICCCAS), Singapore, 13–15 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 220–225. [CrossRef]

15. Challagidad, P.S.; Dalawai, A.S.; Birje, M.N. Efficient and Reliable Data Recovery Technique in Cloud Computing. Internet Things
Cloud Comput. 2017, 5, 13–18. [CrossRef]

16. Jun, Y.; Lihong, Y. The Cloud Technology Double Live Data Center Information System Research and Design Based on Disaster
Recovery Platform. Procedia Eng. 2017, 174, 1356–1370. [CrossRef]

17. Wang, L.; Harper, R.E.; Mahindru, R.; Ramasamy, H.V. Disaster Recovery for Cloud-Hosted Enterprise Applications. In
Proceedings of the 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 27 June–2
July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 432–439. [CrossRef]

18. Google Cloud Documentation. Available online: https://cloud.google.com/docs (accessed on 17 March 2024).
19. Disaster Recovery Service—AWS Elastic Disaster Recovery—AWS. Available online: https://aws.amazon.com/disaster-recovery/

(accessed on 17 March 2024).
20. Reiss, C.; Wilkes, J.; Hellerstein, J.L. Google Cluster-Usage Traces: Format + Schema. Google, 2 September 2023. Available online:

https://github.com/google/cluster-data (accessed on 3 September 2023).
21. Bi, J.; Li, S.; Yuan, H.; Zhou, M. Integrated deep learning method for workload and resource prediction in cloud systems.

Neurocomputing 2021, 424, 35–48. [CrossRef]
22. Kumar, J.; Singh, A.K.; Buyya, R. Self directed learning based workload forecasting model for cloud resource management. Inf.

Sci. 2021, 543, 345–366. [CrossRef]
23. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
24. Kolen, J.F.; Kremer, S.C. Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm Dependencies. In A Field Guide to

Dynamical Recurrent Networks; IEEE: Piscataway, NJ, USA, 2001; pp. 237–243.
25. Song, B.; Yu, Y.; Zhou, Y.; Wang, Z.; Du, S. Host load prediction with long short-term memory in cloud computing. J. Supercomput.

2018, 74, 6554–6568. [CrossRef]
26. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Phil. Trans. R. Soc. A. 2021, 379, 20200209. [CrossRef]

[PubMed]

https://doi.org/10.1080/08874417.2014.11645743
https://doi.org/10.1145/1248453.1248459
https://doi.org/10.1145/1837915.1837917
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/TCC.2017.2745560
https://doi.org/10.1109/ICACCE46606.2019.9080005
https://doi.org/10.1109/CloudNet.2018.8549455
https://doi.org/10.1109/ICFCSE.2011.157
https://doi.org/10.3390/s21051910
https://www.ncbi.nlm.nih.gov/pubmed/33803329
https://doi.org/10.1109/TC.2013.19
https://doi.org/10.1145/3282308.3282315
https://doi.org/10.1109/ICCCAS55266.2022.9825253
https://doi.org/10.11648/J.IOTCC.S.2017050501.13
https://doi.org/10.1016/j.proeng.2017.01.289
https://doi.org/10.1109/CLOUD.2016.0064
https://cloud.google.com/docs
https://aws.amazon.com/disaster-recovery/
https://github.com/google/cluster-data
https://doi.org/10.1016/j.neucom.2020.11.011
https://doi.org/10.1016/j.ins.2020.07.012
https://doi.org/10.1109/72.279181
https://www.ncbi.nlm.nih.gov/pubmed/18267787
https://doi.org/10.1007/s11227-017-2044-4
https://doi.org/10.1098/rsta.2020.0209
https://www.ncbi.nlm.nih.gov/pubmed/33583273

Appl. Sci. 2024, 14, 3914 21 of 21

27. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
28. Luo, Z.; Qi, R.; Li, Q.; Zheng, J.; Shao, S. ABODE-Net: An Attention-based Deep Learning Model for Non-intrusive Building

Occupancy Detection Using Smart Meter Data. In Smart Computing and Communication; SmartCom 2022 Lecture Notes in
Computer Science; Qiu, M., Lu, Z., Zhang, C., Eds.; Springer: Cham, Switzerland, 2023; Volume 13828. [CrossRef]

29. Gusev, M.; Ristov, S.; Simjanoska, M.; Velkoski, G. CPU Utilization while Scaling Resources in the Cloud. In Proceedings of the
4th International Conference on Cloud Computing, GRIDS, and Virtualization, Valencia, Spain, 27 May–1 June 2013.

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

31. Chang, C.; Wang, W.-Y.; Peng, W.-C.; Chen, T.-F. LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters.
arXiv 2024, arXiv:2308.08469v5.

32. Li, Q.; Luo, Z.; Qi, R.; Zheng, J. DeepTPA-Net: A Deep Triple Attention Network for sEMG-Based Hand Gesture Recognition.
IEEE Access 2023, 11, 96797–96807. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-031-28124-2_15
https://doi.org/10.1109/ACCESS.2023.3312219

	Introduction
	Related Work
	Design
	Experimental Data
	Google Cluster Trace Dataset
	Preprocessing

	LSTM-Based Scheduling
	Sliding Window
	Prediction Model Architecture

	Experiment
	Automated Cluster Recovery
	LSTM-Based Scheduling

	Results and Discussion
	Automated Cluster Recovery
	LSTM-Based Scheduling
	Scalability

	Conclusions
	References

